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Summary. We suggest a new approach, which is applicable for general statistics computed from
random samples of univariate or vector-valued or functional data, to assessing the influence that
individual data have on the value of a statistic, and to ranking the data in terms of that influence.
Our method is based on, first, perturbing the value of the statistic by ‘tilting’, or reweighting,
each data value, where the total amount of tilt is constrained to be the least possible, subject
to achieving a given small perturbation of the statistic, and, then, taking the ranking of the
influence of data values to be that which corresponds to ranking the changes in data weights.
It is shown, both theoretically and numerically, that this ranking does not depend on the size
of the perturbation, provided that the perturbation is sufficiently small. That simple result leads
directly to an elegant geometric interpretation of the ranks; they are the ranks of the lengths
of projections of the weights onto a ‘line’ determined by the first empirical principal component
function in a generalized measure of covariance. To illustrate the generality of the method we
introduce and explore it in the case of functional data, where (for example) it leads to generalized
boxplots. The method has the advantage of providing an interpretable ranking that depends on
the statistic under consideration. For example, the ranking of data, in terms of their influence
on the value of a statistic, is different for a measure of location and for a measure of scale. This
is as it should be; a ranking of data in terms of their influence should depend on the manner
in which the data are used. Additionally, the ranking recognizes, rather than ignores, sign, and
in particular can identify left- and right-hand ‘tails’ of the distribution of a random function or
vector.
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1. Introduction

The analysis of functional data has received sustained attention in recent years due to the
increasing availability and collection of observations that arise as functions or images. Data of
this type arise in many disciplines and include growth curves in biology, climate variables from
networks of monitors or from climate model outputs in geosciences and profiles derived by
monitoring manufacturing processes, to name a few; see Ramsay and Silverman (2005), Ferraty
and Vieu (2006), Ramsay et al. (2009) and references therein.

Classical statistical methods based on ranks can be extended to the functional setting. For
this, López-Pintado and Romo (2009) introduced the notion of band depth. It yields an order-
ing of a sample of functional data from the centre outwards and therefore defines a measure
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of the centrality or outlyingness of an observation. For instance, the median function, or a
trimmed mean function, can be defined for robust statistical analysis, and functional boxplots
(Sun and Genton, 2011, 2012a) or surface boxplots (Genton et al., 2014) can be constructed
for visualization and outlier detection. Sun and Genton (2012b) proposed a functional median
polish algorithm, based on using a band depth functional median, to fit robustly a functional
analysis-of-variance model. Sun et al. (2012) derived a fast algorithm to compute band depth
for functional data and López-Pintado et al. (2014) introduced simplicial band depth for multi-
variate functional data. Yu et al. (2012) proposed a test for functional outlier detection, founded
on functional principal components. Hyndman and Shang (2010) applied functional principal
component analysis to a robust covariance matrix to detect outliers. The last two approaches
have the drawback of being basis dependent. Genton and Ruiz-Gazen (2010) introduced an-
other approach to defining and visualizing influential observations in dependent data based on
additive data perturbations.

In this paper we suggest a new, widely applicable approach to ranking influential data, based
on data tilting. Relatively to previously considered methods, this technique has the advantages
of being basis independent, of ranking data according to their influence on specific statistics (for
example our rankings in the context of location estimation can be quite different from those for
scale estimation), of allowing the identification of ‘tails’ in distributions of random functions
or vectors and of being applicable in an exceptionally wide range of settings. For instance, the
method can be employed to identify influential data in random samples, no matter whether those
data are univariate or vector valued or function valued, for many types of estimator. In the case
of functional data, the functions can have almost arbitrary arguments, of any dimension, and
the statistics being considered can involve tuning parameters, in which case the rankings reflect
those parameters. For brevity our notation and our examples will address the functional data
case.

Data tilting involves replacing uniform weights on the data by more general weights. It can
be employed to render parametric procedures more robust, or to produce a natural order-
ing of the data in terms of their contributions to the fit of a model (Choi et al., 2000). The
use of tilting for assessing robustness, or the influence of particular data values, has been
investigated by Hall and Presnell (1999a), Critchley and Marriott (2004), Lazar (2005) and
Camponovo and Otsu (2012), among others. Many applications of tilting and perturbation
arguments to contemporary, non-parametric statistical problems have been developed, includ-
ing those of Hall and Presnell (1999b), Critchley et al. (2001), Hall and Yao (2003), Bravo
(2005), Hall et al. (2009), Xu and Phillips (2011) and the vast literature on empirical likeli-
hood.

In this paper we use tilting to assign a rank to each observation, e.g. each data function.
We show that this ranking admits a simple, general interpretation in terms of projections of
functions of the data onto the space that is spanned by an empirical eigenfunction correspond-
ing to the largest eigenvalue, where the linear transformation that determines the eigenvalue
and eigenfunction is determined by the statistic under investigation. This interpretation is not
asymptotic in terms of sample size and so is available, and relevant, even for small sample
sizes.

