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Abstract5

Many model-based methods have been developed over the last several decades for analysis of elec-6

troencephalograms (EEG) in order to understand electrical neural data. In this work, we propose to7

use the functional boxplot to analyze log periodograms of EEG time series data in the spectral domain.8

The functional bloxplot approach produces a median curve – which is not equivalent to connecting9

medians obtained from frequency-specific boxplots. In addition, this approach identifies a functional10

median, summarizes variability and detects potential outliers. By extending functional boxplots anal-11

ysis from one-dimensional curves to surfaces, surface boxplots are also used to explore the variation of12

the spectral power for the alpha (8 − 12 Hertz) and beta (16 − 32 Hertz) frequency bands across the13

brain cortical surface. By using rank-based nonparametric tests, we also investigate the stationarity of14

EEG traces across an exam acquired during resting-state by comparing the spectrum during the early15

vs. late phases of a single resting-state EEG exam.16

Keywords: EEGs time series, Functional boxplots, Surface boxplots, Spectral Analysis, Band depth,17

Exploratory analysis, Stationarity.18

1 Introduction19

Electroencephalograms (EEGs) have been used for many decades to study the complex spatio-temporal20

dynamics of brain processes (Nunez and Srinivasan [2006]). Due to its excellent temporal resolution21

(sampling rates usually range from 100 − 1000 Hz), EEGs can capture transient changes in brain ac-22

tivity, identify oscillatory behavior and study cross-dependence between EEG components. Since EEGs23

indirectly measure neuronal electrical activity, they can be used to infer the statistical properties of the24

underlying brain stochastic process. One such statistical property is the spectrum (or power spectrum)25
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which decomposes the total variability in the EEG according to the contribution of oscillations at different26

frequencies. Most approaches to analyzing EEGs focus immediately on statistical modeling and spectral27

estimation. Here, we offer a systematic framework for exploring structures, patterns and features in the28

signal – prior to formal modeling. We explore the spectral properties only in a single channel using EEG29

traces from several epochs.30

One approach to estimating the spectrum using EEG traces is to fit a parametric time domain model,31

such as the autoregressive moving average (ARMA) model. Applications of parametric modeling of EEGs32

have a long history. See Bohlin [1973], Isaksson et al. [1981] Jain and Deshpande [2004] and Krystal et al.33

[1999] among many others. When the spectrum of the EEG evolves over time (e.g., within an epoch),34

one could still use the ARMA model but allow the coefficients to vary over time. A key element in35

ARMA models is the order of the autoregressive (AR) and moving average (MA) components. These can36

be obtained objectively using an information-theoretic criterion such as the Akaike information criterion37

(AIC) and the Bayesian information criterion (BIC). Using these criteria, we obtain an optimal AR and38

MA order that jointly gives the best fit with the least complexity (as determined by the orders). BIC puts39

a heavier penalty for complexity compared to AIC and thus often gives a model with lower orders (lower40

complexity). From the parametric fit, we derive the estimates of the auto-correlation function and the41

spectrum. The theoretical background for parametric models are developed in Priestley [1981], Shumway42

and Stoffer [2000] and Brockwell and Davis [2009]).43

One could also estimate the spectrum without resorting to a parametric model. Under this approach,44

the EEGs are considered to be superpositions of sines and cosines (Fourier waveforms) with different45

frequencies and random amplitudes. These random amplitudes (or coefficients) are computed using the46

fast Fourier transform (FFT). The squared magnitude of these amplitudes, often called the periodograms,47

are the data-analogues of the spectrum defined on discrete frequencies. The theoretical background on48

the frequency domain approach to time series is developed in Brillinger [1981] and Percival and Walden49

[1993]. This approach to analyzing EEGs continues to be popular in the cognitive and brain sciences. The50

following papers cover both methods and applications of spectral analysis to EEGs: Bressler and Freeman51

[1980], Makeig [1993], Pfurtscheller and Aranibar [1979] and Srinivasan and Deng [2011], to name a few.52

The common practice prior to spectral estimation is to pre-process EEGs, often to remove artifacts53

Makeig et al. [1996]. After artifact rejection and segmentation according to epochs, the spectrum is54

estimated from each EEG trace. As noted, there is a lack a systematic framework for exploring struc-55

tures, patterns and features in the signal – prior to formal modeling. Due to the complexity of EEG56

data, exploratory data analysis (EDA) plays an important role, especially when data are recorded from57

many epochs or trials during an experiment. For example, it is often expected that brain responses to58

the same stimulus ought to be relatively uniform, with minimal variation across epochs. In contrast,59

greater variability across epochs may be expected during neuroimaging studies that examine the brain in60

resting-state, as cognitive processes can vary within and across sessions for individual subjects and across61

subjects. An appropriate EDA methods can provide insights into features of EEG, including similarities62

and variability of the brain responses across epochs to facilitate the statistical model. In this paper, we63

propose to use the functional boxplot (FBP) method originally developed by Sun and Genton [2011] to64

address these questions.65

The methods presented in this paper are motivated by a motor skill acquisition study at the Neuro-66

rehabilitation laboratory at the University of California, Irvine (Principal Investigator: Steven C. Cramer).67
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Figure 1: Map of channels on the scalp.

In the previous study, EEG was recorded from 17 subjects both during resting-state prior to motor skill68

training and during motor skill training using dense-array EEG (256 electrodes) as shown in Figure 1. The69

resting-state EEG exam was three minutes, and during post-processing, was segmented into one-second70

non-overlapping epochs. As demonstrated in Wu et al. [2014], the spectral features of the resting-state71

EEGs when combined with a partial least squares regression analysis, was predictive of an individual’s72

subsequent ability to acquire a novel motor skill. These may be of clinical importance to the field73

of rehabilitation, as improved methods for stratifying patients may significantly improve response to74

treatment and assist allotment of limited resources.75

We present an exploratory spectral analysis (ESA) of resting-state EEG traces using functional box-76

plots for one subject. In spectral analysis, the spectrum is an important stochastic property of the signal.77

