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S U M M A R Y
Earthquake rupture models inferred from inversions of geophysical and/or geodetic data ex-
hibit remarkable variability due to uncertainties in modelling assumptions, the use of different
inversion algorithms, or variations in data selection and data processing. A robust statistical
comparison of different rupture models obtained for a single earthquake is needed to quan-
tify the intra-event variability, both for benchmark exercises and for real earthquakes. The
same approach may be useful to characterize (dis-)similarities in events that are typically
grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or
tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of
the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial
(random) fields by means of a chosen loss function that describes an error relation between a
2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach
for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various
characteristics, and then apply the method to results of a benchmark inversion exercise with
known solution. We find the SPCT to be sensitive to different spatial correlations lengths,
and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a
simple and effective tool for ranking the slip models with respect to a reference model.
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1 I N T RO D U C T I O N

In recent years, finite-fault source inversions have become a
standard tool to image the kinematic space–time evolution of the
earthquake rupture process. Due to increased and often real-time
availability of seismic and geodetic data, and advancements in in-
version techniques and computing facilities, such source inversions
are conducted routinely for large events, and solutions are often
presented hours after a large earthquake (United States Geological
Survey’s ‘finite-fault models’, http://earthquake.usgs.gov/
earthquakes/eqinthenews/, and California University of Tech-
nology’s ‘Source Models of Large Earthquakes’, http://www.
tectonics.caltech.edu/slip_history/index.html). Often, refined
source inversions are then subsequently published to examine and
study the details of the rupture kinematics (e.g. Hayes et al. 2010;
Wei et al. 2012; Fielding et al. 2013; Yue & Lay 2013).

Such earthquake rupture models constitute an important resource
for subsequent studies on fault mechanics, seismotectonic interpre-
tation, stress modelling and ground-motion simulations. However,
there are several impeding issues regarding the reliability of the

inverted models arising from the ill-posed nature of the inverse
problem, limited and non-uniform data coverage, differences in se-
lection and processing of the available data, incompletely known
Earth structure, and variations in a priori assumptions on the fault-
geometry (Beresnev 2003; Mai et al. 2007; Shao & Ji 2012). Hence,
earthquake source inversions come with considerable uncertainty,
which however is only rarely investigated in as much detail as by
Hartzell et al. (1991, 2007), Custodio et al. (2005), Monelli & Mai
(2008), Monelli et al. 2009 and Razafindrakoto & Mai (2014).

Often, several rupture models have been published for the same
earthquake, but source parameters (e.g. slip on the fault) visually
appear vastly different from each other. Results from a ‘blind test’
of earthquake source inversions (Mai et al. 2007) indicate (1) that a
good-fit to the data does not necessarily yield a correct source model
and (2) that accuracy is not ensured even with near-fault data, known
Earth structure and fault geometry. The performance of source in-
version codes, and the resulting uncertainties in kinematic source
parameters are still not well understood. We thus strive to gain
further insight into source-model uncertainties, to understand the
factors that cause the model variability, and to identify the robust
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features of these source models. To this end, the source inversion val-
idation (SIV, http://equake-rc.info/siv) project (Page et al. 2011; Mai
2013) provides benchmark exercises and corresponding datasets to
facilitate verification of inversion (and forward-modelling) codes,
as well as the comparison and validation of the inferred rupture
models.

Kinematic finite-fault models employ several parameters to de-
scribe the spatiotemporal rupture evolution, namely the final slip
on the fault, the rise-time (duration of slip at each point of the
fault), the rupture onset time, and the rake (angle of slip direction).
Typically, the parametrization involves an elementary source time
function defined for the entire rupture plane, which can be repeated
to build so-called multitime-window inversions (Olson & Apsel
1982; Cohee & Beroza 1994; Wald & Heaton 1994). Simple source
model parametrizations employ regular grids over a single plane,
while more complex ones may comprise multiple fault segments to
capture complex faulting geometry. First order earthquake source
parameters like hypocentre location and local magnitude are gener-
ally independently derived, while seismic moment is an immediate
outcome of the inversion.

This study focuses on evaluating the intra-event differences of
distributed slip on a single fault plane (henceforth called slip mod-
els or simply ‘models’) by means of a rigorous quantitative anal-
ysis of the observed variability. Our analysis considers various
cases for spatial distributions of final slip. To develop a quanti-
tative understanding and statistically robust approach, we adopt the
spatial prediction comparison test (SPCT) proposed by Hering &
Genton (2011). The SPCT was developed for general spatial
(random) fields, and is here applied for comparing characteristics
of earthquake slip on a fault. Our analyses consider two specific
cases: (1) synthetic slip models generated as stochastic random
fields whose spatial complexities are controlled by spatial correla-
tion lengths and heterogeneity levels and (2) inverted source models
from a series of SIV benchmark exercises.

We first present a brief review on the testing procedure of the
SPCT, which is then applied to a set of synthetic slip models with
varying characteristics in random field parametrization. In this case,
the reference model is computed as the average of the tested slip
models. Subsequently, we perform the SPCT-procedure on inverted
rupture models that are obtained for a benchmark exercise with
known (‘true’) solution that serves as the reference model. We
conclude with discussing the results in terms of further applicability
of the SPCT, and present limitations and possible extensions of the
approach.

2 S PAT I A L P R E D I C T I O N C O M PA R I S O N
T E S T

The testing procedure of the SPCT is an extension of the time series
test introduced by Diebold & Mariano (1995) to spatial random
fields. The SPCT yields a statistical test for testing the null hypoth-
esis that there is no significant difference, on average, between two
competing spatial predictions. The results of the SPCT can thus be
used to determine which of two competing models better matches
a reference model.

The major advantage of the SPCT method is that it does not
require any assumption on the distribution of the prediction er-
rors computed from a loss function; they can be Gaussian or non-
Gaussian, and may or may not have zero-mean. In addition, any
loss function can be used in the SPCT that provides statistical tests
that account for intensity or/and location errors. For example, the

square and absolute error loss functions inform about intensity er-
rors, while the correlation skill measures location errors. Hence,
SPCT results have to be interpreted in the context of the chosen loss
function.