The remainder of this paper is organized as follows. In Section 2 we give a general definition
of ranking based on tilting, and we introduce our methodology. We also outline theory that
is associated with this approach. The methodology and its numerical properties are illustrated
through a real data example in Section 3. The proof of our main result is relegated to Appendix
A. The data and code can be obtained from stsda.kaust.edu.sa/Pages/Software.
aspx.
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2. Methodology

2.1. Examples of tilting
Assume that we observe data X1, : : : , Xn, supported in a region R. For definiteness we take the
data to be functions, but it will be appreciated that our methodology is available more generally.
The data Xis may be paired with other data Yi, e.g. response variables in a regression problem,
and in this case the pairs .Xi, Yi/ are assumed to be distributed as .X, Y/. In the present subsection
we shall discuss tilted versions of four statistics ω̂, which are defined in equations (1), (2), (4)
and (5). There, W is a kernel function, h a bandwidth, t ∈R in equations (1) and (4), t = .t1, t2/

in equation (2) is a vector in R×R, v= .t, u/∈R×R in equation (5) and the quantities θ̂j and
φ̂j will be defined and discussed below equation (6):

ω̂.t/= X̄.t/= 1
n

n∑
i=1

Xi.t/, .1/

ω̂.t/= K̂.t1, t2/≡ 1
n

n∑
i=1

{Xi.t1/− X̄.t1/}{Xi.t2/− X̄.t2/} .2/

=
∞∑

j=1
θ̂j φ̂j.t1/φ̂j.t2/, .3/

ω̂.t/= φ̂j.t/, .4/

ω̂.v/=
[

n∑
i=1

YiW

{
Xi.t/−u

h

}]/[
n∑

i=1
W

{
Xi.t/−u

h

}]
: .5/

We consider ω̂ to be an estimator of a quantity ω. In equation (1), ω̂.t/ is the empirical mean of
the functions Xi, evaluated at t, and estimates ω.t/=E{X.t/}, and t ∈R. In equation (2), ω̂.t/

denotes an estimator of the covariance function, ω=K, defined by

K.t1, t2/= cov{X.t1/, X.t2/}=
∞∑

j=1
θj φj.t1/φj.t2/: .6/

The singular value decompositions at equations (3) and (6) are the versions, for functional data,
of respectively empirical and theoretical principal component covariance expansions expressed
in terms of (eigenvalue, eigenfunction) pairs .θ̂j, φ̂j/ and .θj,φj/, and ordered so that θ̂1 � θ̂2 �: : :

and θ1 �θ2 �: : :. In equation (4), ω=φj. In equation (5), ω̂.v/ is an estimator of the conditional
mean, ω.v/=E{Y |X.t/=u}. Result (6) holds, with convergence in mean square, provided that∫
R E{X.t/2}dt < ∞, and similarly equation (3) holds, with convergence in the same sense, as

long as each data function is square integrable.
Let p= .p1, : : : , pn/ denote an n-vector whose components are non-negative and satisfyΣipi =

1. (Such a vector is often referred to in the literature as a ‘multinomial distribution’.) Let ω̂p

denote the version of ω̂when each data value Xi, or the pair .Xi, Yi/, is weighted by the respective
value of pi, rather than by n−1. We say that Xi has been tilted using p. In the examples at equations
(1), (2), (4) and (5) we have respectively

ω̂p.t/= X̄p.t/=
n∑

i=1
pi Xi.t/, .7/

ω̂p.t/= K̂p.t1, t2/=
n∑

i=1
pi{Xi.t1/− X̄p.t1/}{Xi.t2/− X̄p.t2/} .8/

=
∞∑

j=1
θ̂pj φ̂pj.t1/ φ̂pj.t2/,
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ω̂p.t/= φ̂pj.t/,

ω̂p.v/=
[

n∑
i=1

piYi W

{
Xi.t/−u

h

}]/[
n∑

i=1
piW

{
Xi.t/−u

h

}]
: .9/

If we write

p0 = .n−1, : : : , n−1/ .10/

for the uniform distribution on n points, then the quantities ω̂, defined at equations (1), (2),
(4) and (5), are denoted equivalently by ω̂p0 . The L2-distance between the tilted and non-tilted
forms of ω̂ is

d1.p/=
∫

J
{ω̂p.v/− ω̂.v/}2 dv=

∫
J

{ω̂p.v/− ω̂p0.v/}2 dv, .11/

where J is a suitable set; for example, it would be taken equal to R in the first and third examples,
to R×R in the second example and to a subset of R×R in the fourth.