It indicates the amount (or proportion) of variance that is explained by each frequency bin. Thus the78

spectrum or the log spectrum of the EEG signal can be used to examine relative amounts of variability79

explained by slow (delta or theta) waves and fast (alpha or beta) waves. Throughout this analysis, we ob-80

tain a sample spectral curve by smoothing the log periodograms of each one-second EEG epoch, and treat81

it as one observation unit in the FBP. By using the FBP, we address three primary objectives. The first82

objective is to identify the median, i.e., the most characteristic spectral curve rather than the pointwise83

frequency-specific medians. In addition, outliers are demonstrated by their unusual sample log spectral84

curve, and can be caused by extra-brain artifacts, including eye blinks, eye movements and muscle move-85

ments in the EEG signal. Subsequently, confirmed outliers will be removed from subsequent analyses.86

The advantage of the FBP approach, over the usual pointwise boxplot method, is that it identifies epochs87

that have potential outlying spectral curves.88

The second objective is to compare the median curves and the variability of the spectral curves from89

multiple phases of the resting state period. To test the stationarity of the EEG signal over the entire90

recording, we compare the spectral curves and the frequency-specific spatial distribution of spectral power91
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during the early phase (first 60 epochs) versus the late phase (last 60 epochs). Evidence against station-92

arity must be taken seriously since this would suggest an evolution of brain processes across the recording93

(Fiecas and Ombao [2015]). Moreover, the FBP approach is able to provide some characterization of94

the variation of the sample log spectral curves across EEG recording. In experiments comparing more95

than one group (e.g., healthy controls vs patients with stroke), it would be also interesting to determine96

whether groups differ with respect to consistency (uniformity) of the EEG signal over time.97

The third objective is to investigate the spatial variability of spectral power across the brain for a98

given frequency band using the surface boxplot, which is a generalization of the FBP. Using the surface99

boxplots approach, it is possible to identify cortical regions (or channels) that, relative to the other100

channels, exhibit a high proportion of beta power. The beta band is particular interest to neuroscientists,101

as changes in beta activity have a good association with motor function (Roopun et al. [2006] and Joundi102

et al. [2012]).103

The remainder of the paper is organized as follows. In Section 2, we present a comprehensive ex-104

ploratory method which consists of the following: a review of the spectra in Section 2.1, a demonstration105

of automatic bandwidth selector for periodogram smoothing using the gamma generalized crossvalidation106

criterion in Section 2.2, some remarks on smoothing the periodogram in Section 2.3, a description of the107

functional boxplots in Section 2.4, a description of the surface boxplots in Section 2.5, and a demonstra-108

tion of testing for differences in mean curves between families of curves in Section 2.6. In Section 3, we109

examine the finite sample performance of the proposed exploratory method.In Section 4, the resting-state110

EEG data are analyzed. Finally, in Section 5, conclusions and future work are discussed.111

2 Method for Exploratory Spectral Analysis (ESA)112

In this section, we review the methods that are needed for ESA of the EEG data. In Section 2.1, we first113

formally define the spectrum and then discuss a consistent estimator which is obtained by smoothing the114

periodogram using a bandwidth that is automatically selected by the gamma generalized cross-validation115

(Gamma-GCV) method described in Section 2.2. Next, we highlight two remarks on smoothing the116

periodogram in Section 2.3, then we present the functional boxplots method in Section 2.4 and surface117

boxplots method in Section 2.5. Finally, we present a rank sum test which tests for differences in median118

curves or surfaces between families of curves or surfaces in Section 2.6.119

2.1 Spectrum120

The spectrum of an EEG signal (which is assumed to be stationary) can give the amount of variance121

contributed by oscillatory components (from delta to beta band activity). Let X(t), t = . . . ,−1, 0, 1, . . . be122

a zero-mean stationary time series with covariance function γ(τ) = E (X(t)X(t+ τ)) (τ = . . .−1, 0, 1, . . .)123

that is assumed to be absolutely summable, i.e.,
∑∞

τ=−∞ |γ(τ)| < ∞. The spectrum, denoted f(ω), is124

defined to be125

f(ω) =
∞∑

τ=−∞
γ(τ) e−i2πωτ , ω ∈

[
−1

2
,
1

2

]
.

The starting point for estimating f(ω) is the periodogram. Denote I(ωk) to be the periodogram computed126

from a finite sample of the stationary process X(0), X(2), . . . , X(T − 1) at frequency ωk = k/T which is127
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defined to be128

I(ωk) =
1

T

∣∣∣∣∣
T−1∑
t=0

X(t) e−i2πωkt

∣∣∣∣∣
2

, k = −[[T/2]]− 1, . . . , [[T/2]],

where [[T/2]] is the quotient of T/2. To characterize the spectra of the EEG signals, we classify the

Spectrum Time series
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Figure 2: Left: the spectrum of second order auto-regressive processes AR(2) with power concentrated at

the delta (0-4 Hertz), theta (4-8 Hertz), alpha (8-16 Hertz), beta (16-32 Hertz) and gamma (32-50 Hertz)

bands. Right: realizations from each corresponding AR(2) process.

129

oscillatory patterns of periodograms into four primary frequency bands: delta (0-4 Hz), theta (4-8 Hz),130
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alpha (8-16 Hz), beta (16-32 Hz) and gamma (32-50 Hz) as shown in Figure 2. Since each frequency band131

is defined by a range, we define Ŝ(Ω) to be the estimated spectral power at the Ω band:132

Ŝ(Ω) =

∫
ω∈Ω

I(ω)dω.

