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ABSTRACT
In this article, we propose stationary covariance functions for processes that evolve temporally over a
sphere, as well as cross-covariance functions for multivariate random fields defined over a sphere. For such
processes, the great circle distance is the naturalmetric that should be used to describe spatial dependence.
Given the mathematical difficulties for the construction of covariance functions for processes defined over
spheres cross time, approximations of the state of nature have been proposed in the literature by using the
Euclidean (based on map projections) and the chordal distances. We present several methods of construc-
tion based on the great circle distance and provide closed-form expressions for both spatio-temporal and
multivariate cases. A simulation study assesses the discrepancy between the great circle distance, chordal
distance, and Euclidean distance based on amap projection both in terms of estimation and prediction in a
space-time and a bivariate spatial setting, where the space is in this case the Earth. We revisit the analysis of
Total OzoneMapping Spectrometer (TOMS) data and investigate differences in terms of estimation andpre-
diction between the aforementioned distance-based approaches. Both simulation and real data highlight
sensible differences in terms of estimation of the spatial scale parameter. As far as prediction is concerned,
the differences can be appreciated only when the interpoint distances are large, as demonstrated by an
illustrative example. Supplementary materials for this article are available online.

1. Introduction

Researchers in the environmental, geophysical, and agricultural
sciences have become increasingly interested in global data cov-
ering a large portion of the Earth and in representing realiza-
tions of stochastic processes evolving temporally over a sphere.
For such processes, Euclidean distance is not a valid metric for
the description of spatial dependence, since it does not take into
account the curvature of the Earth. In a recent tour de force,
Gneiting (2013) gave an impressive overview of methods that
can be used to generate spatial covariance functions depend-
ing on the great circle distance. He also described a collec-
tion of interesting and challenging open problems. This article
addresses two of these problems and proposes solutions that are
investigated in detail. Specifically, we propose spatio-temporal
covariance and cross-covariance functions of the great circle dis-
tance on a sphere.

First, in his open Problem 16, Gneiting (2013) noted that
“Frequently, the temporal development of a process observed on
a sphere is also of interest, so that the process needs to be mod-
eled on the sphere cross time. Nevertheless, the literature on the
corresponding correlation structures is sparse, with the work of
Jun and Stein (2007) being a notable exception.” Jun and Stein
(2007) offered nonseparable spatio-temporal covariance func-
tionswhose spatial component depends on the chordal distance.
It is a notable exception to a large literature entirely relying
on the Euclidean distance based on map projections. Jun and
Stein (2008) extended their approach to produce nonstationary
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covariances for data on a sphere, using once again the chordal
distance.

Constructive criticisms in Gneiting (2013) suggest that the
chordal distance approach has limited flexibility. For example,
it does not allow negative correlations lower than −0.21 over
space as can be seen from the structure of the integral represen-
tation of isotropic functions (Schoenberg 1938). Furthermore,
the chordal distance is locally linear, and, according to Gneiting
(2013), “is counter to spherical geometry for larger values of the
great circle distance, and thus may result in physically unrealis-
tic distortions.” For instance, North, Wang, and Genton (2011)
developed spatio-temporal covariance models on a sphere for
temperature fields based on simple yet realistic energy-balance
climate models, but their construction is also based on chordal
distances.

The great circle or orthodromic distance is the shortest dis-
tance between any two points on a sphere measured along a
path on its surface. Because the geometry of the sphere is dif-
ferent from ordinary Euclidean geometry, the equations for dis-
tance take on a different form. The distance between two points
in Euclidean space is the length of a straight line from one
point to the other. On a sphere, however, there are no straight
lines. In non-Euclidean geometry, straight lines are replaced by
geodesics. On the sphere, geodesics are the great circles, that
is, they are circles on the sphere whose centers coincide with
the center of the sphere. Thus, the great circle distance is the
most natural metric to account for phenomena evolving tem-
porally over a sphere; see Banerjee (2005) for an overview in

©  American Statistical Association

http://dx.doi.org/10.1080/01621459.2015.1072541
mailto:emilio.porcu@usm.cl
http://www.tandfonline.com/uoeh
http://www.tandfonline.com/r/JASA


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 889

spatial statistics. It is therefore imperative to propose new mod-
els of nonseparable covariance functions whose spatial argu-
ment depends on the great circle distance.

In the first part of the article, we address this problem from
two different perspectives. With the first approach, that we call
adapted, we show that a celebrated class of space-time covari-
ance functions, called the Gneiting class (Gneiting 2002), and
where the spatial component is based on Euclidean distance,
can be adapted to covariances for processes on the sphere cross
time, just by replacing the Euclidean distance with the great cir-
cle distance. Such covariances can also be adapted, by Yadrenko’s
(1983) principle, to chordal distance in the spatial component.
In the same spirit, we show the validity of a new class, that we
call modified Gneiting class, obtained with the same plugging
technique as in Gneiting (2002), but where the temporal com-
ponent does not rescale the spatial distance, which overcomes
the dimple problem (Kent, Mohammadzadeh, andMosammam
2011).

With the second approach, we show a constructive proce-
dure for building space-time covariances that are valid on the
sphere cross time but for which the Euclidean or the chordal dis-
tances cannot be used. Such an approach is more realistic from
the point of view of the physical and mathematical construction
of a Gaussian process on spheres cross time but will be shown
to present some issues that might make the adaptive approach
preferable in some cases.