2.2. Methodology based on tilting
Let p = .p1, : : : , pn/ represent a general multinomial distribution on n points, introduced in
Section 2.1; let p0 be the uniform probability distribution, defined at equation (10); let d1.p/, at
equation (11), denote the distance between the tilted and untilted forms of the statistic ω̂; and
measure the distance between p and p0 by using the criterion

d2.p/=
n∑

i=1
pi log.npi/: .12/

Given "> 0, choose p to minimize d2.p/ subject to

d1.p/= "2: .13/

Minimizing d2.p/ is equivalent to maximizing a measure of entropy, or equivalent to minimiz-
ing a measure of Kullback–Leibler divergence. The resulting value of p, which is denoted by
.p1."/, : : : , pn."//, is our tilted form of the discrete uniform distribution. We rank the values of
pi."/, obtaining

p{̂1."/�: : :�p{̂n."/, .14/

say. This induces an ordering of the data set, and we express that ordering as {̂1."/�: : :� {̂n."/.
The distance measure at equation (12) is one of the power divergence distances (see for example

Cressie and Read (1984)) and has advantages over other contenders in that it allows one or more
of the pis to equal 0 and leads automatically to non-negative pis without requiring an algorithm
such as quadratic programming to ensure that property.

Our ranking of influence recognizes, rather than ignores, sign. In particular, if ω̂ is a mean
then at one end of the sequence {̂1, : : : , {̂n the indices identify data values that are having a
relatively large positive influence, whereas at the other end they are having a relatively large
negative influence. This issue motivates our preference for the ranking {̂1 �: : :� {̂n rather than
{̂n �: : : � {̂1, because the former acknowledges the positive role that is played by X{̂1 , and the
negative role of X{̂n . This is transparent in the case of a scalar mean, and similar arguments
can be given in the case of function-valued data and other statistics ω̂, where our approach
allows identification of left- and right-hand ‘tails’ of general distributions. See, for example, the
discussion in Section 3.2.
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If the distribution of the data is continuous then, in the limit as "↓0, the inequality signs in
ranking (14) are strict with probability 1, i.e., for each strictly positive, deterministic choice of ",
P{p{̂1."/<: : :<p{̂n."/}=1. Therefore the ordering is strict; rather than {̂1."/�: : :� {̂n."/, we have

{̂1."/�: : :� {̂n."/: .15/

Moreover, as we shall argue in Section 2.3, the strict ranking in expression (15) remains valid
in the limit as "↓0.

Given that we have tilted p0 to p = p."/ = .p1."/, : : : , pn."//, we rank the values p1."/, : : : ,
pn."/, obtaining the inequalities at ranking (14). We assert that X{̂1 , : : : , X{̂n is an ordering
of X1, : : : , Xn in decreasing order of their immediate influence on the value of ω̂, respecting
the sign of influence, and we express the corresponding ordering of the indices 1, : : : , n as
{̂1."/�: : :� {̂n."/.

Potentially, the application of these ideas is hindered by the fact that {̂1."/, : : : , {̂n."/ depend
on ", since an appropriate choice of " may require delicate empirical methods. However, under
mild assumptions, the quantities {̂j."/ have proper, well-defined limits as " ↓ 0. Moreover, the
process of convergence to the limit here has several statistically attractive properties.

(a) The entire sequence {̂1."/, : : : , {̂n."/ has a well-defined joint limit as "↓0.
(b) The ordering of the limiting values {̂1.0/, : : : , {̂n.0/ has attractive, statistically interpretable

features, expressible in terms of generalized principal components and which we discuss
in the next section.

(c) If the distribution of the random function X is continuous then, with probability 1, there
are no ties in the limiting ordering.

(d) In the setting of (c), the ordering is identical to {̂1."/�: : :� {̂n."/ for all sufficiently small
", including "=0, and so is straightforward to identify simply by considering successively
smaller values of ".

Using the ideas in this paper as a foundation, various directions might be pursued in the
future. First, breakdown points could be considered, although they are arguably beyond the
scope of the present paper, not least because we are developing a general approach to ranking
for general statistics for general types of data. In comparison, the study of breakdown points
usually demands a much narrower focus. For example, in the case of location estimation it is
often necessary to assume that the sampled distribution is symmetric about its centre, whereas
quite different models are needed for estimators of other quantities. Secondly, one might try
to measure and compare the ‘outlyingness’ of outlying data. For that problem we can offer
at present no better suggestion than to compute ω̂ with the outlying value removed, and to
determine in that way just how much leverage the value removed has. Thirdly, motivated by the
theoretical results that we shall discuss in Section 2.3, one could estimate higher order principal
component functions that correspond to a general statistic ω̂ and use that analysis to gain
insight into higher order aspects of rankings of influence. However, this approach is likely to be
challenged by the sheer complexity of those high order features.