It is well known that the periodogram I(ωk) is an asymptotically unbiased estimator for f(ωk), but it133

is inconsistent because its variance approaches a positive constant when T → ∞. Therefore, to reduce134

the variance, we smoothed the periodogram. A number of nonparametric smoothing methods have been135

proposed including the kernel smoother (Lee [1997], Ombao et al. [2001]), wavelet (Gao [1997]), smoothing136

spline (Wahba [1980], Pawitan and O’sullivan [1994]), or local polynomial (Fan and Kreutzberger [1998]).137

For kernel smoothing, (Ombao et al. [2001]) developed an automatic span selector via the generalized138

crossvalidation criterion for generalized additive models based on the deviance which is discussed in139

Section 2.2.140

2.2 Automatic Span Selector Using the Gamma Generalized Crossvalidation Method141

From Brillinger [1981] (Theorem 5.2.6), I(ωk) follows an asymptotic distribution142

I(ωk) ∼

{
Gamma(1, f(ωk)) k = 1, . . . , T/2− 1

Gamma(1
2 , 2f(ωk)) k = 0, T/2,

where I(ω0), . . . , I(ωT/2) are independent. As a caveat, we note here that the actual result requires that143

the number of frequencies is fixed and does not depend on T . However, in most applications, this is often144

ignored. This result can be equivalently stated as I(ωk)/f(ωk) ∼ εk where εk ∼̇ χ2(1) when k = 0 or145

T/2 and εk ∼̇ 1
2χ

2(2) when k = 1, . . . , T/2 − 1. As noted, we need to smooth the periodogram I(ωk)146

to produce a consistent estimator for f(ωk). Let f̂p(ωk) be a smoothed periodogram estimator of f(ωk)147

which we define to be148

f̂p(ωk) =

p∑
j=−p

Wp,jI(ωk+j) k = 0, . . . , T/2, and j = −p, . . . , p

where 2p+1 is the smoothing span and Wp,j are nonnegative weights that satisfy the following conditions149

for any fixed p:150

Wp,j = Wp,−j(j = 1, . . . , p),

p∑
j=−p

Wp,j = 1.

Generally, the weights are chosen so that Wp,j is a decreasing function of p, but Priestley [1981] shows that151

the choice of the weights Wp,j is of secondary importance to the value of the span or bandwidth. Thus, for152

simplicity, we use the boxcar smoother with weights defined by Wp,j = 1/(2p+1) for all j = −p, . . . , p. The153

gamma generalized crossvalidation method selects p to minimize the generalized crossvalidated deviance154

function155

GCV (p) =

M−1
M−1∑
j=0

D(I(ωj), f̂p(ωj))

(1− tr(Hp)/M)2
,
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where M = T/2 + 1. The deviance D(I(ωj), f̂p(ωj)) can be chosen as qj{− log(I(ωj)/f̂p(ωj)) + (I(ωj)−156

f̂p(ωj))/f̂p(ωj)} (McCullagh and Nelder [1989]). Here, qj = 1−0.5I{j = 0,M −1}, and I is the indicator157

function. The Hp is the smoother matrix with smoothing parameter p, and the term (1 − tr(Hp)/M)2
158

often referred to as the model degrees of freedom, can be expressed in terms of the weight at the center159

of the smoothing window: (1 −Wp,0)2. Then, the generalized crossvalidated deviance function can be160

written as161

GCV (p) = M−1
M−1∑
j=0

qj

{
− log(I(ωj)/f̂p(ωj)) + (I(ωj)− f̂p(ωj))/f̂p(ωj)

(1−Wp,0)2

}
.

(a) Red circle represents right pre-motor region (channel 197) on the scalp
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(b) EEG time series of right pre-motor region (channel 197)

0 20 40 60 80 100

0
10

00
30

00
50

00

Frequency (Hz)

(c) Raw periodograms after filtering out frequency 60 HZ by

averaging method

Figure 3: EEG time series and raw periodograms after filtering out frequency 60 HZ by averaging method

of channel 197 (right pre-motor region) for the first 10 traces.
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2.3 Remarks163

For frequencies over 100 Hz, the periodogram values are almost negligible because the signals underwent164

low–pass filtering at 100 Hz. , so for simplicity, we will only show the spectrum over the frequency range165

of 0 − 100 Hertz. In Figure 3, we show the location of channel 197 in right pre-motor region at the166

resting-state. Figure 4 gives an illustration of smoothing the periodograms for randomly selected epochs167

3, 85 and 160 for a fixed channel 197. It can be seen that the power at these periodograms are dominated168

by low frequencies, and the values of smoothing span minimizing the generalized crossvalidated deviance169

function are about 3-5. Also, the smoothing lines reasonably approximate the periodograms and the170

small bandwidths preserve the peaks. Second, since the distribution of I(ωk) is a multiple of the spectral
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Figure 4: Smoothing periodograms at randomly selected epochs 3, 85 and 160 of channel 197 (in the

right pre-motor region) using the bandwidth that was automatically selected by the gamma generalized

crossvalidation (gamma-GCV) method.

0 20 40 60 80 100

−
20

−
10

0
5

Frequency (Hz)

(a) Trace 3

0 20 40 60 80 100

−
20

−
10

−
5

0
5

Frequency (Hz)

(b) Trace 85

0 20 40 60 80 100

−
20

−
10

−
5

0
5

Frequency (Hz)

(c) Trace 160

Figure 5: Log bias-corrected periodograms of epochs 3, 85 and 160 from Channel 197 (Right pre-motor

region)

171

density, its variance (which depends on f(ωk)) also changes across the frequencies ωk. To stabilize the172

variance across frequencies and to standardize comparisons of median curves across two phases (early173

vs late phases of the resting-state EEG recording) we will use the log transformed periodograms. It is174

convenient then, that the variance of the log periodograms at each frequency is constant and takes the175

approximate value of π2

6 . Moreover, while the periodogram is approximately unbiased for the spectrum,176

the log periodogram is no longer (approximately) unbiased for the log spectrum due to Jensen’s inequality.177

This is easily fixed by adding the Euler Mascheroni constant 0.57721 to log transformed periodograms178
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to obtain the log bias-corrected periodograms (Wahba [1980]). Let g(ωk) be the true log spectrum, then179

Yr(ωk), the log bias of the corrected periodogram at epoch r, is defined as180

Yr(ωk) = g(ωk) + 0.57721, k = 0, 1, . . . , T/2.