A comparative study based on simulated data evolving over
a sphere representing the Earth then shows how the chordal
distance and the Euclidean distance based on a map projec-
tion (a common practice among geographic information sys-
tem (GIS) users) cause distortions in the estimation of the spa-
tial scale when a large portion of the Earth is considered. How-
ever, the variance and temporal scale are basically unaffected by
the use of great circle or chordal distances. In the same spirit,
we then address the problem of prediction over the sphere (see
the online supplement, OS throughout) using cross-validation
techniques, and we show that great circle and chordal distances
perform equally well in terms of prediction. This is a fact that
might be expected, since the accuracy of optimal linear pre-
diction depends on the local properties of covariance functions
(Stein 1999). We also use the proposed spatio-temporal models
to analyze Level-3 Total Ozone Mapping Spectrometer (TOMS)
data, which include the daily total column ozone levels, as stud-
ied with chordal distances and only purely spatial models by Jun
and Stein (2008).

Environmental data are typically characterized by multivari-
ate measurements at each site of the spatial domain; see, for
example, Zhang (2007), Apanasovich andGenton (2010), Furrer
and Genton (2011), Kleiber and Genton (2013), and the recent
review by Genton and Kleiber (2015). In the case of global data
over a large portion of the Earth, the arguments offered for jus-
tifying the use of the great circle distance obviously remain valid
for the case of multivariate geostatistics. There is a very sparse
literature on cross-covariance functions associated with vector-
valued random fields defined over the sphere, with the work
of Jun (2011) being an exception, albeit with the chordal dis-
tance again and not the great circle. Our article addresses this
problem and proposes closed-form cross-covariance functions
of the great circle distance. In particular, we propose multivari-
ate Matérn mappings (Gneiting, Kleiber, and Schlather 2010;

Apanasovich, Genton, and Sun 2012) that have been proposed
earlier in the framework of Euclidean distance only. We also
present a multivariate mapping of the Cauchy type that is new
even for the Euclidean distance, as well as other examples.

With the same rationale as used for the univariate space-time
case, we then perform a simulation study of a bivariate Gaussian
field with amatrix-valued covariance of theMatérn type, andwe
show that even in this case, the choice of distance (great circle vs.
chordal vs. Euclidean based onmap projection) is a critical issue
to estimation performance of the spatial scale.

In the sequel, we denote by SdR ⊆ Rd+1 the d-dimensional
sphere with radius R, that is, SdR = {x ∈ Rd+1 : ∥x∥ = R}.
Throughout, we use the abuse of notation Sd for the unit sphere,
and in what follows we refer to this case, whenever no confu-
sion can arise. Let {Z(x, t ) = {Z1(x, t ), . . . ,Zp(x, t )}T, (x, t ) ∈
Sd × R} be a Gaussian p-dimensional vector-valued process
defined on the sphere cross time. We denote by ! p

d,T the class
of continuous square matrix-valued mappings:

C(·, ·) =
[
Ci j(·, ·)

]p
i, j=1 , (1)

with Ci j : [0,π] × R → R, such that, for the Gaussian process
Z defined above,

cov
{
Z(x, t ),Z(y, t ′)

}
= C(θ , t − t ′), θ ∈ [0,π],

t, t ′ ∈ R, (2)

where θ := θ (x, y) = arccos
(
⟨x, y⟩

)
is the great circle distance

between x and y on Sd .
Such a description is parenthetical to the remark thatCmust

be positive definite, that is, for any finite collection of real-valued
vectors {ak}Nk=1 and points {(xk, tk) ∈ Sd × R}Nk=1, we have

N∑

k,l=1

p∑

i, j=1

akial jCi j {θ (xk, xl ), |tk − tl |} ≥ 0.

For a univariate (scalar-valued) spatio-temporal process, we
use the abuse of notation!d,T for!1

d,T . For merely spatial pro-
cesses observed over the sphere Sd , we have cov{Z(x),Z(y)} =
C(θ ), and we use the notation ! p

d to describe this case. Obvi-
ously, the inclusion relation! p

d ⊃ !
p
d,T is strict, and this comes

from the arguments in Corollary 1(b) in Gneiting (2013). The
same arguments show that the following inclusion relation is
strict:

!
p
1,T ⊃ !

p
2,T ⊃ · · · ⊃

⋂

d≥1

!
p
d,T =: ! p

∞,T ,

where !
p
∞,T defines space-time matrix-valued covariances

being valid on any d-dimensional sphere (actually a Hilbert
sphere). Analogously, we use !d,T and !∞,T for !1

d,T and
!1

∞,T , respectively. Finally, we call!d := !1
d the class of positive

definite functions on the sphere Sd , and !∞ = ∩d≥1!d . Two
more ingredients are necessary for the exposition of the subse-
quent results. A completely monotone function ϕ is a mapping
from [0,∞) into R+ that is infinitely differentiable on (0,∞)

and such that the derivatives change sign pointwise, that is,
(−1)kϕ(k)(t ) ≥ 0, for all k ∈ N, t > 0. A function f : [0,∞) →
[0,∞) is called a Bernstein function if it is infinitely differen-
tiable on (0,∞) and its first derivative is completely monotone.
For many interesting facts about these two classes of functions,
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the reader is referred to Porcu and Schilling (2011) and the ref-
erences therein.

The plan of this article is as follows. Section 2 deals with the
class of univariate spatio-temporal covariance functions, !d,T .
Section 3 deals with the class of cross-covariance functions of
the great circle distance,! p

d (p > 1).We then provide, in Section
4, a simulation study to emphasize the potential distortions in
using the chordal distance or the Euclidean distance based on a
map projection rather than the great circle distance in a space-
time and a bivariate spatial setting. In Section 5, we revisit the
TOMS data analysis proposed in Jun and Stein (2008). Proofs
and technicalities are presented in the Appendix, reported in the
online supplement.