2.3. Limit of the ranking as " #0
First we state our assumptions. We assume that, as "↓0, we can write

ω̂p − ω̂=
n∑

i=1
.pi −n−1/Δi +O."2/ .16/

and
1
2

@

@pj

∫
R

.ω̂p − ω̂/2 =
n∑

i=1
.pi −n−1/

∫
R

ΔiΔj +Aj +O."3/, .17/
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where the integral is over the support R of ω̂p and ω̂, which is assumed to be compact, and Δi

denotes an approximation to the first derivative of ω̂p with respect to pi (the approximation is
accurate up to a remainder of order "2). We ask also that, as "↓0,

n∑
i=1

Δi =
n∑

i=1
Ai =0, Δi =O.1/ and Ai =O."2/ for each i: .18/

The quantities Δi may depend on p, although only negligibly so; they will satisfy

Δi =Δ0
i +O."/ for each i .19/

as "↓0, where Δ0
i depends only on the data.

To convey intuition about these assumptions we mention that result (16) asserts that, to first
order, ω̂p − ω̂ is linear in perturbations pi −n−1 of the data weights, with a quadratic remainder,
and equation (17) essentially follows from equation (16) on squaring both sides and integrating;
see the discussion three paragraphs below. The first part of expression (18) reflects the fact that
the pis are related by the formula Σipi =1 and in particular are not independent variables; and
the second and third parts of expression (18) stipulate that the first, second and third terms
on the right-hand side of equation (17) are of orders ", "2 and "3 respectively. Condition (19)
asserts only that Δi, which as equation (18) states is of order 1, does not depend on " to first
order. These assumptions are satisfied widely, as will be shown through examples later in this
subsection.

Define

M̂.t1, t2/= 1
n

n∑
i=1

Δi.t1/Δi.t2/, .20/

for t1, t2 ∈R. We also write M̂ for the operator itself: if χ is a function then

.M̂χ/.t1/=
∫

R
M̂.t1, t2/χ.t2/dt2:

Although M̂ may depend on p, through the quantities Δi, in view of condition (19) this
dependence becomes negligible as "↓ 0. Let M̂

0
denote the limit of M̂ as " decreases. Then we

can write

M̂
0
.t1, t2/= 1

n

n∑
i=1

Δ0
i .t1/Δ0

i .t2/=
∞∑

j=1
α̂j β̂j.t1/ β̂j.t2/, .21/

representing a conventional singular value decomposition of the positive definite operator with
kernel M̂

0
, having (eigenvalue, eigenfunction) pairs denoted by .α̂j, β̂j/. It is assumed that the

terms in the second series in definition (20) are ordered so that α̂1 � α̂2 �: : :.
There is, of course, a simple relationship between equations (16) and (17). Indeed, since Δi

equals the first derivative of ω̂p − ω̂ with respect to pi, up to a remainder of order "2, and
since, by result (16), ω̂p − ω̂ equals Σi .pi −n−1/Δi, up to a remainder of the same order, then,
differentiating under the integral sign, it is clear that, up to a remainder of order "2, half the
value of the first derivative of

∫
.ω̂p − ω̂/2, with respect to pj, should equal∫ {

n∑
i=1

.pi −n−1/Δi

}
Δj:

This is just the first term on the right-hand side of equation (17). The second term there, i.e.
Aj, represents the dominant contributions of order "2. Therefore equation (17) simply confirms
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the influence of equation (16) on the derivative of
∫

.ω̂p − ω̂/2. The term Aj vanishes in many
important examples.

The orders of magnitude of remainder terms, above and in the work below, and also in the
proof of theorem 1 in Appendix A, are to be interpreted as holding as "↓ 0 for fixed n, in fact
for a fixed sample. They are not asymptotic in n.

To illustrate these assumptions we consider instances where ω̂ is defined by equations (1) or
(2). In the first of these cases, Δi =Xi − X̄ and Ai ≡0, where these random functions are from
R to the real line. Here Δ0

i , in condition (19), is identical to Δi. In the case of equation (2),

Δi.t1, t2/= δ2i.t1, t2/− δ1i.t1/ξ.t2/− δ1i.t2/ξ.t1/, .22/

and again Ai ≡0, where t1, t2 ∈R, δ1i =Xi − X̄, δ2i =Zi − K̂, ξ= X̄p − X̄ and

Zi.t1, t2/={Xi.t1/− X̄.t1/}{Xi.t2/− X̄.t2/}:

Although the quantities Δi, in equation (22), depend on p, they enjoy property (19) with Δ0
i =δ2i.