Assume a spatial process {Z (s) ∈ R : s ∈ � ⊂ R
2} has been

observed at discrete locations (possibly on a grid) denoted by
s1, s2, . . . , sn , where si is the spatial location and � is the entire
domain of the process. This spatial process is predicted by two sets
of spatial prediction models denoted by Ẑ1(s) and Ẑ2(s). A general
loss function g[Z (si ), Ẑ P (si )] is then introduced between a par-
ticular realization [Z (si )]n

i=1 of the spatial process, and an arbitrary
prediction model [Ẑ P (si )]n

i=1; this loss function quantifies the differ-
ence between the prediction model and a given realization. Among
the many possible loss functions, the following ones have proven to
be particularly effective (Hering & Genton 2011; Gilleland 2013a):

Square error (SE) loss at location si

g[Z (si ), Ẑ P (si )] = [Z (si ) − Ẑ P (si )]
2. (1)

Absolute error (AE) loss at location si

g[Z (si ), Ẑ P (si )] = |Z (si ) − Ẑ P (si )|. (2)

Correlation loss (or correlation skill)

g[Z (si ), Ẑ P (si )] = n

(n − 1)σ̂Z σ̂P
[Z (si ) − Z̄ ][Ẑ P (si ) − Z̄ P ]. (3)

In eq. (3), Z̄ and Z̄ P are the estimated means for the observed and
predicted values, respectively, and σ̂Z and σ̂P are their estimated
standard deviations.

In these three loss functions, both the SE and AE loss functions
account for intensity errors, and the correlation skill measures lo-
cation errors. While smaller values resulting from the SE and AE
loss indicate better prediction performance, the opposite applies for
the correlation loss for which larger values imply better prediction
performance.

In fact, the spatial process of interest is then the loss differential,
D(s), given as

D(s) = g[Z (s), Ẑ1(s)] − g[Z (s), Ẑ2(s)] = f (s) + δ(s), (4)

where f (s) is the mean trend, and δ(s) is a mean-zero stationary pro-
cess with unknown covariance function C(h) = cov[δ(s), δ(s + h)].
That is, we are not comparing the loss function of a prediction model
and a particular realization with each other, but the differences in
loss functions for two prediction models, Ẑ1(s) and Ẑ2(s) with re-
spect to a common realization or reference model, Z (s). The test
procedure of the SPCT using the loss differential therefore tests the
null hypothesis that Ẑ1(s) and Ẑ2(s) have equal predictive ability on
average with respect to Z (s), that is

H0 :
1

|�|
∫

�

E[D(s)]ds = 0, (5)

where |�| is the area of the domain � and E is expectation. If the
mean trend is constant in space, that is, f (s) = μ, then the null
hypothesis becomes H0 : μ = 0. Under increasing domain asymp-
totics, the mean loss differential, D̄ = 1

n

∑n
i=1 D(si ), asymptotically

approaches a normal distribution

D̄ − μ√
var(D̄)

→ N (0, 1), (6)
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as the number of points n approaches infinity (Park et al. 2009), and
its variance is given by

var(D̄) = 1

n2

n∑
i=1

n∑
j=1

C(hi j ). (7)

In eq. (7), C(hi j ) is the covariance function that describes the struc-
ture of spatial dependencies in the loss differential associated with
δ(s) (hi j is the distance between points si and s j ).

Following Hering & Genton (2011), to estimate the unknown
covariance function, we choose to first estimate the semivariogram
γ (hi j ) given by the following equation:

γ̂ (hi j ) = 1

2|N (hi j )|
∑

N (hi j )

[D(si ) − D(s j )]
2, (8)

where N (hi j ) is the set of all pairs of points that are separated by
hi j , and |N (hi j )| is the total number of these points. Because the
empirical semivariogram γ̂ (hi j ) cannot be computed at all lag dis-
tances but only at distances hi j separating observations, and due to
variability in γ̂ (hi j )-values (in particular at larger hi j ; see Fig. 11
for example), it is not ensured that eq. (8) returns a valid semivar-
iogram (positive definite function) for subsequent (geo-)statistical
analysis. Therefore, empirical semivariograms are often approxi-
mated by selected model functions, so-called parametric semivari-
ograms. In this case, a parametric semivariogram, γ̂ (hi j | θ ), is fit to
the empirical semivariogram by applying a weighted least-squares
technique to estimate model parameters θ ; see Cressie (1993).
The covariance function C(hi j ) is then given by the relationship
C(hi j ) = γ (∞) − γ (hi j ).

According to eqs (6) and (7), the test statistic proposed by Her-
ing & Genton (2011), under the assumption of constant trend, is
then obtained as

SV = D̄√√√√ 1

n2

n∑
i=1

n∑
j=1

[γ̂ (∞|θ̂ ) − γ̂ (hi j |θ̂ )]

. (9)

where θ̂ is the estimated value of the (unknown true) parameter θ .
We analyse the resulting test statistic in terms of p-values. The null
hypothesis (eq. 5) is not rejected (that is, we have no evidence that
two competing models do not have—on average—equal predictive
ability with respect to the reference model), if the p-value is greater
than a chosen statistical significance level (e.g. 5 per cent). Other-
wise, the null hypothesis is rejected indicating that the two compet-
ing models have significantly different predictive ability on average.
We report our findings for the most common significance levels in
statistical analysis, that is 10, 5 and 1 per cent (Fisher 1925). Lower
significance levels result in more conservative statistical tests.

The test above assumes that the mean trend f (s) is constant over
space. However, if a trend is known or suspected, it can be estimated
using ordinary least squares (OLS), and then removed from D(s), so
that the test SV can be computed for D(s) − f̂ (s) instead (Hering &
Genton 2011; Gilleland 2013a).

Since the SPCT procedure is only related to the distance between
two spatial locations, it can be used on gridded and non-gridded
spatial fields. Generally, the fields are assumed to be isotropic when
fitting the semivariogram models to the data. Directional semivari-
ograms can be used to examine whether isotropy is present. If the
process is found to be anisotropic, the SPCT can be performed
based on an anisotropic semivariogram model (Cressie 1993).