2. Spatio-Temporal Covariance Functions of the Great
Circle Distance: The Class!d,T

2.1 AGneiting Class on the Sphere Cross Time: Adaptive
Approach from the Euclidean Case

For a given space-time covariance whose spatial component
depends on Euclidean distance, Yadrenko’s principle (Yadrenko
1983) basically implies that we can readapt such a covariance
to the sphere cross time, by replacing the Euclidean with the
chordal distance. This fact prompts a natural question: can we
replace the Euclidean distance argument with the great circle
distance, while preserving positive definiteness? We call this
approach spatially adaptive. We focus throughout on the Gneit-
ing class (Gneiting 2002), which seems to be one of the most
used in geostatistical applications; see also Gneiting, Genton,
and Guttorp (2007) and references therein. For a Gaussian pro-
cess Z defined onRd × R, we have that for two points (x, t ) and
(y, t ′) such that y − x = h (with ∥ · ∥ denoting the Euclidean
distance) and t − t ′ = u, the Gneiting class of covariances is

C(h, u) : = σ 2

ψ (∥h∥2)d/2 ϕ

{
u2

ψ (∥h∥2)

}
,

(h, u) ∈ Rd × R, (3)

where ϕ is completely monotone on the positive real line such
that ϕ(0) = 1, ψ is a positive-valued Bernstein function, and
σ 2 is a variance parameter.We remark that Gneiting (2002) pre-
sented a generalized version over the product spaceRd × R l and
that, in the earlier literature, the spatial and temporal arguments
have been inverted, but in the subsequent presentation, we pre-
fer to work with such a parameterization. Zastavnyi and Porcu
(2011) showed necessary and sufficient conditions for the posi-
tive definiteness of the Gneiting’s class. The results below com-
plete the picture of this class in the following way: we suppose
that the spatial argument ∥h∥ is replaced with the great circle
distance by restricting the function ψ in Equation (3) to the
interval [0,π]. The proof and some technical lemmas are rel-
egated to Appendix A1 (OS).

Theorem 1. Let θ : Sd × Sd → [0,π] be the great circle dis-
tance. Letϕ : [0,∞) → R+ be a completelymonotone function
on the positive real line, with ϕ(0) = 1, and let ψ be a positive-
valued Bernstein function. Denote byψ[0,π] the restriction ofψ

to the interval [0,π]. Then, the function

C(θ , u) : = σ 2

ψ[0,π] (θ )
1/2 ϕ

{
u2

ψ[0,π] (θ )

}
,

(θ , u) ∈ [0,π] × R, (4)

belongs to the class!∞,T .

Theorem 1 offers a positive answer: we can work with a
very general class of space-time covariances even on the sphere,
just by readapting the spatial argument through the great circle
distance. Following Gneiting (2002), we just need to plug into
Equation (4) a valid choice of the functions ϕ and ψ . This can
be easily done, for instance, from Tables S1 and S2 of the OS,
where some cases are taken fromGneiting (2013) and Porcu and
Schilling (2011), respectively. In Table S1, it may be surprising
that the parameter ν in the Matérn function (second entry in
Table S1 of the OS) is restricted to the interval (0, 1/2], but it is
carefully explained in Gneting (2013), on the basis of the argu-
ments inMiller and Samko (2001), that such a family is not com-
pletely monotone for ν > 1/2. Table S2 of the OS reports some
possible choices for the function ψ (to be composed with the
great circle distance). Some caution is needed when the value at
zero is equal to zero (for instance, the second entry on the left),
in which case we need to add a positive constant to satisfy the
assumptions of Theorem 1. The choice of functions from Tables
S1 and S2 of the OS can be guided empirically by testing pro-
cedures of the structure of space-time covariance functions as
developed by Li, Genton, and Sherman (2007); extensions to the
structure of cross-covariance functions are in Li, Genton, and
Sherman (2008). Some examples are reported in Section 2.3.

The next result reports a modified Gneiting class, having
some desirable features that will be exposed subsequently.

Theorem 2. Let ϕ : [0,∞) → R+ be completely monotone and
such thatϕ(0) = 1. Letψ : [0,∞) → R+ be a positive, increas-
ing, and concave function on the positive real line. For n ≤ 3 a
positive integer, we have that

C(θ , u) = σ 2

ψ (|u|)n+2 ϕ {θψ (|u|)} ,

(θ , u) ∈ [0,π] × R, (5)

belongs to the class!2n+1,T .

Again, the proof is deferred toAppendixA1 (OS).We call this
class amodified Gneiting class. In the original Gneiting class, the
temporal argument basically rescales the spatial one. The posi-
tive integer n in Equation (5) is required for technical reasons as
detailed in Appendix A1 (OS). This class provides an easy way
to generate new valid examples, again using the same ingredi-
ents and tables as illustrated for the class in Equation (4). The
Gneiting class was criticized by Kent, Mohammadzadeh, and
Mosammam (2011) for a possibly counterintuitive property that
the authors called dimple: namely, for a given spatial lag, the
temporal margins might be nonmonotonically decreasing. The
authors offered conditions for the presence of a dimple under the
Gneiting class. Direct inspection shows that themodifiedGneit-
ing class does not have the dimple property.
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Table . Parametric families of members of !∞,T obtained through direct construction as in Theorem . Second column reports the analytic expression, where g is
any correlation function on the real line. An additional condition is required for the fifth example, as detailed through the third column. The fourth column details the
differentiability at the origin for the spatial margin. All of the members C in the second column are rescaled so thatC(0, 0) = 1.