Figure 5 gives the log bias-corrected periodograms, Yr(ωk), corresponding to Figure 4. Throughout this181

paper, we will apply the gamma crossvalidation method to obtain the optimal smoother of log bias-182

corrected periodograms.183

2.4 Functional Boxplots184

The functional boxplot is constructed in a similar manner to the classical (pointwise) boxplot. Each185

observation will be sorted based on decreasing values of some depth measure, and band depth is one notion.186

A curve is said to be “deeply situated” within a sample of curves if it is covered by many bands from pairs187

of curves. This idea is an extension of a pointwise boxplot where the median is also located “deep” in a188

sample because it is situated in the middle of the boxplot and hence covered by many pairs of points. Here,189

our observation units are curves (or real-valued functions) which are the log bias-corrected periodograms190

Yr(ωk), k = 0, . . . , T/2 over many epochs r. The notion of a band depth was introduced in López-Pintado191

and Romo [2009] through a graph-based approach to order all sample curves which we briefly describe.192

Suppose that a curve Y (ωk) is the subset of the plane G(Y (ωk)) = {(ωk, Y (ωk)) : ωk ∈ A = [0, T/2]}.193

The band in R2 can be delimited by a number J of curves, and this number is fixed as J = 2 in our study.194

Now, let Yα, Yβ be two continuous functions, Lk = min(Yα(ωk), Yβ(ωk)), and Uk = max(Yα(ωk), Yβ(ωk)).195

Then the band delimited by Yα, Yβ is196

B(Yα, Yβ) =
(
(ωk, Y

′(ωk)) : ωk ∈ A, Lk ≤ Y ′(ωk) ≤ Uk
)
.

Let Y1, . . . , Yn be n independent sample curves, then the band depth for a given curve Yi, i = 1, . . . , n is197

defined as198

BD(Yi) =

(
n

2

)−1 ∑
α=1,...,n; β=1,...,n

I{G(Yi) ⊆ B(Yα, Yβ)}

where I(·) is the indicator function. When J = 2, there are
(
n
2

)
possible bands delimited by two curves.199

The limit of the band depth BD is that it does not measure the proportion of curve inside the band. Thus,200

López-Pintado and Romo [2009] also proposed a modified band depth method (MBD), which measures201

the proportion of a curve Yi that is actually in a band:202

MBD(Yi) =

(
n

2

)−1 ∑
α=1,...,n; β=1,...,n

λ{A(Yi;Yα, Yβ)}

where A(Yi;Yα, Yβ) ≡ {ωk ∈ A : Lk ≤ Yi ≤ Uk}, λ(Yi) = λ(A(Yi;Yα, Yβ))/λ(A), and λ is a Lebesgue203

measure on A. We notice that the MBD computation will be time-consuming when n is large, so we use204

an exact fast method from Sun et al. [2012] to compute the MBD for the EEG data.205

Based on the ranks of the depths of the curves, the functional boxplots can provide the descriptive206

statistics, such as the 50% central region, the median curve, and the maximum and minimum non-207

outlying curves. Moreover, the potential outliers can be detected by the 1.5 times inter-quartile range208
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(IQR) empirical rule, which is commonly used for classical boxplots. The boundary region is defined as209

1.5 times the height of the 50% central region. Any curves outside this region are considered potential210

outliers. In contrast with a constant factor 1.5 in classical boxplot, a factor 1.5 in functional boxplot can211

be modified due to potential spatio-temporal outliers. This is because the curves from different locations212

will be spatially correlated, and there can be dependence in time/frequency for each curve (Sun and213

Genton [2012a]).214

2.5 Surface Boxplots215

Similar to functional boxplots, one can compute the data depth of all the observations, then order them216

according to decreasing depth values. Suppose that the observed sample surfaces, z1(s), . . . , zn(s), s ∈ S,217

where S is a region in R2. The information unit for such a dataset is the entire surface. To order sample218

surfaces, we need to generalize univariate order statistics to surfaces. To this end, we generalize the MBD219

with J = 2 to R3 through a volume. Genton et al. [2014] define the sample modified volume depth (MVD)220

to be221

MVDn(z) =

(
n

2

)−1 ∑
1≤i1≤i2≤n

λrA(z; zi1 , zi2),

where A(z; zi1 , zi2) ≡ s ∈ S : minr=i1,i2 zr(s) ≤ z(s) ≤ maxr=i1,i2 zr(s) and λr(z) =
λ(A(z;zi1 ,zi2 ))

λ(S) , if λ is the222

Lebesgue measure on R3. A sample median surface is a surface from the sample with the largest sample223

modified volume depth value, designed by arg maxz∈z1,...,zn MVDn(z). If there are ties, the median will224

be the average of the surfaces maximizing the sample modified volume depth.225

The first step for constructing surface boxplots is the surface ordering. Sample surfaces are ordered226

from the center outwards based on their MVD values, inducing the order z[1], z[2], . . . , z[n]. The sample α227

central region is naturally defined as the volume delimited by the α proportion (0 < α < 1) of the deepest228

surfaces. In particular, the sample 50% central region is229

C0.5 = {(s, z(s)) : min
r=1,...,[n/2]

z[r](s) ≤ z(s) ≤ max
r=1,...,[n/2]

z[r](s)},

where [n/2] is the smallest integer not less than n/2. The border of the 50% central region is defined as230

the inner envelope representing the box in a surface boxplot. This is the surface analogue of the first and231

third quartiles of the classical boxplot. The median surface in the box is the one with the largest depth232

value. Because the ordering is from the center outwards, the volume of the central region increases as α233

increases. Hence, the maximum envelope, or the outer envelope, is defined as the border of the maximum234

non-outlying central region. To determine this region, we propose to identify outlying surfaces by an235

empirical rule similar to the 1.5 times the 50% central region rule in a functional boxplot. The fences (or236

the upper and lower surface boundaries for flagging potential outliers) are obtained by inflating the inner237

envelope (as defined above) by 1.5 times the height of the 50% central region. Any surface crossing the238

fences are flagged as potential outliers. The factor 1.5 can be also adjusted as in the adjusted functional239

boxplots to take into account spatial autocorrelation and possible correlations between surfaces.240
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2.6 Testing for Differences in Median Between Families of Curves or Surfaces241

To compare the median curves from two populations of curves, López-Pintado and Romo [2009] proposed242

the rank sum test. Let µ̃Y and µ̃Y ′ be the median curves of two populations Y and Y ′ respectively. Define243

the null hypothesis to be244

H0 : µ̃Y = µ̃Y ′ for all µ.