In this study, all analyses are conducted assuming isotropic para-
metric semivariogram models to fit the empirical semivariogram.
The widely used exponential model is our first choice, given as

γ (h|a, b) = a[1 − exp(−h/b)]. (10)

In case a good-fitting semivariogram cannot be obtained with this
simple model, we apply the hole-effect model that may better char-
acterize the spatial fields used in this study. It is given by (Cressie
& Wikle 2011)

γ (h | a, b, c) =
{

0 h = 0,

c − a sin(h/b)/(h/b) h > 0,
(11)

where h is distance, and a, b and c are positive parameters to be
estimated in eqs (10) and (11).

In order to decide whether or not to reject the null hypothesis,
the 5 per cent level is our first choice. If differentiating competing
models becomes difficult using the 5 per cent level, we also test at
the 10 per cent level.

Below, we summarize the main steps of test procedure of the
SPCT:

(1) Choose the loss function and compute the loss differential
(eq. 4).

(2) Estimate the empirical semivariogram (eq. 8).
(3) Choose an appropriate parametric semivariogram (eqs 10 or

11) to fit the empirical semivariogram and apply weighted least-
squares technique to estimate the parameters.

(4) Compute the test statistic (eq. 9).
(5) Calculate the p-value.
(6) Examine whether or not to reject the null hypothesis at a cho-

sen significance level, and conclude whether or not two competing
models have equal predictive ability on average with respect to the
reference model.

3 S Y N T H E T I C S L I P M O D E L S

To test the SPCT methodology and gain an understanding of its
capabilities and limitations, we start our analysis with a controlled
experiment using synthetic slip models. The goals is to also ex-
amine which loss function(s) may be best suited to characterize
and quantify the differences in slip models with varying degree of
spatial heterogeneity. Synthetic slip models are generated using the
approach of Mai & Beroza (2002) in which earthquake slip dis-
tributions are modelled based on the von Kármán autocorrelation
function. Its power spectral density in wave number domain is given
by

P(k) = ax az

(1 + k2)H+1
, (12)

where H is the Hurst exponent, k is wave number, and ax and
az are the correlation lengths in along-strike and downdip di-
rection, respectively. Mai & Beroza (2002) show that the cor-
relation lengths scale with earthquake size (magnitude), while
H remains constant (H ∼ 0.7). In the context of this study,
we fix earthquake size, and then systematically vary parame-
ters ax , az and H to generate slip models with different levels
of spatial complexities. Applying the SlipReal software package
(http://equake-rc.info/CERS-software/rupgen/), the slip distribu-
tion is first prescribed in the Fourier domain in terms of its power-
spectral density (eq. 12) with the chosen heterogeneity parameters.
To this, uniformly distributed random phase angles are applied to
complete the complex spectrum, with the additional condition of
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188 L. Zhang et al.

Figure 1. Reference slip model (top) and six different synthetic slip models with variable correlation lengths, but identical H-value (H = 0.4) and identical
random-seed.

Hermitian symmetry. This spectral characterization of the slip dis-
tribution is then transformed into the spatial domain through inverse
Fourier transformation. Since the distribution of random phase an-
gles can be controlled through the choice of specific random seed
values, we can regenerate slip distributions that only differ in terms
of the scale lengths of the spatial heterogeneity patterns, but main-
tain their overall characteristics (Fig. 1).

We generate synthetic slip distributions on a predefined plane of
65 × 21 km2, with sub-fault size of 1 × 1 km2, and scaled uniformly
to moment magnitude Mw 7.0. We then compare various classes
of slip models using the SPCT to determine whether significant
differences exist between these models and to help assess which
model—on average—is best with respect to the reference case.
Classes of slip models are generated based on variations in the
parameters of the von Kármán autocorrelation function (eq. 12).
These variations include the different ranges of values (from small
to large). Testing a wider range of parameter is possible, but in the
context of examining heterogeneity of earthquake slip, we restrict
our analysis to a series of test models that cover the expected physical
range, while a large number of test models with smaller differences
between them will not provide any additional information.

3.1 Variable correlation lengths and fixed seed

Applying the von Kármán model, we generate six synthetic slip
models by systematically changing the correlation lengths ac-
cording to ax = az = [4 + 3(i − 1)]km, i = 1, . . . , 6, but fixing
H = 0.4 (Fig. 1). In this case, we fix the random seed, so that high

and low slip zones appear in the same general region of fault plane.
Fig. 1 reveals that these six competing models are visually almost
indistinguishable. Denoting these as Model-1 to Model-6, we com-
pute the reference model (or ‘mean model’) as the average of these
six synthetic distributions. Depending on the particular study, the
reference model can be an observed (slip) distribution, a known
distribution (from a controlled experiment), or any other sensible
reference distribution. Due to the choice of the average model as
reference, all six slip distributions visually appear to be close to the
reference model.

Applying the SPCT to these six models with respect to the ref-
erence model, we cannot reject the null hypothesis (eq. 5) for all
models, even at the 10 per cent level, considering the correlation
skill. Hence, statistically there are no significant differences on av-
erage between these models in terms of location error. This fact
is actually a verification of what we would expect to observe from
Fig. 1, so this means that the finding of the SPCT is consistent
with expectations. However, using the SE and AE loss functions,
the null hypothesis (eq. 5) is rejected for each pair of models even
at the 1 per cent level, that is, the differences between each pair
of models from the reference model become significantly different
from each other on average. Hence, in this case the test remains
inconclusive to assess which model best matches the reference
model.

Next, we compare these six synthetic models in terms of the
mean loss differentials D̄ (eq. 4) for different loss functions (Fig. 2).
Smaller square or absolute errors mean that a particular slip model
better matches the reference solution. In contrast, higher correlation
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Analysing earthquake slip models with SPCT 189

Figure 2. Mean loss differentials D̄ for different loss functions. Negative values (blue) indicate that the case named in the corresponding row is the better model
in terms of the SE and AE loss functions, and positive values (red) indicate that the case named in the corresponding row is better based on the correlation skill.

Table 1. Percentage of null hypotheses rejected in 1000 replications. The tests
for the SE and AE loss functions are reported at the 1 per cent level, and for the
correlation skill at the 10 per cent level.