Differentiability at zero for
Family Analytic expression Parameters range C̃(θ ) := C(θ , 0)

Negative binomial C(θ , u) =
{

1−ε
1−εg(u) cos θ

}τ
ε ∈ (0, 1), τ > 0 C̃ ∈ C∞({0})

Multiquadric C(θ , u) = (1−ε)2τ
{1+ε2−2εg(u) cos θ}τ ε ∈ (0, 1), τ > 0 C̃ ∈ C∞({0})

Sine series C(θ , u) = eg(u) cos θ−1 {1 + g(u) cos θ} /2 C̃ ∈ C∞({0})
Sine power C(θ , u) = 1 − 2−α{1 − g(u) cos θ}α/2 α ∈ (0, 2] C̃ /∈ C1({0}) (for α ̸= 2)

C̃ ∈ C∞({0}) (for α = 2).
Adapted C(θ , u) =

[
{1+g2(u)}(1−ε)

1+g2(u)−2εg(u) cos θ

]τ
ε ∈ (0, 1), τ > 0 C̃ ∈ C∞({0})

multiquadric 2g(·)/{1 + g2(·)}
corr. function onR

Poisson C(θ , u) = exp
[
λ {cos θg(u) − 1}

]
λ > 0 C̃ ∈ C∞({0})

2.2 Direct Constructions on the Sphere that are not Valid
in the Euclidean Case

This section is devoted to the construction of members of the
class !d,T that cannot be adapted to Euclidean or chordal dis-
tances. The following result refers to a direct construction of
members of the class !∞,T .

Theorem 3. Let {gk(·)}∞k=0 be an absolutely convergent sequence
of continuous and positive definite functions on the real line,
such that gk(0) = bk for all k = 0, 1, . . ., with {bk}∞k=0 being a
probability mass sequence. Then,

C(θ , u) =
∞∑

k=0

gk(u) (cos θ )k , (θ , u) ∈ [0,π] × R, (6)

is a representation for members of the class !∞,T .

The proof of a more general result is deferred to Appendix
A2 (OS), where we show that Equation (6) is a special case of a
construction being directly obtained by considering a Gaussian
process of the type

Z(x, t ) =
∞∑

k=0

∑

ν∈ϒk,d

ξk,ν (t )Yk,ν,d(x), x ∈ Sd, t ∈ R, (7)

whereϒk,d is an index set specified through Appendix A2 (OS),
Yk,ν,d : Sd → C are the normalized hyperspherical harmonics
(Dai andXu 2013), andwhere the set of all ξk,ν (t ) forms a count-
able infinite sequence of Gaussian processes, with zero mean
and Eξk,ν (t )ξk′,ν ′ (t ′) = δk,k′δν,ν ′gk(t − t ′), t, t ′ ∈ R. Here, δk,k′

denotes the usual Kronecker delta. All the technical details are
deferred to Appendix A2 (OS).

Table 1 details some examples of parametric families ofmem-
bers of !∞,T obtained through direct construction. The names
given to each of them (first column) are either parenthetical to
the spatial margin, according to Gneiting (2013) (second and
fourth entries), or to the coefficients bk in the series expansion
in Equation (6). The name “sine power” in the fourth entry
might be surprising, but it comes from the fact that in this case
C(θ , 0) = 1 −

( sin θ
2

)α , the family introduced in Soubeyrand,
Enjalbert, and Sache (2008). How to derive the examples from
Table 1 is shown in Appendix A3 (OS). A relevant remark is that
all the entries in Table 1 are obtained by considering gk(·) =

εg(·)k, for g a continuous temporal correlation function, and
ε ∈ (0, 1).

The direct construction principle seems to be a more natural
solution because it directly relates to the interpretation of a pro-
cess built through the series expansion as in Equation (7). At the
same time, the members obtained through direct construction
inherit some problems related to the Schoenberg representation
of the class!d as outlined in Gneiting (2013). In particular:! It seems that there is no way to obtain a closed form for

members of !∞, which allows the differentiability at the
origin to be indexed in a similar way as the Matérn does
in Euclidean spaces. Notable attempts to solve this prob-
lem have been made in Jeong and Jun (2015) without suc-
cess because closed forms are not available. Instead, the
Matérn function can be composed with the chordal dis-
tance without any restriction on the parameter ν. Standard
Taylor expansion shows that all of the parametric fami-
lies presented in Table 1 have members whose spatial mar-
gin is infinitely differentiable at the origin, the only excep-
tion being the sine power model, for which the case α = 2
implies that the associated function is only semipositive
definite (Soubeyrand, Enjalbert, and Sache 2008).! The adapted construction has the same problem because
the Matérn covariance function can be combined with the
great circle distance only for ν ∈ (0, 1/2]. From this point
of view, it might be preferable to couple theMatérn covari-
ance with the chordal distance, which allows to recover any
level of differentiability at the origin.! The adapted construction detailed in Section 2.1 allows for
rescaling the spatial component, while arguments in The-
orem 8 in Gneiting (2013) imply that, in general, this can-
not be done for the case presented here. This means that
C(θ/a, u), for a a positive scaling parameter, is not nec-
essarily a valid space-time covariance. Furthermore, for a
fixed value of ε ∈ (0, 1), the parameter τ in the space-time
negative binomial and (adapted)multiquadric families acts
as a rescaling parameter for the great circle distance.! The direct construction in Equation (6) and examples in
Table 1 allow for any type of temporal margin, provided
g is a temporal correlation function. The only exception
is made for the adapted multiquadric, for which the tech-
nical condition is again deferred to Appendix A3 (OS).
Thismakes this approachmore flexible than in the adapted
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Gneiting class, where a strong assumption is made on
the temporal margin to show that the adapted Gneiting
class belongs to !∞,T . Another limitation of the adapted
and modified Gneiting classes is that they only allow for
strictly positive correlations, whereas the approach based
on direct construction allows for temporal correlations
attaining negative values or correlationswith compact sup-
port.