Suppose that we observe two sets of curves, namely {y1, . . . , yn} and {y′1, . . . , y′m}. Then define the245

reference sample to be {r1, . . . , rk} which is from one of the two observed sets with k ≥ max(n,m). The246

position of a particular yi for i = 1, . . . , n, or y′j for j = 1, . . . ,m with respect to the reference sample r,247

is defined as248

R(yi) =
1

n

n∑
l=1

I{MBD(zl) ≤MBD(yi)},

249

R(y′j) =
1

m

m∑
l=1

I{MBD(zl) ≤MBD(y′j)},

where MBD is the modified band depth defined in previous section, and I is the indicator. Then we250

can order the values R(yi) and R(y′i) from the smallest to the largest, and their ranks are between 1 and251

n + m. The test statistics T =
∑m

l=1 rankR(y′j), then under the null hypothesis H0, the distribution of252

T is the distribution of the sum of m numbers that are randomly chosen from 1, 2, . . . , n+m (Sun and253

Genton [2012b]).254

2.7 Remarks on the applications of functional and surface boxplots255

In this paper, we use functional and surface boxplots to explore the structure of EEGs. However, these256

methods are general and can be applied to other types of data such as growth data and climate time257

series (Sun and Genton [2012b]).258

3 Simulation Study259

The purpose of the simulation study is to examine the performance of the exploratory spectral methods260

under various experimental settings. In Section 3.1, we demonstrate the performance of the FBP on the261

smoothed log periodograms of a mixture of two first order autoregressive time series, denoted AR(1). In262

Section 3.2, we illustrate the rank sum test to compare the functional median from two families of curves.263

3.1 Functional Boxplot Simulation Study264

For the rth epoch, let U1r(t) be an AR(1) process with its spectra dominated by high frequencies and265

U2r(t) be another AR(1) with its spectra mostly containing low frequencies. The AR(1) parameters are266

allowed to vary across epochs. Here, we set t ∈ T = {1, . . . , 1000}. We define Xr(t) to be the mixture of267

U1r(t) and U2r(t), such that268

Xr(t) = a1rU1r(t) + a2rU2r(t)
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where r = 1, . . . , 220, a1r and a2r are weighted coefficients of U1r(t) and U2r(t) respectively. Then, the269

model for high and low frequency AR(1) processes are defined as270

U`r(t) = φ`rU`r(t− 1) +Wrt

where ` = 1, 2 and W (t) is white noise. In this setting, the high and low frequency AR(1) are distinguished
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(a) Group 1 with 120 subjects
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(b) Group 2 with 100 subjects

Figure 6: Time series AR(1) for group 1 and group 2

271

by the value of φ`r. For example, for high frequency U1r(t), we set φ1r = 0.9+ξr, where ξr are independent272

and identically distributed from N (0, 0.001). Similarly, for low frequency U2r(t), we set φ2r = −0.5 + ηr,273

and ηr are also independent and identically distributed from N (0, 0.001). Here, we need the variance of274

ξr and ηr to be small so that it guarantees causality, i.e. ξr ∈ (−1, 1) and ηr ∈ (−1, 1). Next, we split the275

220 subjects into two groups, such that the first group will include both high and low frequency series,276

U1r(t) and U2r(t), while the second group will only have the high frequency series U1r(t). To split Xr(t)277

into two groups, we set the weight coefficients a1r and a2r as following278

a1r ∼ N (10, 1) for r = 1, . . . , 220
279

a2r ∼ N (5, 1), for r = 1, . . . , 120, and a2r ∼ N (0, 0.001) for r = 121, . . . , 220.

The two groups of Xr(t) are shown in Figure 6. Using the gamma generalized crossvalidation method,280

Figure 7 displays the log bias-corrected periodograms for each group, and Figure 8 shows the corresponding281

FBPs. Note that group 1 is dominated by both high (right) and low (left) frequencies while group 2282

includes only low frequencies. Thus, the functional median of group 1 should have two peaks, one each283

in high and low frequency ranges, while the functional median of group 2 has only one peak in the low284

frequency range. In Figure 8, the black curve is the median curve in the center of the functional boxplot.285

The two median curves from each group have clearly summarized the typical power distribution for each286

group. The blue curves in the center form the envelope of the 50% central region. The blue curves outside287

of the 50% central region are the non-outlying minimum and maximum curves. It is worth remarking288

that the envelope of group 1 is smaller than the envelope of group 2, and therefore, we demonstrate that289
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Figure 7: Smoothed log bias-corrected periodograms for Group 1 and Group 2
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Figure 8: Functional boxplots of Group 1 and Group 2 with a black curve representing the median curve,

the pink area denoting the 50% central region, the two inside blue curves indicating the envelopes of 50%

central region, the two outside blue curves representing for two non-outlying extreme curves, and the red

dashed curves illustrating the outlier candidates detected by 1.5 times the 50% central region rule.

group 2 has more dispersion than group 1. Moreover, the envelope of group 1 is in the middle of the290

non-outlying minimum and maximum curves, while the envelope of group 2 tends to move upwards. This291

indicates that group 2 shows more skewness than group 1. The red dashed curve in Figure 8 denotes the292

outliers. We see that the curves from group 1 that are dominated by high frequencies only are detected as293

outliers while the curves from group 2 that include both high and low frequencies are detected as outliers.294

295

In order to illustrate the usefulness of the functional boxplot compared to the pointwise boxplot,296

we introduce a simulation study which randomly chooses 10 bias-corrected log periodograms among 160297

total periodograms. We simulate an outlying curve by adding additional noise across the 0-100 Hz fre-298

quency range, and close to the center for the remaining frequencies. Figure 9-a shows the simulation299

data including the 10 random bias-corrected log periodograms (grey curves) and a simulated outlying300

curve (red curve). In Figure 9-b, the functional boxplot successfully detects the simulated outlying curve301

and other outliers. However, Figure 9-c shows that the pointwise boxplot fails to detect the simulated302
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Figure 9: (a) Simulation data with grey curves representing sample curves, a red curve denoting the

simulated outlying curve (b) Functional boxplots, (c) Pointwise boxplots with black curve representing a

mean curve, blue curves for the envelope of the 50% central region, the green curves for the non-outlying

minimum and maximum curves, and the red points for outliers, and (d) two median curves obtaining by

functional boxplots method (blue) and pointwise boxplot method (red) are shown in the same plot.