Model-2 Model-3 Model-4 Model-5 Model-6

SE loss
Model-1 97.6 98.9 98.9 98.0 96.2
Model-2 99.4 78.7 96.8 99.7
Model-3 99.2 99.7 99.8
Model-4 99.7 99.8
Model-5 99.8

AE loss
Model-1 99.9 100.0 100.0 100.0 99.8
Model-2 100.0 72.8 97.4 100.0
Model-3 99.8 100.0 100.0
Model-4 100.0 100.0
Model-5 100.0

Correlation skill
Model-1 0.7 0.0 0.0 0.0 0.0
Model-2 0.0 0.0 0.0 0.0
Model-3 0.0 0.0 0.0
Model-4 0.1 0.7
Model-5 4.0

skill value implies a better agreement between models. Thus, we
can differentiate two competing models based on the sign of their
mean loss differential. For example, in Fig. 2 negative values (blue)
indicate that the case named in the corresponding row is the better
model in terms of the SE and AE loss functions, and accordingly
based on the correlation skill positive values (red) indicate that
the case named in the corresponding row is better. Fig. 2 then re-
veals that Model-3 best matches the reference model (and hence
is called the ‘best model’), because D̄ is negative in the row for
the SE and AE loss functions, and positive in the row for the cor-
relation skill. Similarly, Model-4, Model-2, Model-5, Model-6 and
Model-1 come out as being ranked second, third, fourth, fifth and
sixth, respectively.

To examine the robustness of the SPCT approach and investigate
its results for many realizations of statistically equivalent slip dis-
tributions, we repeat this experiment 1000 times by using different
random seeds. Table 1 reports correspondingly the percentage of
cases for which the null hypothesis has been rejected for differ-
ent loss functions. The ensemble results are almost identical to the
initial example: based on the SE and AE loss functions, the null
hypothesis is mostly rejected for each pair of models even at the
1 per cent level, but for the correlation skill we almost always cannot
reject the null hypothesis for all models, even at the 10 per cent level.
This statistical experiment reveals that the SPCT approach is stable

and that the test result is insensitive to the change in correlation
length for fixed Hurst number and fixed random seed.

3.2 Variable correlation lengths and random seeds

Building on the previous case, we now consider different random-
seed values to generate the slip models (Fig. 3). Locations of high
and low slip on the fault plane vary, and the size of the slipping
patches increase. However, the small-scale roughness, controlled
by H , is identical for all six slip realizations. The mean distribution
of these six distributions is considered as reference model (Fig. 3).
By construction, these six competing models are quite different
from each other, while each shares some common features with the
reference model. It is difficult to visually assess the differences in
these models, but some underlying information can be obtained by
applying the SPCT.

Fig. 4 summarizes the findings of the SPCT and the mean loss
differentials. Based on the SE and AE loss functions, Model-6 is
most similar to the reference model. It is significantly different
from all other models (except maybe Model-4) at the 5 per cent
level, and D̄ is negative in the corresponding row. Model-2 is the
worst (positive D̄ in the corresponding row) at the 5 per cent signifi-
cance level. Based on the correlation skill, the SPCT only finds that
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Figure 3. Reference slip model (top) and six different synthetic slip models with variable correlation length and identical H-value (H = 0.4). Here, random-seed
values change, and hence strong spatial variations in the locations of high/low slip areas are present.

Figure 4. Mean loss differentials D̄ for different loss functions with the hypothesis test results from the SPCT. Location with letter ‘a’ or ‘b’ indicates that the
corresponding two models differ significantly from each other at the 5 or 10 per cent level, respectively.

Model-2 is significantly different from Model-1, Model-4 and
Model-6 at the 10 per cent level. According to the mean loss differ-
entials, the values of Model-6 are all positive in its row, indicating
that Model-6 is best, and Model-2 is worst (because of the negative
values in its row).

Performing again 1000 replications of this experiment, we ag-
gregate the results in Table 2 that shows the percentage of cases
for which the null hypothesis is rejected for different loss func-
tions. For all loss functions, this percentage is found to be less than
30 per cent. Note that the random seed determines the phase spec-
trum of the randomized von Kármán distribution, and hence controls
the spatial locations of high and low slip values. Combined with our
analysis in the previous subsection, we observe that the test statistic

exactly reflects these spatial differences, and is therefore sensitive
to changes of the random seed value.

3.3 Variable correlation lengths, Hurst numbers and
fixed seed

Modifying the first set of slip distributions, this class of mod-
els has identical correlation lengths and random-seed values as in
Section 3.1 (Fig. 1), but now we change the Hurst exponent from
Model-1 to Model-6, taking on values of 1.5, 1.3, 1.0, 0.8, 0.5
and 0.3, respectively (Fig. 5). The reference model is computed
again as the mean of all six slip models. Fig. 5 illustrates that the
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Analysing earthquake slip models with SPCT 191

Table 2. Percentage of null hypotheses rejected in 1000 replications. The tests
for the SE and AE loss functions are reported at the 5 per cent level, and for the
correlation skill at the 10 per cent level.

Model-2 Model-3 Model-4 Model-5 Model-6

SE loss
Model-1 23.4 15.3 20.4 14.3 18.8
Model-2 24.4 16.4 21.9 16.4
Model-3 25.2 14.6 20.9
Model-4 22.7 14.9
Model-5 21.8

AE loss
Model-1 22.7 14.2 20.0 12.7 18.3
Model-2 23.2 15.8 22.4 15.8
Model-3 25.1 12.6 19.9
Model-4 22.3 14.4
Model-5 20.2

Correlation skill
Model-1 15.1 11.1 18.0 7.9 14.0
Model-2 14.6 9.2 10.9 6.6
Model-3 12.7 9.3 12.3
Model-4 12.8 8.3
Model-5 11.7

Figure 5. Reference slip model (top) and six different synthetic slip models with variable correlation lengths and variable H-values, but identical random-seed.

visual differences between these models are not very obvious, aside
maybe from the variations in small-scale roughness through the
changing Hurst exponent. However, the SPCT approach allows for
discriminating these models.