2.3 Some Examples and Parameterizations

This section details some examples from the adapted Gneiting
class described in Section 2.1, Theorem 1, and the direct con-
struction approach described in Section 2.2 that will be used in
the analysis of the TOMS data in Section 5. The examples con-
sider the geodesic distance on a sphere of arbitrary radius R.

Examples from the adapted Gneiting class:! Taking the first entry in Table S1 (OS) for time and the first
in Table S2 (OS) for the great circle, we obtain, after con-
venient parameterization (following the lines in Gneiting
2002), and after multiplication with the spatial covariance
θ 0→ {1 + (θ/cS)}−δ , cS, δ > 0:

C(θ , u) = σ 2

{
1 +

(
Rθ
cS

)α}δ+β/2

× exp

⎡

⎢⎣ −

(
|u|
cT

)2γ

{
1 +

(
Rθ
cS

)α}βγ

⎤

⎥⎦ , (8)

where cS, cT > 0 are scaling parameters over space and
time, respectively, the ranges of α,β , and γ are defined
in the respective tables, and β ∈ [0, 1] governs the sepa-
rability over space and time. When β = 0, (8) reduces to
the separable case. Figure S1 (OS) depicts a realization of
a space-time process over the Earth (R = 6378.88 km),
for two time instants, using a special case of the spatio-
temporal covariance function in (8), under the parame-
terization (15) used in Section 4, and for a specified set of
parameters (cS = 6000 km, cT = 3, and σ 2 = 1).! Keeping the same choice for the great circle and the third
choice of Table S1 (OS) for time, we obtain

C(θ , u) = σ 2

{
1 +

(
Rθ
cS

)α}δ+β/2

×

⎡

⎢⎣ 1 +

(
|u|
cT

)2τ

{
1 +

(
Rθ
cS

)α}τβ

⎤

⎥⎦

−λ

, (9)

where the interpretation of the parameters is analogous to
that in (8) and again we refer the reader to Tables S1 and
S2 (OS) for the parameter space restrictions.

Examples taken from direct construction principle:! As a first choice, from the negative binomial family (first
entry inTable 1), for ε ∈ (0, 1) andusing the functionu 0→
g(u;α) := (1 + |u|α )−1, α ∈ (0, 2], we have the following

model:

C(θ , u) = σ 2

⎡

⎢⎣
1 − ε

1 − ε
{
1 +

(
|u|
cT

)α}−1
cos θ

⎤

⎥⎦

τ

,

(θ , u) ∈ [0,π] × R, (10)

where σ 2 is the variance, cT is the temporal scale, and
where the positive parameter τ plays the role of spatial scal-
ing and is analogous to the parameter cS in the adapted
Gneiting class.! From the multiquadric (second entry in Table 1), under
the same choice for the function g, we have the following
model:

C(θ , u) = σ 2(1 − ε)2τ
[
1 + ε2 − 2ε

{
1 +

(
|u|
cT

)α}−1
cos θ

]τ ,

(θ , u) ∈ [0,π] × R, (11)

with the same restriction on the parameters as in the pre-
vious model.! The same choice of the function g, coupled with the sine
series family (third entry in Table 1), gives the mapping

C(θ , u) = σ 2υ

⎡

⎢⎣ 1 + cos θ

cS
{
1 +

(
|u|
cT

)α}−1

⎤

⎥⎦

× exp

⎡

⎢⎣
cos θ

cS
{
1 +

(
|u|
cT

)α}−1

⎤

⎥⎦ ,

(θ , u) ∈ [0,π] × R, (12)

with cS a positive parameter having the role of rescaling
over space, and υ := 1/{(1 + 1/cS) exp(1)} being the nor-
malization constant.

Figure S2 (OS) plots the covariancesC(θ , u) from (12) (solid)
for α = 1, ε = 1/2 and from (11) (dashed) for α = ε = 1/2,
both for τ = 4 and cT = 3.

3. Cross-Covariance Functions of the Great Circle
Distance: The Class!

p
d

We now show that some parametric classes of cross-covariances
proposed in the recent literature for multivariate processes can
be used with the great circle distance while preserving positive
definiteness over the sphere Sd .

We start with a general result and then illustrate a very sim-
ple constructive approach that allows members of the class ! p

∞
to be obtained. Our examples put special emphasis on the case
p = 2 for ease of illustration, but they can be extended to p > 2
without much mathematical effort, albeit restrictive conditions
might be needed. In what follows, we write ! p

0 for the class
of positive semidefinite matrices of real coefficients. Technical
proofs are presented in Appendix B (OS).

The next result substantially rephrases a general result due to
Porcu and Zastavnyi (2011) for the case of great circle distances.
We omit the proof because it follows exactly the same arguments
as in Porcu and Zastavnyi (2011).
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Table . Examples of parametric members of!2
∞ . Last column reports the conditions on the parameter so that the multivariate family obtained through construction in

() belongs to!2
∞ . For all cases, the cross parameters are symmetric, that is, λ12 = λ21 for any parametric construction. Themeasuresµ in the fourth column are reported

fromMiller and Samko (). In the fifth row, Dµ is the parabolic cylinder function.

Family ϕ[0,π ] Parameters Measureµ(dξ )/dξ Conditions for!2
∞

Matérn (αθ )ν Kν (αθ ) α > 0, ν ∈ (0, 1/2]
(
α2

4

)ν
ξ 1−ν
2(ν) exp(−α2/4ξ ) see Gneiting, Kleiber, and Schlather ()

Generalized (1 + (θ/β)a)−ν β > 0, a ∈ (0, 1] , ν > 0 βν

2(ν) ξ
ν−1 exp(−βξ ) β12 = (β11 + β22)/2, ν12 = (ν11 + ν22)/2

Cauchy ρ212 ≤ β
ν11
11 β

ν22
22

β
2ν12
12

2(ν12 )
2

2(ν11 )2(ν22 )
, ai j = a ∈ (0, 1] .