outlying curve, and provides some disconnected outlying curves across frequencies. We also notice that303

the non-outlying maximum and minimum curves of pointwise boxplot are actually the outlying curves304

detected by functional boxplot. Figure 9-d compares the two median curves from these two methods,305

and by visual inspection, there is a slight difference between the two median curves at low frequencies.306

Thus, functional boxplot can be a non-parametric method to obtain the median curve and the variability307

around it for EEG data compared to pointwise boxplot.308

309

3.2 Rank Sum Test Simulation Study310

To investigate the performance of this nonparametric test, we simulated two sets of curves, which are311

defined as below:312

Y`,r(ωk) = f`(ωk) + arg(ωk) + hr(ωk),
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where r = 50, ` = 1, 2, g(ωk) = 1 for all ωk, and ωk is defined as ωk = k/100, where k = 1, . . . , 100. In313

the model, f1(ωk) and f2(ωk) are the mean functions; ar
iid∼ N(0, 5) and hr(ωk)

iid∼ N(0, 2) represent the314

variation between and within the curves, respectively. Let the function f1(ωk) be defined as315

f1(ωk) = 5 ·
√

1000 · ωk,

and consider three different cases:316

1. The two means are identical, let f2(ωk) = f1(ωk) for all ωk.317

2. There is a slight deviation between the two means; define f2(ωk) = 5 ·
√

900 · ωk.318

3. There is an appreciable deviation between the two means; let f2(ωk) = f1(ωk) + 2k/3.319

We applied the kernel average smoother with window size 7 to smooth each curve from these two families.320

Figure 10 illustrates the simulated curves (left panel) and the smoothed curves (right panel). In order to321

investigate the rank sum test performance in each case, we simulated two families of curves and obtain322

p-values of rank sum test; this procedure was repeated 1000 times. Let the type I error α be 5%, we323

report the percentage of time that the rank sum test rejects Ho : f1(ωk) = f2(ωk) for all ωk in Table 1.324

Overall, the rank sum test method performed well in each case. When the two families are identical, this

First case Second case Third case

Percentage of time rejecting Ho 44 605 1000

Table 1: Rank Sum test study result.

325

method rejected the null hypothesis of equality only 44 times (4.4%) out of 1000 times, which is close326

to the nominal α. When the two families are nearly identical, this method rejects 605 times (the power327

is 60.5%), and when the two families are completely different, the power is 100%. Thus this method328

demonstrates power and sensitivity to differences.329

4 Analysis of Resting-State EEGs Data330

4.1 Data Description331

In this paper, we analyze EEG data from one participant in a resting-state EEG study approved by the332

Institutional Review Board of the University of California, Irvine. The over-arching aim of this study was333

to identify a pattern of EEG-derived coherence acquired during rest-state that could predict subsequent334

response to training on a novel motor skill. During EEG acquisition, subjects sat quietly with both feet335

flat on the floor, and were instructed to fixate their gaze to the center of a fixation cross. Each recording336

was 3 minutes in duration. While the original EEG recording included 256 channels, only 194 were used in337

subsequent analyses, as extra-brain artifacts, including cheek and neck muscle artifacts and heart rhythms,338

are more likely to contaminate EEG signals recorded from electrodes overlying cheek and neck regions.339

Following data acquisition, pre-processing steps included: 100 Hz low pass filter; EEG segmentation340

into 1-second consecutive, non-overlapping epochs; mean detrend; and EEG signal re-reference to mean341
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Figure 10: The two families of simulated curves, Y1,r and Y2,r. The grey shaded area represents the first family,

and the yellow shaded area is for the second family. The red and blue lines are the first and second mean functions,

f1 and f2, respectively.

signal across all 194 channels. In addition, a combination of visual inspection and Infomax Independent342

Component Analysis decomposition were used to remove extra-brain artifacts, including eye blinks, eye343

movements, muscle artifact, and heart rhythm artifacts. The final dataset consisted of 160 epochs, with344

each epoch lasting 1 second, and T = 1000 time points for each epoch.345

The goals of the present analysis are as follows: In Section 4.2, we closely examined a representative346

channel in the pre-motor region (specifically channel 197 in this dataset). Since EEGs are not well347

localized in space (as opposed to local field potentials), conclusions are constrained to the sensor space.348

However, electrical activity captured in channel 197 reflects activity roughly around the pre-motor area.349
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Specifically, we estimated the (log) spectrum for each epoch to identify any frequency bin or frequency350

band that accounts for the majority of the power spectrum. Moreover, using the method of estimating351

the functional medians, we obtained an estimate of the median curve from the log periodogram curves352

obtained from several epochs. The median curve is interpreted as a “typical” (log) spectral profile across353

several epochs. Using this method, we also identified outlier curves which could also be interpreted as354

epochs with “unusual” EEG activity. In Section 4.3, we investigated the possibility of non-stationarity355

across the 3 minute resting-state EEG recording. Our specific goal was to compare the log spectrum356

during the early phase (first 60 epochs) of the recording with the log spectrum during the late phase (last357

60 epochs) of the recording, and identify frequency bands that exhibit any differences between the early358

vs late phases. In Section 4.4, we studied the spatial variation of power, at each of the five frequency359

bands: delta, theta, alpha, beta and gamma, across all 194 channels, with the goal of identifying regions360

that exhibit relatively greater proportion of spectral power in each of the five frequency bands of interest.361

Finally, we compared the spatial variation for each of the five bands during the early vs late phases of the362

resting-state EEG recording.
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Figure 11: (a) The functional boxplots, (b) Pointwise boxplots of log bias-corrected periodograms, and

(c) Two median curves obtaining by functional boxplot method (blue) and pointwise boxplot method

(red) are shown in the same plot.