Under the SPCT, Model-4 and Model-5 are the same on average,
but significantly different from all other models at the 5 per cent

level (Fig. 6) according to the SE and AE loss functions. Comparing
the mean loss differentials, we find that Model-5 is closer to the
reference model than Model-4. Model-6 is not significantly different
from Model-1 on average, but is significantly different from all other
models at the 5 per cent level and has positive D̄ in the corresponding
row. Therefore, Model-6 is most different from the mean model.
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Figure 6. Mean loss differentials D̄ for different loss functions with the hypothesis test results from the SPCT. Location with letter ‘a’ indicates that the
corresponding two models differ significantly from each other at the 5 per cent level.

Table 3. Percentage of null hypotheses rejected in 1000 replications. The tests
for the SE and AE loss functions are reported at the 5 per cent level, and for the
correlation skill at the 10 per cent level.

Model-2 Model-3 Model-4 Model-5 Model-6

SE loss
Model-1 29.0 43.7 84.7 79.3 1.4
Model-2 6.0 43.2 91.1 95.5
Model-3 88.0 95.5 86.6
Model-4 26.6 86.9
Model-5 95.0

AE loss
Model-1 25.3 37.1 97.1 87.8 0.6
Model-2 7.4 18.0 99.6 100.0
Model-3 90.3 97.1 97.5
Model-4 36.2 96.9
Model-5 100.0

Correlation skill
Model-1 0.0 0.0 0.0 0.2 0.0
Model-2 0.0 0.0 0.0 0.1
Model-3 0.1 0.0 0.6
Model-4 0.0 6.4
Model-5 51.8

In terms of the correlation skill, we find from the SPCT that
Model-6 is significantly different from all other models except
Model-1 at the 5 per cent level. Checking also the values of D̄,
we conclude that Model-6 is worst and Model-5 is best in terms of
how close they are to the reference model.

Table 3 reports the test results of the SPCT for 1000 replications.
When using the SE and AE loss functions, some percentages are
greater than 79 per cent, while others are lower than 45 per cent.
According to the correlation skill, all values are very small ex-
cept when comparing Model-5 and Model-6. Overall, this test case
generates similar results as reported in Section 3.1, with only low
sensitivity to changes in correlation length and Hurst number for
fixed random seed.

3.4 Variable correlation lengths, Hurst numbers and
random seeds

Now we consider the most complex, but perhaps also the most realis-
tic case. Correlation lengths and Hurst number are variable (chosen
as in the previous class of slip realizations), and different random-
seed values are chosen for the six models. Thus, the variability in
these slip realization is immediately visually evident. The reference
model is again computed as the mean of all six slip realizations
(Fig. 7). Because of different random-seed values, and variations in

the random-field parameters, there are no obvious similarities be-
tween these six models and they all differ from the reference model.
Hence, an intuitive or visual judgment which of the six models
best matches the reference case is impossible. However, the SPCT
approach provides this information.

The results are obtained by comparing these six models with the
SPCT (Fig. 8). Based on the SE and AE loss functions, Model-
2 is statistically indistinguishable from Model-5 and Model-6, on
average, and is significantly different from all other models at the
5 per cent level. However, Model-5 and Model-6 differ significantly
from each other at the 5 per cent level, and they reveal signifi-
cant difference on average from all other models at the 5 per cent
level. According to the mean loss differentials, we conclude that
Model-5 is best, and Model-2 and Model-6 are ranked second and
third respectively. In addition, Model-4 is worst because of the pos-
itive D̄ in the corresponding row.

Using the correlation skill, the SPCT only finds that
Model-6 is significantly different from Model-4 and Model-5, on av-
erage, at the 10 per cent level. Comparing the values of the mean loss
differentials, we obtain that Model-2, Model-5, Model-3, Model-1,
Model-6 and Model-4 come out as being ranked first, second, third,
fourth, fifth and sixth, respectively. This result is slightly different
from that found using the SE and AE loss functions.
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Figure 7. Reference slip model (top) and six different synthetic slip models with variable correlation length and variable H-values. Here, random-seed values
change, and hence strong spatial variations in the locations of high/low slip areas are present.

Figure 8. Mean loss differentials D̄ for different loss functions with the hypothesis test results from the SPCT. Location with letter ‘a’ or ‘b’ indicates that the
corresponding two models differ significantly from each other at the 5 or 10 per cent level, respectively.

The results for 1000 replications (Table 4) are similar to those of
Section 3.2: the percentage of cases for which the null hypothesis
is rejected remains small and is not much different from each other.
This illustrates more evidently that the test result is very sensitive
to changes of the random seed value.

4 I N V E RT E D S L I P M O D E L S F RO M A
B E N C H M A R K E X E RC I S E

The four case studies in Section 3 indicate that the SPCT based on
the loss differential is well suited to test which of two competing slip
models better matches a common reference model, and to determine

whether a significant difference exists on average. We also find that
results may be different for different loss functions that account for
intensity or location errors, implying that one has to choose the loss
function based on the desired criteria or characteristics of the slip
distribution that one wants to compare.

In this section, we perform a comparative analysis on slip mod-
els obtained in the context of benchmark exercises for the source
inversion validation (SIV) project. The SIV efforts aim at better
understanding the capabilities and limitations of finite-fault earth-
quake source inversion in order to robustly quantify the corre-
sponding uncertainties. To this end, a series of benchmark exer-
cises are constructed in which simulated rupture models for hy-
pothetical earthquakes are used to generate synthetics datasets
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Table 4. Percentage of null hypotheses rejected in 1000 replications. The tests
for the SE and AE loss functions are reported at the 5 per cent level, and for the
correlation skill at the 10 per cent level.

Model-2 Model-3 Model-4 Model-5 Model-6

SE loss
Model-1 27.7 18.6 27.3 16.5 23.9
Model-2 30.2 20.1 27.2 21.4
Model-3 34.0 22.3 30.7
Model-4 35.3 20.9
Model-5 33.8

AE loss
Model-1 25.6 16.6 25.1 15.5 23.9
Model-2 29.8 14.9 27.2 21.6
Model-3 32.5 20.3 31.9
Model-4 33.7 22.9
Model-5 35.7

Correlation skill
Model-1 12.3 5.2 14.4 5.0 9.5
Model-2 12.5 6.5 13.7 3.4
Model-3 14.0 7.2 12.3
Model-4 16.2 6.5
Model-5 14.5

(seismic and geodetic). The input rupture model is initially con-
cealed from the SIV-participants who therefore invert the given
datasets in a blind-test mode to retrieve kinematic source pa-
rameters. Further details on the benchmark exercise and corre-
sponding results can be found at http://equake-rc.info/SIV/sivtools/
list_solutions_for_benchmark/inv1.