Kummer 1F1(a, c, −θ ) 0 < a < c 2(c)
2(a)2(c−a) ξ

a−1(1 − t )c−a−1
+ ci j > ai j > 0

ci j = (cii + c j j )/2, ai j = (aii + a j j )/2

ρ212 ≤ 2(c11 )2(c22 )
2(c12 )

2
2(a12 )

2

2(a11 )2(a22 )
2(c12−a12 )

2

2(c11−a11 )2(c22−a22 )

Gauss 1F2(a, b, c, −θ ) 0 < b < c, a > 0, 2(c)
2(b)2(c−b) ξ

b−1(1 − t )c−b−1
+ ci j > bi j > 0, ai j = a > 0

hypergeometric
ci j = (cii + c j j )/2, bi j = (bii + b j j )/2

ρ212 ≤ 2(c11 )2(c22 )
2(c12 )

2
2(b12 )

2

2(b11 )2(b22 )
2(c12−b12 )

2

2(c11−b11 )2(c22−b22 )

Parabolic exp(x2/4)Dµ(aθ ) µ < 0, a > 0 aµ

2(−µ) exp{−ξ 2/(2a2)}ξ−µ−1 µi j < 0, a212 = (a211 + a222)/2,µ12 = (µ11 + µ22)/2
cylinder

ρ212 ≤ a
µ11
11 a

µ22
22

a
2µ12
12

2(−µ12 )
2

2(−µ11 )2(−µ22 )

Theorem 4. Let (4,F , µ) be a measure space, K(θ;ω) :
[0,π] ×4 → R p×p, and

C(θ ) =
∫

4

K(θ;ω) µ(dω)

=
[∫

4

Ai j(θ;ω) µ(dω)

]p

i, j=1
, θ ∈ [0,π].

1. Assume that K = [Ai j(·; ·)]pi, j=1 satisfies the following
two conditions:
(1a) for every i, j = 1, . . . , p and θ ∈ [0,π], the func-

tion Ai j(θ; ·) belongs to L1(4,F , µ);
(1b) K(·;ω) ∈ ! p

d for µ-almost every ω ∈ 4.
Then, C ∈ ! p

d .
2. Conditions (1a) and (1b) are satisfied when, for
θ ∈ [0,π], K(θ;ω) = f (θ;ω)F (θ;ω), where the
maps f (θ;ω) : [0,π] ×4 → R and F (θ;ω) =[
Fi j(θ;ω)

]p
i, j=1 : [0,π] ×4 → R p×p satisfy the fol-

lowing conditions:
(a) for every i, j = 1, . . . , pand θ ∈ [0,π], the function

f (θ; ·)Fi j(θ; ·) belongs to L1(4,F , µ);
(b) f (·;ω) ∈ !d for µ-almost every ω ∈ 4; and
(c) F (·;ω) ∈ ! p

d for µ-almost every ω ∈ 4.
Theorem 4 offers a construction principle that allows mem-

bers of the class ! p
∞ to be built easily. In particular, let

ϕ(·;λ) : [0,∞) → R be a completely monotone function with
ϕ(0;λ) = 1. Here, λ ∈ Rm denotes a vector of parameters. Call
ϕ[0,π](·;λ) the restriction of ϕ to the interval [0,π]. Then, the
arguments in Theorem 7 in Gneiting (2013) show that ϕ[0,π] is
an element of the class!∞. Now, invoking Bernstein’s Theorem
(Feller 1966, p. 441), we can write

ϕ[0,π](θ;λ) =
∫

[0,∞)

exp{−ξθ}µ(dξ ;λ), θ ∈ [0,π],

(13)

with µ being a positive and bounded measure. Observe that
the integrand θ 0→ exp(−θξ ) is the restriction of a completely

monotone function to the interval [0,π] for all ξ > 0. Call
µ(·) =

[
µi j(·)

]p
i, j=1 and µi j(·) := µ(·;λi j), for µ as defined

through Equation (13). Then, we can define the mapping

C(θ ) =
[
σiσjρijCij(θ )

]p
i,j=1 , θ ∈ [0,π], (14)

with ρi j a colocated correlation coefficient and Ci j(θ ) =
ϕ[0,π](θ;λi j), i, j = 1, . . . , p, and θ ∈ [0,π]. Applying Theo-
rem 4, we have thatC ∈ !

p
∞ wheneverµ(ξ0) belongs to the class

!
p
0 for any ξ0 ≥ 0.
Table 2 illustrates examples of parametric members of

the class !2
∞. The conditions come from a very simple

determinantal inequality of the type µ(dξ ;λ11)µ(dξ ;λ22) ≥
ρ212µ(dξ ;λ12)

2, ξ ≥ 0, where for each mapping ϕ[0,π], the third
column reports the associated measure in the integral represen-
tation (13) andwhere we set λ12 = λ21.We omit the calculations
for the examples in Table 2, since these are obtained through
straightforward, albeit tedious, algebra.

Generalization to the case p > 2 can be achieved through
diagonal dominance, a more restrictive condition than positive
definiteness of µ. This often implies very restrictive conditions
on the colocated correlation coefficients, as can be shown for
the case of the Matérn and generalized Cauchy families, see
Appendix B (OS). Observe that the multivariate Matérn family
inherits the restriction on ν for the Matérn function to be com-
pletely monotone. In this respect, it might be preferable to use
the chordal rather than great circle distance for the multivariate
Matérn.