Likewise, the non-parametric regression example at equation (5) satisfies conditions (16)–
(18). This indicates that the usefulness of our approach to ranking the influence of data extends
well beyond the context of functional data analysis, where inference is typically semiparamet-
ric. Indeed, the example at equation (5) can be viewed as one of non-parametric regression,
particularly if we fix t and take the region R to be a subset of the real line, reflecting only
the values that are taken by u in equation (5), rather than to be a subset of I × R (if the ran-
dom functions are defined on I). Theorem 1 below is valid in settings where the data are not
just functions X1, : : : , Xn, but functions with other quantities adjoined, as in the paired data
.X1, Y1/, : : : , .Xn, Yn/, and also more complex settings where the ith data ‘point’ is actually a
sample. The essential ingredient is that there should be an analogue of integration, so that the
operator M̂ at equation (20) can be defined.

Recall that the ordering {̂1."/�: : :� {̂n."/ was introduced in Section 2.1, that the perturbation
Δ0

i was introduced at condition (19), that R denotes the support of the random functions and
that the eigenvalues α̂j and eigenvectors β̂j are as at equation (21). When interpreting theorem
1 it helps if we note that β̂1 and −β̂1 are both eigenfunctions corresponding to the largest
eigenvalue α̂1 and are indistinguishable in terms of that definition. Intuition behind expressions
(16)–(19) is given in the paragraph immediately below condition (19).

Theorem 1. If conditions (16)–(19) hold, and if α̂1 > α̂2, then, with probability 1, the limit
as "↓0 of the ranking {̂1."/�: : :� {̂n."/ is well defined and is in fact the ordering {̂1 �: : :� {̂n
given by ∫

R
β̂1Δ

0
{̂1

�: : :�
∫

R
β̂1Δ

0
{̂n

, .23/

for one of the choices ±β̂1.

In summary, theorem 1 asserts that the limit, as "↓0, of the ordering of X1, : : : , Xn in terms
of their influence on ω̂, is identical to the ordering of the projections of the perturbations
Δ0

1, : : : , Δ0
n onto the univariate space that is spanned by the first empirical principal component

function for M̂
0
. Since that function explains the greatest amount possible, for a single function,

of the variability of the empirical distribution of perturbations corresponding to respective data
functions Xi (or data pairs .Xi, Yi/), then this result enhances the intuitive appeal of assessing
influence in terms of tilting.

To appreciate the implications of theorem 1 it is helpful to consider in detail the case ω̂= X̄:
the sample mean for functional data. There theorem 1 asserts that the limit, as " ↓ 0, of the
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ordering of X1, : : : , Xn in terms of their influence, is identical to the ordering of the projections
of X1, : : : , Xn onto the univariate space that is spanned by the first empirical principal component
function for K̂. In this case, Δi =Xi − X̄ and β̂1 = φ̂1, the latter introduced at equation (3), and
therefore the ranking at expression (23) is identical to

∫
R
φ̂1X{̂1 >: : :>

∫
R
φ̂1X{̂n : .24/

Since φ̂1 explains the greatest amount possible, for a single function, of the variability of the em-
pirical distribution of the data set X1, : : : , Xn, then the ranking at expression (24) is particularly
reasonable.

For a general statistic ω̂ the role of Xi in the ranking, e.g. in expression (24), is replaced by Δi,
but the index i still relates directly to the ith observation, e.g. the ith function Xi or the ith data
pair .Xi, Yi/. Perturbations of data weights result in eigenvalue estimators changing and can lead
to ties between those quantities where they did not exist previously. That can result in difficulty
identifying principal component functions. However, under the continuity assumption that was
discussed in Section 2.2, the probability that this occurs in the case "=0 is 0, and so it is not a
problem at least in theory. We have not noticed it in numerical work.

3. Numerical properties

3.1. Computational aspects
Assume that we observe functional data X1.tk/, : : : , Xn.tk/ at m points t1, : : : , tm on the interval
I, which here plays the role of R. At first sight, the tilting procedure that was described in
Section 2 may seem to require solving an optimization problem of dimension n to obtain the
weights p1, : : : , pn. However, it needs only the solution of a system of non-linear equations, the
dimension of which depends on m. The value of m generally would be determined by the amount
of computing power at our disposal, not by the number of points at which the functions were
recorded. Therefore it is difficult to be prescriptive about m, although in numerical experiments
we have found that the rankings are not very sensitive to the choice of that quantity.

For instance, tilting the functional mean leads to solving a system of m+2 non-linear equa-
tions in C.t1/, : : : , C.tm/, λ1, λ2:

n∑
i=1

exp
{
λ1 −2λ2

m∑
k=1

C.tk/Xi.tk/

}
Xi.tk/− X̄.tk/=C.tk/, k =1, : : : , m,

m∑
k=1

C.tk/2 = "2,

n∑
i=1

exp
{
λ1 −2λ2

m∑
k=1

C.tk/Xi.tk/

}
=1,

where λ1 and λ2 are Lagrange multipliers, C.t/= X̄p.t/− X̄.t/ and

pi = exp
{
λ1 −2λ2

m∑
k=1

C.tk/Xi.tk/

}
:

When m=1 the problem reduces to ranking univariate observations.
Similarly, tilting the functional covariance leads to solving a system of 1

2 m.m+ 3/+ 2 non-
linear equations in C1.tk/ for k = 1, : : : , m, and in C2.tk, tl/ for k, l = 1, : : : , m, where, assuming
that C2.tk, tl/=C2.tl, tk/, we impose the constraints
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Table 1. Computing time for ranking func-
tional data based on tilting the functional
mean for various sample sizes n and time
point numbers m

n m Tilting
time (s)

10000 12 0.5
25 0.8
50 3.1

100000 12 4.2
25 12.7
50 40.5

1000000 12 52.7
25 163.6
50 543.2

n∑
i=1

pi Xi.tk/=C1.tk/, k =1, : : : , m,

n∑
i=1

pi Xi.tk/Xi.tl/=C2.tk, tl/, k, l=1, : : : , m,

m∑
k=1

m∑
l=1

{C2.tk, tl/−C1.tk/C1.tl/− K̂.tk, tl/}2 = "2,
n∑

i=1
pi =1:

Here the constraints are again imposed via Lagrange multipliers, C1.s/ = X̄p.s/, C2.s, t/ −
C1.s/C1.t/= K̂p.s, t/ and

pi = exp
[
λ1 −2λ2

m∑
k=1

m∑
l=1

{C2.tk, tl/−C1.tk/C1.tl/− K̂.tk, tl/}{Xi.tk/−C1.tk/}{Xi.tl/−C1.tl/}
]
:

In the same manner, tilting the jth eigenfunction requires solving a non-linear system of
m+2 equations, and tilting the conditional mean requires solving a non-linear system of mq+2
equations, where q is the number of values that u can take.

As an illustration, we consider tilting the functional mean for various sample sizes n and time
point numbers m. The original sample curves are generated from an outlier model (Sun and
Genton, 2011): Xi.t/=4t + ei.t/+ηiSiL, i=1, : : : , n, t ∈ [0, 1], where ηi =1 with probability 0:1
and equals 0 with probability 0:9, L = 6 is the size of the contamination, Si is a sequence of
random variables independent of ηi taking values ±1 with probability 1

2 , and ei.t/ is a Gaussian
stochastic process with zero mean and exponential covariance function K.t1, t2/ = exp.−|t2 −
t1|/. All the computations are done in MATLAB on a 2.80-GHz Intel Xeon X5560 chip with 48
Gbytes of random-access memory. The computing times (in seconds) are reported in Table 1.
It can be seen that the tilting approach is feasible even for very large sample sizes n.

3.2. Sea surface temperature data
The sea surface temperature data set consists of monthly temperatures measured in degrees
Celsius over the east–central tropical Pacific Ocean. In this case, each curve represents 1 year of
observed sea surface temperatures from January 1951 to December 2007, and there are n=57
such curves.
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We apply our tilting method with " = 0:2 to this data set, for tilting and ranking based on
the functional mean and the functional covariance. The value 0.2 was determined simply by
reducing " a little more, for security, beyond the point where there was no further apparent
change in the ranking. Choosing " generally is simple and unsophisticated; it is unrelated to the
problem of selecting a smoothing parameter, for example.

The results are presented in Fig. 1, where the red curve represents the median, the broken
curve represents the mean, and the blue and green curves represent the lower 25% and upper
25% quantiles respectively. The shading of the data curves corresponds to a ranking based on
the weights pi, from the highest ranked curve (i.e. the curve with index {̂1."/ in equation (15),
indicated by light grey in Fig. 1) to the lowest ranked curve (indicated by dark grey).

The plots in the case of the sample mean, which are shown in Fig. 1(a), reveal that curves
that have greatest influence (i.e. which correspond to small or large values of pi) are those that
are positioned relatively high up or low down the temperature axis. Moreover, the distribution
of influential curves is quite asymmetric, with the least influential curves being more tightly
bunched than the most influential. In particular, the lower 25% quantile curve is, on average,
significantly closer to the median curve than is the upper 25% quantile curve. If these data were
real valued then the distribution would be quite asymmetric, with one tail (say, the right-hand
tail) significantly longer than the other. In this case, moving from left to right on the real line,
the lower 25% quantile, the median, the mean and the upper 25% quantile would be arranged
in that order. This is also the order of those quantities in Fig. 1(a), between months 2 and 9,
and in this sense the influence of data curves on the mean exhibits a pattern that is familiar for
real data drawn from a skewed distribution.

A ranking based on the functional mean is similar to that for real-valued data in other
respects, also. For example, the two darkest curves, i.e. the two high up most influential functions,
correspond to the years 1983 and 1997 during which there was a so-called El Niño effect: the
unusual warming of sea surface temperature in the region where the data were gathered.