Here we make use of the SIV benchmark in which the input
source model is constructed from a spontaneous dynamic rupture
calculation. Given 40 distributed observation points, the modelling
teams inverted the corresponding synthetic waveforms to find the
best-fitting rupture model. We investigate how their distributions of
final slip compare with the known input slip distribution. Hence,
in the context of Section 3, the reference model is given as an in-
dependent slip distribution that is not computed from the tested
models themselves. Fig. 9 depicts the reference model, and the six
different models obtained by different participants using different
inversion procedures. All models cover the domain of 33 × 16 km2,
sampled by 1 × 1 km2 cells. Obviously, these six slip distributions
are visually very different from each other, in particular in terms of
spatial resolution. The goal is to quantify which of these six pro-
posed solutions best matches the known but independent reference
model.

To compare these six slip models with the reference model, many
methods can be applied. First, we calculate the differences of mean
slip value and seismic moment between different slip models and the
reference model (Table 5). It can be seen that Model-3 and Model-4
have small absolute differences, and hence are close to the reference
model in terms of these overall macroscopic source parameters. In
addition, we compute effective source dimensions and effective
mean slip (Mai & Beroza 2000), shown for the reference model
in Fig. 10. Table 6 compares these measurements using the ratio
between the original dimensions (L = 33 km, W = 16 km) and
the corresponding effective dimensions, that is, �L = Leff/L and
�W = Weff/W and effective mean slips. Results depend on the
chosen quantity, for example, Model-3 is closest to the reference
model according to the effective length, but Model-1 is best by
comparing the effective width. Using the effective mean slip Model-
6 is nearest to the reference model. Even when combining these

results, it remains difficult to determine which model best matches
the reference model. We thus apply the SPCT to compare these
models to obtain additional insight into (dis-)similarities of these
models.

In applying the SPCT, we first examine whether the parametric
semivariogram model fits the empirical semivariogram and whether
isotropy is a reasonable assumption. Fig. 11 illustrates this process
for Model-1 and Model-4. These two slip distributions are represen-
tative of the general behaviour of slip-inversion results, including
their empirical and fitted hole-effect semivariograms and the cor-
responding empirical directional semivariogram for different loss
functions. We find that the hole-effect model well describes the
empirical semivariogram (Fig. 11, left column). We can check for
isotropy from the empirical semivariogram by direction. If isotropy
is perfectly satisfied, covariance values should be equal at identical
distances in different directions, that is, the right column plots of
Fig. 11 would show perfect semicircles extending outwardly from
the origin (at coordinate [0,0]). Here we find there are some de-
parture from isotropy, but none that strongly violates the isotropy
assumption. Therefore, we only consider isotropic semivariograms
in this analysis.

The findings of the SPCT and the mean loss differentials are
summarized in Fig. 12. Based on the SE loss function, Model-3 is
significantly different from all other models at the 5 per cent level,
and has negative in the corresponding row, while Model-2, Model-4
and Model-5 differ significantly from each other at the 5 per cent
level. Hence, Model-3 is most similar to the reference model. When
considering the mean loss differentials, we are able to rank Model-2,
Model-4, Model-1, Model-5 and Model-6 as second, third, fourth,
fifth and sixth, respectively.

Based on the AE loss function, Model-3 is best (negative D̄ in
its row) with the statistical significance at the 5 per cent level, and
Model-4 is significantly different from Model-2 and Model-5 on
average at the 5 per cent level, and Model-1 and Model-2 differ
significantly from each other on average at the 5 per cent level. On
the basis of the mean loss differentials, we therefore rank Model-2,
Model-1, Model-4, Model-6 and Model-5 as second, third, fourth,
fifth and sixth, respectively.
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Figure 9. Reference slip model (top) and six different inverted slip models obtained in the context of benchmark exercises for the source inversion validation
(SIV) project. The reference model is constructed from a spontaneous dynamic rupture calculation, while six different models obtained by different participants
using different inversion procedures. These six slip distributions are visually very different from each other, in particular in terms of spatial resolution.

Table 5. Differences of mean slip value and seismic moment between dif-
ferent models and reference model.

Model Mean slip difference (m) Seismic moment difference (Nm)

Model-1 −0.104 −1.815 × 1018

Model-2 −0.086 −1.514 × 1018

Model-3 −0.019 −0.337 × 1018

Model-4 −0.031 −0.551 × 1018

Model-5 0.115 1.998 × 1018

Model-6 0.101 1.758 × 1018

According to the correlation skill, the SPCT finds that Model-
3 differs significantly from Model-1, Model-5 and Model-6 on
average at the 5 per cent level. The mean loss differentials reveal
that Model-3, Model-4, Model-2, Model-1, Model-5 and Model-6
rank as first, second, third, fourth, fifth and sixth, respectively. Only
the ranking of Model-4 is different from that found with the SE loss
function.

Combining the results from these three loss functions, we con-
clude that Model-3 is the model that best reproduces the known
(true) reference model, while Model-5 and Model-6 are far from
the reference model.

Figure 10. Slip distribution of the reference model (Fig. 9, top). Slip values
in each subfault are shown in grey scale, contoured at 0.3-m intervals. Side
boxes show effective length Leff and effective width Weff in down-dip (Dx)
and along-strike direction (Dz), respectively.

5 D I S C U S S I O N

The SPCT is applied here to quantitatively compare earthquake slip
models, which is typically difficult to achieve when targeting the
spatial characteristic of the slip distributions. The SPCT based on
the loss differential provides a novel testing procedure that can be
applied for any loss function. It can also be used to test which of
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Table 6. Differences of effective length, width ratio and effective mean slip between different models and reference
model.

Model Effective length ratio difference Effective width ratio difference Effective mean slip difference (m)

Model-1 0.072 0.024 −0.439
Model-2 0.011 0.058 −0.359
Model-3 0.008 0.040 −0.157
Model-4 0.102 0.151 −0.520
Model-5 0.132 0.103 −0.223
Model-6 0.098 0.058 −0.103

Figure 11. Semivariogram plots for comparing Model-1 and Model-4. Empirical and fitted hole-effect semivariograms (left) and the corresponding empirical
directional semivariograms (right) for the different loss functions.