4. Assessing the Discrepancies Between Great Circle,
Chordal, and EuclideanMap Projected Distances: A
Simulation Study

We start with some details on the computation of great circle
(GC), chordal (CH), and Euclidean based on map projection
(MP) distances. For two location sites in longitude and lati-
tude (expressed in decimal degrees), Pi = (loni, lati) and Pj =
(lon j, lat j), and the radiusR of the Earth (6378.88 km), the great
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circle distance is given by Rθ , where

θ : = θ (xi, x j) = arccos
(
⟨xi, x j⟩

)

= arccos{sin ai sin a j + cos ai cos a j cos(bi − b j)}.

Here ai = (lati)π/180, a j = (lat j)π/180, bi = (loni)π/180,
b j = (lon j)π/180, xi = (ai, bi)T, and x j = (a j, b j)

T. This is the
natural distance to be used with global data. An approximation
of such a metric is the chordal distance:

dCH(xi, x j) = R{(cos ai cos bi − cos a j cos b j)
2

+(cos ai sin bi − cos a j sin b j)
2

+(sin ai − sin a j)
2}1/2.

The chordal distance obviously underestimates the GC distance,
and the approximation error increases with the size of the con-
sidered portion of the Earth. Nevertheless, it has been used to
analyze global data since it allows consideration of those spa-
tial and spatio-temporal covariance models being valid on R3

or R3 × R when the spatial argument is composed with the
Euclidean distance; see, for instance, Jun and Stein (2007) or
Sang, Jun, and Huang (2011).

As outlined by Banerjee (2005), when global data are avail-
able, a popular approach among GIS users is the use of the
Euclidean distance obtained from a map projection, a system-
atic representation of all or part of the surface of the Earth on a
plane. This typically comprises lines delineatingmeridians (lon-
gitudes) and parallels (latitudes) as required by some definitions
of the projection (Banerjee 2005). Actually, there is no best pro-
jection because none of the available ones is free of distortion.
Map projection is based on considering a sphere with coor-
dinates Pj = (lon j, lat j) and then constructing an appropriate
rectangular or polar coordinate system P(Pj) = (x j, y j) so that
x j = f (lon j, lat j), y j = g(lon j, lat j), where f and g are appro-
priate functions to be determined based upon the properties we
want our map to possess. As pointed out by Banerjee (2005),
choosing the best projection can be a complicated process and
largely depends on the size and location of the area under study.
As an example, in our simulation study, we shall consider the
so-called sinusoidal projection. This is obtained by specifying
f (lon j, lat j) = R lon j cos(lat j) and g(lon j, lat j) = R lat j.

4.1 Estimation of Space-Time Covariances on the Sphere

Assessing the discrepancies between different distance-based
models in terms of estimation is a difficult task.On the one hand,
models based on different metrics cannot be compared in terms
of likelihood because, for two given points on the sphere, they
induce different distances. On the other hand, the use of classi-
cal indicators such as the ones defined in subsequent Equations
(16) and (17) imply to work with models that can be coupled
with all the distances discussed in this article. Thus, we cannot
make comparisons between models based on direct construc-
tion and, for instance, models that can be adapted, for example,
to the chordal distance.

To illustrate how the choice of the distance affects the model
estimation, we consider an increasing region (in lon/lat format)
of the type [−179.4/κ, 179.4/κ] × [−89.5/κ, 89.5/κ] with κ =
3, 2, 1 (see Figure 1).

Figure . Portions of the Earth’s surface and locations of sites considered in the sim-
ulation study, for κ = 1, 2, 3, and the portion of the Earth being (in lon/lat coordi-
nates) equal to [−179.4/κ, 179.4/κ ] × [−89.5/κ, 89.5/κ].

For each region, we simulate with Cholesky decomposition
and using GC distances, 1000 realizations of a zeromean spatio-
temporal Gaussian process on 120 uniformly distributed loca-
tion sites, and five temporal instants, t = 1, 2, . . . , 5, such that
for each simulation, we have a sample of 600 observations. In
particular, we use the covariance model:

C(θ , u;λ) = σ 2
{
1 +

(
Rθ
cS

)} exp

⎡

⎢⎣ − |u|

cT
{
1 +

(
Rθ
cS

)}1/4

⎤

⎥⎦ ,

(15)

The parameter vector λ ∈ R3
+ includes cS and cT (respectively,

spatial and temporal scale parameters) and σ 2 (the variance).
This model is a special case of the model in Equation (5) under
the choices γ = 1/2, δ = 3/4, β = 1/2, and α = 1. For reasons
that become apparent from the exposition of our results, we use
the abuse of notation λ = (cS, cT , σ 2)T =: (1λ, 2λ, 3λ)T.

For each region, we consider two scenarios with increasing
spatial dependence (κ = 1, 2, 3):

Scenario (I) cT = 2, σ 2 = 1, and cS = 600/κ ;
Scenario (II) cT = 2, σ 2 = 1, and cS = 1, 200/κ ,

such that, in total, we have six cases. Note that the spatial
dependence is proportional to the size of the observed region.

We estimate λ using maximum likelihood (ML) estimation
under the model in Equation (15), using either the GC, CH,
or MP distances. Thus, we use the notation λ̂

(k)
X , with X being

either theGCorCHorMPdistance, andwhere k = 1, . . . , 1000
is the progressive number of simulations performed under a
given scenario.

Figure 2 shows the boxplots of theGC versus CHandMPdis-
tances for the three regions considered in our scenarios. Appar-
ently, CH distances are a poor approximation of the state of
nature, and the discrepancy between CH and GC increases, as
expected, when the size of the region increases. Note that MP
distance distortion is apparent mainly in the larger region (κ =
1). Thus, we can expect a sensible difference in terms of the esti-
mation of the spatial scale parameter.
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Figure . Boxplots of MP, CH, GC distances for the three regions considered in the simulations.