Of course, the data depictions in either panel of Fig. 1 represent projections, shown in a
two-dimensional plot, of higher dimensional quantities, and so we should not expect them to
reflect the familiar ‘ordering’ for real data always. Fig. 1(b), which depicts the data functions in
terms of their relative influence on functional covariance, is a case in point. There the functions
representing upper and lower 25% quantiles lie on the same side, not opposite sides, of the
median function throughout the first 5 months of the year, indicating that the above-mentioned
projections do not, in the case of covariance, produce a separation that usefully grades the data
from more to less influential. Variability through much of the year is seen to be relatively haphaz-
ard, in terms of its depiction in Fig. 1(b), with both low and high variability, relative to median
variability, tending to be caused by functions which are relatively high on the temperature scale,
whereas the ‘more average’ curves (again in the sense of the median) are generally positioned
towards relatively low temperatures.

The approach to functional ranking that is proposed in this paper can be used to con-
struct a functional boxplot as in Sun and Genton (2011, 2012a). Fig. 2 depicts functional
boxplots based on the functional mean ranking (Fig. 2(a)) and on modified band depth ranking
(Fig. 2(b)). The general shape of the functional boxplot is similar for the two rankings, but the
ranking based on the method in this paper detects one additional outlier corresponding to the
year 1998, when the El Niño effect continued from 1997.

To provide further guidance in interpreting measures of influence for functional data we give,
in Fig. 3, results for scalar data. Specifically, Fig. 3(a) shows a plot of tilted weights in the case
of the mean, X̄p.t0/=Σipi Xi.t0/, where t = t0 ≡month 7. Here the results are easily interpreted;
they are similar to those for Fig. 1(a), and in particular the median dot lies between the dots
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that represent lower and upper quantiles. (In both panels we use the colour and grey shade
convention in Fig. 1.) Fig. 1(b) addresses the case of covariance, K̂p.t, t0/, viewed as a function
of t. Here the interpretation reflects that for Fig. 1(b), where the median does lie between the
25% and 75% quantiles for month 7. In particular, as was also found in the context of Fig. 1,
the data projection that is represented by Fig. 3(b) does order the data in an informative way
for month 7.

Next, in Fig. 4(a) we visualize the weights pi, for i=1, : : : , 57, based on tilting the functional
mean, when d1.p/ is constrained as at expression (13). In particular, the values of pi are now
functions of ">0. The vertical black line corresponds to "=0:2. The green, red and blue curves
correspond to the upper 25%, 50% and lower 25% quantiles of the weights. As anticipated by
theorem 1 in Section 2.3, the ranking of the weights remains the same as "↓0. To interpret the
weights further we investigate the empirical influence of one outlying observation. We take that
curve to be the median function, represented as the red curve in Fig. 1(a), and we perturb that
observation, X28.t/, at a single time point, t =6, representing June, by an additive quantity ξ, i.e.
we consider the function X28.6/+ ξ. In Fig. 4(b) we plot the weights pi, for i=1, : : : , 57, based
on tilting the functional mean with " = 0:2 and associated with each sea surface temperature
observation viewed as a function of X28.6/ + ξ. The vertical line corresponds to ξ = 0 (no
contamination). The broken curve depicts the change in the weight p28 when the functional
observation X28.t/ is perturbed to X28.6/+ ξ. We see that pi becomes larger or smaller as the
positive or negative amount of the contamination ξ changes in the same way and eventually
becomes the largest or smallest weight among those for the functional sample.

3.3. Simulation comparison
To compare the tilting approach to ranking with the band depth ranking, we perform the
following simulation experiment. We simulate n = 100 functional curves, each observed at 12
time points, with a mean 0 unit variance Gaussian distribution and with an exponential auto-
covariance function γ.h/ = exp.−h=0:001/. We then find the median curve from this sample
with the tilting approach and with the band depth approach. We repeat this experiment 1000
times. Hence, we have 1000 medians from tilting and 1000 medians from band depth. Fig. 5
summarizes this information by means of functional boxplots. It can be seen that the medians
that are obtained by tilting and the medians that are obtained by band depth have approximately
similar distribution patterns.

3.4. Child growth data
The child growth data set consists of the heights, in centimetres, of 39 boys and 54 girls, measured
at 31 unequally spaced ages from 1 year to 18 years; see Ramsay and Silverman (2005) for details.
We consider the boys and girls to come from separate populations. Within each population the
growth curves have similar shape, and in particular are monotone increasing. Therefore it is
not straightforward to identity unusual growth patterns. We shall first determine and discuss
the rankings of these curves, using our tilting approach, and then we shall compare the level of
information that can be extracted from the data by using functional boxplots, based on rankings
provided by tilting or by modified band depth (López-Pintado and Romo, 2009) respectively.