363
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4.2 Functional medians of the pre-motor log spectral curves364

The log of the bias-corrected periodograms at the representative channel (channel 197) that approximately365

overlies cortex of the pre-motor region recorded for several traces and the functional boxplots are displayed366

in Figure 11-a. The functional median curve is represented by the black curve, which is located inside367

the 50% central region, shaded area. The two blue curves outside of the shaded area are the non-outlying368

maximum and minimum curves. Similar to a functional boxplot, we show in Figure 11-b the pointwise369

boxplot (per frequency point), where the black curve is the median obtained by connecting the medians at370

each frequency point; the blue curves form the central region (50-th percentile region); the green curves are371

two non-outlying extreme curves. We compared these two median curves in Figure 11-c and noted a slight372

discrepancy between these median curves derived using a functional boxplot and the pointwise boxplot,373

with an emphasis on the low frequency range. The main difference between the functional median and the374

point-wise median curve is in the interpretation. The former is one of the curves from a recorded epoch,375

whereas the latter may not be an actual curve. Hence the latter cannot really be interpreted as a “typical”376

curve from a family of curves formed from several epochs. Moreover, the functional boxplots approach377

allows us to identify specific epochs that produce “unusual” or outlying log bias-corrected periodogram378

curves. Note that in the plots, the grey curves are the log bias-corrected periodograms of 160 epochs and379

the red curves are outliers. Figure 11-b also shows that these outlying curves are discontinuous around380

the frequency bin centered at 100 Hz.381

4.3 Testing for stationarity of EEG epochs across the entire resting-state382

In the previous section, the functional boxplot provided descriptive statistics for the log bias-corrected383

periodograms of 160 epochs from the pre-motor region. Note that there were originally 180 epochs but 20384

had to be removed from further analysis due to extra-brain artifact contamination. Our interest now is385

to test whether resting-state brain activity evolved across the 3 minute EEG recording. While there are386

many ways to characterize such an “evolution” of the underlying brain processes, here we will specifically387

look into changes on the log spectral curves for early vs late phases of the resting-state EEG recording.388

In this case, a change in the log spectral power in early vs late phases would indicate non-stationarity of389

the EEG signal across the resting-state recording.390

The null hypothesis of stationarity here is that the true median curves of the early and last phrases391

are identical. We test this hypothesis using the rank sum test with the significance level set to 0.05. We392

defined the early phase to include the first 60 epochs (60 seconds) of the 3 minute recording and the393

late phase to include the last 60 epochs. In Figure 12, we display the functional boxplots and the other394

descriptive statistics for each phase. A visual inspection suggests that the median curves are only slightly395

different from each other for electrodes that approximately overlie the pre-motor region. More significant396

differences are noted for electrodes that approximately overlie the prefrontal region (see Figure 12-c).397

Moreover, the rank sum test failed to reject the null hypothesis, as the p-value is 0.56. Therefore, the398

two median curves are not significantly different and the hypothesis of stationarity in the pre-motor399

regions is not rejected. This is not entirely unexpected since the whole three-minute recording was purely400

resting-state. There was no experimental stimulus and the time frame was short.401

Next, we use the same testing procedure at this particular channel in the pre-motor region (channel402

197) to test the same null hypothesis of non-evolution of the brain process at each of the other channels403
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(a)Functional boxplots of epochs 1-60
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(b)Functional boxplots of epochs 101-160
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(c)The median curves of the early (blue) and last (red) phrases.

Figure 12: Comparing median curves of the early and last phrases from pre-motor region and left pre-

frontal region

across the 3 minute EEG recording. Among the 194 total channels, 18 channels were identified that404

demonstrated a significant difference in median curves during the early versus late phase at a significance405

level of 0.05. These channels are represented by colored circles in Figure 13. Of these 18, channel 29406

(approximately overlying the supplementary motor area) has the lowest p-value at 10−4. Since we repeat407

the same test for 194 channels, we used the Bonferroni correction so that the significance level for each test408

was set to 0.05/194 = 2 × 10−4. Indeed, only channel 29 (anterior supplementary motor area) survived409

the stringent threshold after the Bonferroni correction.410

The tests for temporal stationarity at each channel (local spatial tests) revealed several channels having411

a significant difference between the median curves of the early versus last phases of the EEG recording.412

As a next step, we studied stationarity in each of 19 predefined regions of the cortex. In this analysis,413
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Figure 13: Color circles represent channels, which have significant difference between the median curve of

first 60 epochs and the median curve of last 60 epochs at α = 0.05. Grey circles represent channels which

do not have significant difference between the median curve of first 60 epochs and the median curve of

last 60 epochs at α = 0.05.

the representative EEG signal for each region was obtained by averaging the EEG signal-epochs over all414

channels within each region. The plots in Figure 14 suggest that the median curves for the early versus415

late phases of the EEG recording are similar for EEG signals recorded from channels that approximately416

overlie right pre-motor and anterior supplementary motor regions, but different in the right pre-frontal417

and left parietal regions. Indeed, we conclude from the rank sum test that there is significant difference418

between the early versus late phases in cluster of channels that approximately overlie the right pre-frontal419

(p-value = 0.01) and the parietal regions (p-value = 0.029). We found that the right pre-frontal region420

is significantly non-stationary (i.e., early and late phases differ) at level 0.05 (see Figure 15). This result421

overlaps with the channel-specific tests, in which several of the channels identified to be non-stationary422

in the single channel tests are included in the predefined right pre-frontal region. In contrast, while the423

cluster of electrodes that overlie the left parietal region was found to be non-stationary in the region-by-424

region tests, none of the 18 channels that were identified to be non-stationary in the single channel tests425

are part of the left parietal cluster. Therefore, the additional averaging step across group of channels426

may improve signal-to-noise in this type of analysis. A similar phenomenon was also noted for predefined427

clusters of electrodes overlying at the left pre-frontal region.428

4.4 The variation of spectral power at each frequency band across the entire cortex429

Our goal here is to test whether the spectral power at each frequency band differed across the cortical430

surface. We first computed the estimate of the spectral power for each channel at each epoch. Starting431

with the delta band, for each epoch we construct a 2−D surface plot of the delta power across the entire432

cortical surface of 194 channels. These surfaces were then grouped according to the early and late phases433
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(a) Right pre-motor (b) Anterior supplementary motor

(c) Right pre-frontal (d) Left parietal

Figure 14: Median curves of the early phase (first 60 epochs, in blue) and the late phase (last 60 epochs,

in red) in the right pre-motor, anterior supplementary motor, right pre-frontal and left parietal regions

Right Pre-Frontal

Left Parietal

Figure 15: Testing for difference between the early and late phases of the resting-state for each region.