Figure 12. Mean loss differentials D̄ for different loss functions with the hypothesis test results from the SPCT. Location with letter ‘a’ indicates that the
corresponding two models differ significantly from each other at the 5 per cent level.

two competing slip models better matches a reference model, and
to determine whether a significant difference exists on average.

We find that for different loss functions, the results of the SPCT
are generally different. Since both the SE and AE loss functions
account for intensity errors, their results are similar. The correlation
skill measures location errors, and hence the corresponding results
are slightly different from the findings with the SE and AE loss
functions. We also find that for the examples presented, the SE and
AE loss functions may be better suited to discriminate the different
slip models than the correlation skill, potentially due to the relative

small location errors among different slip models. Therefore, these
data are best analysed in terms of the effective loss functions for
different data.

Advantages of the SPCT are, for instance, that no distributional
assumptions are imposed, that it can be applied efficiently to either
gridded or non-gridded spatial fields, and that the procedure is both
fast and straightforward to apply. The limitations of the SPCT are
related to whether or not a parametric semivariogram model may
well fit the empirical semivariogram, which in turn impacts strongly
the final results. So if valid parametric semivariograms cannot be
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found for the empirical semivariograms, then the SPCT approach
cannot be applied. Of course, the majority of cases will not suffer
from this drawback.

For earthquake rupture models, slip distributions from different
inversion procedures may not be given over the same area, or may
even be specified over entirely different geometries. To quantita-
tively compare these vastly different slip models, the SPCT can be
applied only after some manipulation of the given slip distribution.
For instance, we could define an enlarged area that encompasses all
slip models, and then interpolate slip values onto a common grid.
This approach may suffer from the fact that many zero-values over
large areas of slip models will negatively affect the SPCT results.
Furthermore, earthquake source inversions estimate the distribution
of rupture time, rise time, rake angles, or even the entire slip-rate
history on points of the fault. An application of SPCT to these 2-D
fields is straight-forward, the extension of using SPCT on time-
dependent quantities possible, but has not been attempted yet.

In addition, for a real earthquake, there is no reference model or
known true solution. However, a reference model could be defined,
for instance using a statistical measure based on the available so-
lutions (e.g. the mean or median model). Applying then the SPCT
to these available solutions (or models) and comparing them to the
defined reference model helps to analyse and understand the rela-
tive uncertainties in these solutions. Without defining a reference
model, comparisons can still be made between pairs of models, to
test whether or not these two models differ significantly from each
other on average.

6 C O N C LU S I O N

We have compared earthquake slip models by applying the SPCT
that provides a statistical procedure to test which of two (or any
number of) competing models better matches a given reference
model. The reference model can be computed from the test mod-
els themselves, but ideally should be an independently available
slip distribution. The SPCT extracts underlying information when
comparing two predictions with the reference field. In this study,
we first consider synthetic slip distributions, generated using a von
Kármán autocorrelation function whose three parameters are varied
in a systematic manner. The insight from the synthetic test helps us
to understand the subsequent application of the SPCT to inverted
slip models of a benchmark exercise. We use three different loss
functions to compare different models, applying suitable paramet-
ric semivariogram models to fit the empirical semivariograms. This
approach allows for determining the most similar or most dissimilar
model with respect to the reference model, and to rank all competing
models. Thus, the SPCT approach helps to quantify the variability
in earthquake rupture models by comparing different inverted slip
models.

To assess the stability and sensitivity of the SPCT, we apply
the method to 1000 stochastic realizations to generate statistically
identical random slip distributions for which the location of high-
and low-slip regions on the fault vary. The results indicate that the
SPCT is rather insensitive to variations in random-field parameters
(correlation length, Hurst number) if the random-phase information
is not changed. Hence, the SPCT does not detect variations and short
spatial scales. In contrast, it reliably discriminates slip distributions
with variability in the locations of regions with high- and low-slip.
We therefore conjecture that the SPCT can be applied, potentially
with additional refinements and improvements, to automatically
discriminate, quantify and rank similarities in slip distributions,
and any other (geophysical) 2-D scalar field. Extensions to three

dimensions and time-dependent fields are possible, but beyond the
scope of this study.

Future work will focus on considering new and stronger loss func-
tions, for instance, the warping loss function (Gilleland et al. 2010),
which accounts for both intensity and location errors. In addition,
we can apply the SPCT to other rupture parameters, for instance
rise time or slip duration. Besides, the current SPCT approach lacks
the ability to estimate the magnitude and location of a statistically
significant spatial signal. For this purpose, local methods like the
false discovery rate (FDR; Benjamini & Heller 2007) or enhanced
FDR (Shen et al. 2002) can be used. We plan to implement such
local methods into our testing procedure and to compare them to the
SPCT results for better quantifying the variability of earthquake slip
models, and to finally rank them with respect to a chosen reference
model.

A C K N OW L E D G E M E N T S

We would like to thank R Development Core Team (2012) for the
R programming language and environment, and specifically the
SpatialVx package (Gilleland 2013b) and the fields package
(Nychka et al. 2013). We thank two anonymous reviewers and the
Editor Eiichi Fukuyama for their thoughtful comments and con-
structive criticism. This research was supported by King Abdullah
University of Science and Technology (KAUST).

R E F E R E N C E S

Benjamini, Y. & Heller, R., 2007. False discovery rates for spatial signals,
J. Am. Stat. Assoc., 102, 1272–1281.

Beresnev, I.A., 2003. Uncertainties in finite-fault slip inversions: to what
extent to believe? Bull. seism. Soc. Am., 93, 2445–2458.

Cohee, B. & Beroza, G., 1994. A comparison of two methods for earthquake
source inversion using strong motion seismograms, Ann. Geophys., 37,
1515–1538.

Cressie, N., 1993. Statistics for Spatial Data, revised edition, Wiley.
Cressie, N. & Wikle, C.K., 2011. Statistics for Spatio-Temporal Data, Wiley.
Custodio, S., Liu, P. & Archuleta, R., 2005. The 2004 Mw 6.0 Parkfield, Cali-

fornia, earthquake: inversion of near-source ground motion using multiple
data sets, Geophys. Res. Lett., 32, L23312, doi:10.1029/2005GL024417.