First we apply our tilting method, using the functional data sample mean as the statistic
of interest. The results are presented in Fig. 6, where the red curve represents the median,
the broken curve depicts the mean, and the blue and green curves show the lower 25% and
upper 25% quantiles respectively. The shading of the data curves corresponds to a ranking
based on the weights pi, from the highest ranked curve (i.e. the curve with index {̂1."/ in
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equation (15), indicated by light grey in Fig. 6) to the lowest ranked curve (indicated by dark
grey). The plots reveal that curves that have greatest influence (i.e. which correspond to small or
large values of pi) are positioned relatively high up or low down the height axis. The distribution
of influential curves is more symmetric in this example than in the example that was treated in
Section 3.2.

Our approach to functional data ranking can also be used to construct functional boxplots,
as in Sun and Genton (2011, 2012a). Fig. 7 depicts, for the girls, functional boxplots based on
the functional mean ranking (Fig. 7(a)) and on modified band depth ranking (Fig. 7(b)). The
general shape of the functional boxplot is similar for the two rankings, but that based on the
method that is suggested in this paper detects five additional outliers, corresponding to girls
with very low growth curves, especially in their teenage years. For the boys, the two functional
boxplots are similar in shape and neither approach detects outlying data curves. This is a classic
benchmark data set, and readers seeking further discussion of the data will find it in Ramsay
and Silverman (2005); see particularly pages 1, 62, 88, 112 and 165.

Acknowledgements

The authors thank three referees, the Associate Editor and the Joint Editor for their helpful
feedback, which has greatly improved the manuscript.

Genton’s research was partially supported by a grant from the University of Melbourne as
an Honorary Fellow.

Appendix A: Proof of theorem 1

Assumption (17) implies that, if p is an extremum of∫
.ω̂p − ω̂/2 +λ1

n∑
i=1

pi log.pi/+λ2

(
n∑

i=1
pi −1

)
,

where λ1 and λ2 denote Lagrange multipliers, then

pj = exp

{
λ3 +λ4

n∑
i=1

.pi −n−1/

∫
ΔiΔj +λ4Aj +O."3/

}
,

= 1
n

{
λ5 +λ4

∫
ψΔj +λ4Aj + 1

2

(
λ4

∫
ψΔj

)2

+O."3/

}
: .25/

Here and below, λ1, : : : ,λ5 do not depend on p, and we have defined

ψ=
n∑

i=1
.pi −n−1/Δi, .26/

equal to the dominant term on the right-hand side of result (16). The property Δi =O."/ in equation (18)
implies that ψ=O."/.

Using equation (18), and the fact that Σj pj =1, it can be deduced from equation (25) that, for each j,

pj = 1
n

{
1+λ4

∫
ψΔj +λ4Aj + 1

2
λ2

4Sj +O."3/

}
, .27/

where
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Sj =
(∫

ψΔj

)2

− 1
n

n∑
i=1

(∫
ψΔi

)2

:

Therefore, again using equation (18),

n∑
j=1

pj log.npj/= 1
n

n∑
j=1

(
1+λ4

∫
ψΔj +λ4Aj + 1

2
λ2

4Sj

)

×
{
λ4

∫
ψΔj +λ4Aj + 1

2
λ2

4Sj − 1
2

(
λ4

∫
ψΔj

)2}
+O."3/

= 1
2

n∑
j=1

(
λ4

∫
ψΔj

)2

+O."3/:

Furthermore, in view of results (16) and (26),∫
.ω̂p − ω̂/2 =

∫
ψ2 +O."3/:

Hence, the algorithm chooses p (and therefore ψ) to minimize

n∑
j=1

(
λ4

∫
ψΔj

)2

+O."3/

or, equivalently, to minimize

λ2
4

∫
ψ.M̂ψ/+O."3/, .28/

subject to ∫
ψ2 = "2 +O."3/: .29/

Since pj satisfies equation (27) then

ψ=
n∑

i=1
.pi −n−1/Δi = 1

n

n∑
i=1

(
λ4

∫
ψΔi +λ4Ai + 1

2
λ2

4Si

)
Δi +O."3/

=λ4
1
n

n∑
i=1

Δi

∫
ψΔi +O."3/=λ4M̂ψ+O."3/:

Therefore, up to an error that is negligible as "↓0, ψ is an eigenfunction of M̂ with eigenvalue λ−1
4 . Hence,

minimizing the quantity at expression (28) is equivalent to minimizing λ4
∫
ψ2 + O."3/, which, we know

from condition (29), is equivalent to minimizing λ4 "2 +O."3/. Hence, λ4 should be as small as possible,
and so ψ should equal the first-ranked eigenvector of M̂, which in turn equals β̂1, plus a term of order
", and λ4 = α̂−1

1 +O."/. These results and result (27) together imply that the ordering of indices {̂1, : : : , {̂p

corresponding to p{̂1 ."/>: : :>p{̂n ."/, for all sufficiently small ", is identical to the ordering (23).
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