The right pre-frontal regions (blue circles) and the left parietal regions (red circles) exhibit significant

non-stationarity at level 0.05.

of the resting-state. We then applied the surface boxplot method for each frequency band to obtain the434

median surfaces. In Figure 16, we present the median surface for five frequency bands in the early and435

late phases. The color blue represents the low spectral power while red is for high power. In Figure 16, it436

is interesting that even during resting-state there is relatively high spectral power at the beta and gamma437
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Figure 16: The median surfaces of five frequency bands.

bands – which are both associated with higher cognitive processing (Engel and Fries [2010]).438

The next step is to test for differences between the early and late phases of the EEG recording for each439

of the five frequency bands of interest. Using the rank sum test, the delta and alpha bands do not have440

significant difference between the early and late phases. However, theta, beta and gamma bands show441

significant differences. In Figure 17, the colored regions indicate significant differences between the first442

and last phases while the grey color regions indicate no significant differences between these two phases.443

For the theta band, the rank sum test rejected the null hypothesis at only one region which is the cluster444

of electrodes overlying anterior supplementary motor. For the beta band, the rank sum test identified445

differences at the left medial parietal region. For the gamma band, there were 13 regions (out of 19)446

with significant difference between the early and late phases. Since the gamma band is wider than other447

bands, an estimated spectrum powers’ variation across channel in gamma band is expected to be smaller448

than the estimated spectrum powers’ variation in other bands. In Section 4.3, we tested the stationarity449

for each region. Figure 15 shows two regions, namely, the right pre-fontal and left parietal, which are450

significantly non-stationary across all frequencies between the early and late phases. Figure 17 shows451

that the cluster of electrodes overlying the left parietal region exhibits significant non-stationarity in the452

beta and gamma bands while the cluster of electrodes overlying the right pre-fontal region is significantly453
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Figure 17: Rank sum test results for regions. Color circles in a bounded curve represents a region, which

has a significant difference between the first 60 epochs and the last 60 epochs.

non-stationary only in the gamma band.454

5 Conclusion455

This study has extended the use of the classical boxplot to FBP, which is a new visualization tool to analyze456

functional neuroimaging data, including EEG. The primary findings from the current study demonstrate457

the functional boxplot is useful for both characterizing the spectral distribution of both simulated and458

real EEG data and identifying potential outliers in a continuous EEG signal.459

In the current implementation of the FBP, ranked sample curves are used to characterize the EEG460

spectrum by defining a 50% central region, a median curve, and maximum and minimum non-outlying461

curves. Thus, the shape, size, and length of the functional boxplot can be used to characterize the distri-462

bution of the dataset, including the skewedness and degree of variability of the EEG recording. Therefore,463

potential application of the FBP in this context includes comparing functional boxplots derived from EEG464

recordings before and after an experimental intervention (e.g., across a period of motor skill training),465
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comparing mean functional boxplots derived from EEG recordings in healthy and diseased experimental466

groups, and comparing mean functional boxplots derived from EEG recordings during resting-state versus467

task.468

An additional use of the FBP, as demonstrated by the current results, is to identify potential outliers of469

the EEG recording. Extra-brain artifacts, including eye blinks, eye movements, heart rhythms measured470

at pulse points downstream, and muscle movements can cause large deviations in the EEG signal, and471

represent a significant hurdle in EEG signal processing (Delorme et al. [2007]). As a method for identifying472

outliers in the EEG signal, the FBP could be used to rapidly identify periods of an EEG recording473

that show high likelihood for contamination by artifacts. In clinical applications, the continuous EEG474

recording has demonstrated promise as a method for monitoring neural function in patients who have475

compromised level of consciousness (Fyntanidou et al. [2012]) or changes in neural function in patients476

undergoing neurosurgical interventions (de Vos et al. [2008]). The use of FBP to identify outliers in the477

EEG recording represents a novel method for determining periods of the EEG recording that represent478

changes in consciousness in patients with a compromised level of consciousness, or for determining changes479

in neural function across neurosurgical intervention.480

The current study also presents an application of the FBP to examine resting-state EEG data acquired481

from a single individual by comparing EEG signals acquired during early versus late phases of the 3 minute482

EEG recording. This result has important implications for resting-state studies of neural activity, as many483

neuroimaging studies that examine resting-state brain function assume resting-state neural activity to be484

static. However, recent studies that examine dynamic changes in resting-state neural activity suggest485

momentary change in cognitive processes can cause non-stationarity in resting-state function (Chang486

and Glover [2010] and Hansen et al. [2015]). In contrast, the current results show that the majority of487

channels demonstrate stationarity across the recording period, and provide support for the assumption488

that the average EEG signal is static across a 3 minute EEG recording. Combined with previous findings,489

the current results suggest that while momentary changes in cognitive processes result in non-stationary490

fluctuations of the time series, when averaged across a 60 second subset of the complete 3 minute EEG491

recording, the EEG signal is relatively static. This is supported by the current results that show channels492

which demonstrate non-stationarity of the EEG signal when comparing early and late phases of the493

recording include electrodes that overlie the right prefrontal region, which is associated with higher-494

order cognitive processes (Logue and Gould [2014]). Thus, the assumption of stationarity in resting-state495

functional neuroimaging studies may be more appropriate for non-congitive networks, including the motor496

network. Regardless, further work is needed to determine the minimal time-frame in which EEG signal497

demonstrate stationarity.498

Additional future work is focused on developing a new method for computing confidence bands for the499

median curve. This method needs to consider the data as a whole. One possible approach is a re-sampling500

method, in which the notion of band depth is used to construct a 95% confidence band. A potential501

limitation of the re-sampling method is that there is the potential for multiple curves demonstrating ties502

with respect to band depth, thus affecting the resultant confidence band. One of the assumptions of the503

current smoothed periodogram method is that the log bias-corrected periodogram is an unbiased estimator504

of spectrum. Future work will provide further investigation of this assumption as the current method505

includes several levels of periodogram manipulation, including smoothing with the gamma generalized506

crossvalidation, log transformation, and correction by adding Euler Mascheroni constant. In conclusion,507

24



the current study presents a novel implementation of the functional boxplot and demonstrates promise as508

a method for exploratory analysis of complex, high-dimensional neuroimaging datasets, including EEG509

data.510
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