Diebold, F.X. & Mariano, R.S., 1995. Comparing predictive accuracy, J.
Buss. Econ. Stat., 13, 253–263.

Fielding, E.J., Sladen, A., Li, Z.H, Avouac, J.P., Burgmann, R. & Ryder,
I., 2013. Kinematic fault slip evolution source models of the 2008 M7.9
Wenchuan earthquake in China from SAR interferometry, GPS and tele-
seismic analysis and implications for Longmen Shan tectonics, Geophys.
J. Int., 194, 1138–1166.

Fisher, R.A., 1925. Statistical Methods for Research Workers, Oliver and
Boyd.

Gilleland, E., 2013a. Testing competing precipitation forecasts accurately
and efficiently: the spatial prediction comparison test, Mon. Wea. Rev.,
141, 340–355.

Gilleland, E., 2013b. SpatialVx: Spatial Forecast Verification, R
package version 0.1–5, Available at: http://cran.r-project.org/web/
packages/SpatialVx/ (last accessed 1 August 2013).

Gilleland, E., Lindstrom, J. & Lindgren, F., 2010. Analyzing the image warp
forecast verification method on precipitation fields from the ICP, Wea.
Forecast., 25, 1249–1262.

Hartzell, S., Stewart, G. & Mendoza, C., 1991. Comparison of L1 and L2
norms in a teleseismic waveform inversion for the slip history of the Loma
Prieta, California, earthquake, Bull. seism. Soc. Am., 81, 1518–1539.

Hartzell, S., Liu, P., Mendoza, C., Ji, C. & Larson, K., 2007. Stability and
uncertainty of finite-fault slip inversions: application to the 2004 Parkfield,
California, earthquake, Bull. seism. Soc. Am., 97, 1911–1934.

 at K
ing A

bdullah U
niversity of Science and T

echnology on N
ovem

ber 11, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://cran.r-project.org/web/packages/SpatialVx/
http://cran.r-project.org/web/packages/SpatialVx/
http://gji.oxfordjournals.org/


198 L. Zhang et al.

Hayes, G.P. et al., 2010. Complex rupture during the 12 January 2010 Haiti
earthquake, Nat. Geosci., 3, 800–805.

Hering, A.S. & Genton, M.G., 2011. Comparing spatial predictions,
Technometrics, 53, 414–425.

Mai, P.M., 2013. Uncertainty quantification in earthquake source inversions:
the source inversion validation (SIV) project, Proceedings of the EGU
General Assembly Conference, Abstracts EGU2013–3596, Vol. 15, p.
3596.

Mai, P.M. & Beroza, G.C., 2000. Source-scaling properties from finite-fault
rupture models, Bull. seismol. Soc. Am., 90, 604–615.

Mai, P.M. & Beroza, G.C., 2002. A spatial random field model to characterize
complexity in earthquake slip, J. geophys. Res., 107(B11), ESE 10-1-ESE
10-21.

Mai, P.M., Burjanek, J., Delouis, B., Festa, G., Francois-Holden, C.,
Monelli, D., Uchide, T. & Zahradnik, J., 2007. Earthquake source inver-
sion blindtest: initial results and further developments, EOS, Trans. Am.
geophys. Un., 88(52), Abstract S53C-08.

Monelli, D. & Mai, P.M., 2008. Bayesian inference of kinematic earthquake
rupture parameters through fitting of strong motion data, Geophys. J. Int.,
173, 220–232.

Monelli, D., Mai, P.M., Jónsson, S. & Giardini, D., 2009. Bayesian imaging
of the 2000 Western Tottori (Japan) earthquake through fitting of strong
motion and GPS data, Geophys. J. Int., 176, 135–150.

Nychka, D.W., Furrer, R. & Sain, S., 2013. Fields: Tools for Spa-
tial Data, R package version 6.8, Available at: http://cran.r-project.
org/web/packages/fields (last accessed 1 August 2013).

Olson, A. & Apsel, R., 1982. Finite faults and inverse theory with applica-
tions to the 1979 Imperial Valley earthquake, Bull. seism. Soc. Am., 72,
1969–2001.

Page, M., Mai, P.M. & Schorlemmer, D., 2011. Testing earthquake source
inversion methodologies, EOS, Trans. Am. geophys. Un., 92(9), 75.

Park, B.U., Kim, T.Y., Park, J.S. & Hwang, S.Y., 2009. Practically ap-
plicable central limit theorem for spatial statistics, Math. Geosci., 41,
555–569.

R Development Core Team, 2012. R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing.

Razafindrakoto, H.N.T. & Mai, P.M., 2014. Uncertainty in earthquake source
imaging due to variations in source time function and Earth structure, Bull.
seism. Soc. Am., 104, 855–874.

Shao, G.F. & Ji, C., 2012. What the exercise of the SPICE source inversion
validation BlindTest 1 did not tell you, Geophys. J. Int., 189, 569–590.

Shen, X., Huang, H.C. & Cressie, N., 2002. Nonparametric hypothesis test-
ing for a spatial signal, J. Am. Stat. Assoc., 97, 1122–1140.

Wald, D.J. & Heaton, T.H., 1994. Spatial and temporal distribution of slip
for the 1992 Landers, California earthquake, Bull. seism. Soc. Am., 84,
668–691.

Wei, S.J., Graves, R.W., Avouac, J.P. & Jiang, J.L., 2012. Sources of shaking
and flooding during the Tohoku-Oki earthquake: a mixture of rupture
styles, Earth. planet. Sci. Lett., 333, 91–100.

Yue, H. & Lay, T., 2013. Source rupture models for the Mw 9.0 2011 Tohoku
earthquake from joint inversions of high-rate geodetic and seismic data,
Bull. seism. Soc. Am., 103, 1242–1255.

 at K
ing A

bdullah U
niversity of Science and T

echnology on N
ovem

ber 11, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://cran.r-project.org/web/packages/fields
http://cran.r-project.org/web/packages/fields
http://gji.oxfordjournals.org/