Table . M(·) as defined in () and A(·) as defined in () for the parameters
cS , cT , σ

2 for the region with κ = 3, 2, 1 ( is the smallest,  the medium,  the
largest) when cS = 600/κ (scenario (I)) and cS = 1200/κ (scenario (II)).

κ = 1 κ = 2 κ = 3

(I) (II) (I) (II) (I) (II)

MCH(ĉS) . . . . . .
MMP(ĉS) . . . . . .
MCH(ĉT ) . . . . . .
MMP(ĉT ) . . . . . .
MCH(σ̂ 2) . . . . . .
MMP(σ̂ 2) . . . . . .
AGC(ĉS) . . . . . .
ACH(ĉS) . . . . . .
AMP(ĉS) . . . . . .
AGC(ĉT ) . . . . . .
ACH(ĉT ) . . . . . .
AMP(ĉT ) . . . . . .
AGC(σ̂ 2) . . . . . .
ACH(σ̂ 2) . . . . . .
AMP(σ̂ 2) . . . . . .

We now measure the discrepancy between the ML estimates
using either GC (the correct distance) and CH and MP dis-
tances. Given λ̂

(k)
X , we callM(·) the measure

MX (îλ) =

√∑1000
k=1 (îλ

(k)
GC − îλ

(k)
X )2

1000
, i = 1, 2, 3,

X = CH,MP. (16)

We also define another measure A(·) by

AX (îλ) =

√∑1000
k=1 (îλ

(k)
X − iλ)2

1000
, i = 1, 2, 3,

X = GC,CH,MP, (17)

where iλdenotes the nominal value chosen under one of the pro-
posed scenarios.

The first measure compares the estimates obtained with the
true distance (GC) with the estimates obtained using CH and
MP distances while the second measure describes the simulated
root mean square error obtained using GC, CH, and MP dis-
tances. In Table 3, we present the indexM in (16) for the param-
eters cS, cT , and σ 2, as well as the index A in (17) for all possible

combinations of scenarios and regions. Apparently, the choice
of the type of distance does not affect the variance and temporal
scale parameter estimation. For the index M, the discrepancy
between ML estimation with GC distance and CH or MP dis-
tances increases, as expected, as the size of the region of obser-
vation increases. Moreover, this discrepancy increases when the
strength of the spatial correlation increases. This fact is apparent
when using the MP distance.

As for index A, the results in Table 3 suggest that GC dis-
tance is the best choice from a statistical efficiency viewpoint.
As expected, the parameter that is most affected by the choice of
the distance is the spatial scale while the variance and the tem-
poral scale are only slightly affected. The estimates based on the
CH distance perform well enough when compared to GC while
the estimates based on the MP distance present more variability
particularly when considering the larger region (κ = 1).

4.2 Estimation of Spatial Cross-Covariances on the Sphere

We replicate this experiment now considering a bivariate spatial
setting. Specifically, we consider a bivariate exponential model
defined by

Ci j(θ;λ) = σiσ jρi j exp
(

−Rθ
ci j

)
, ρii = 1,

i, j = 1, 2, (18)

obtained by setting p = 2 and νi j = 1/2 in Equation (13)
OS, and, to simplify the estimation task, we consider
the constraints c12 = (c11 + c22)/2. Thus, in this case,
λ = (σ1, σ2, ρ12, c11, c22)T, and we consider 1000 simula-
tions obtained with Cholesky decomposition over the regions
defined in Figure 1 (κ = 3, 2, 1) under the following scenarios:

Scenario (III) ρ12 = 0.2, σ1 = 1, σ2 = 1, c11 = 600/κ , and c22 =
720/κ ;

Scenario (IV) ρ12 = 0.2, σ1 = 1, σ2 = 1, c11 = 1200/κ , and
c22 = 1440/κ .

The estimation is performed with maximum likelihood, and
we compute the measures M and A as previously defined. The
results are reported in Table 4, and the conclusions are basi-
cally the same: only the spatial scale parameters’ estimation is
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Table . M(·) as defined in () and A(·) as defined in () for the parameters a1 ,
a2 , σ1 , σ2 , and ρ12 for the region with κ = 3, 2, 1 ( is the smallest,  the medium,
 the largest) when a1 = 600/κ , a = 2 = 720/κ (scenario (III)) and a1 = 1200/κ ,
a2 = 1440/κ (scenario (IV)).

κ = 1 κ = 2 κ = 3

(III) (IV) (III) (IV) (III) (IV)

MCH(ĉ11) . . . . . .
MMP(ĉ11) . . . . . .
MCH(ĉ22) . . . . . .
MMP(ĉ22) . . . . . .
MCH(σ̂1) . . . . . .
MMP(σ̂1) . . . . . .
MCH(σ̂2) . . . . . .
MMP(σ̂2) . . . . . .
MCH(ρ̂12) . . . . . .
MMP(ρ̂12) . . . . . .
AGC(ĉ11) . . . . . .
ACH(ĉ11) . . . . . .
AMP(ĉ11) . . . . . .
AGC(ĉ21) . . . . . .
ACH(ĉ22) . . . . . .
AMP(ĉ22) . . . . . .
AGC(σ̂1) . . . . . .
ACH(σ̂1) . . . . . .
AMP(σ̂1) . . . . . .
AGC(σ̂2) . . . . . .
ACH(σ̂2) . . . . . .
AMP(σ̂2) . . . . . .
AGC(ρ̂12) . . . . . .
ACH(ρ̂12) . . . . . .
AMP(ρ̂12) . . . . . .

affected by the choice of the distance. In particular, the estima-
tion based onCHandMPdistances performbadlywhen the size
of the region of observation (κ = 3, 2, 1) and/or the strength of
the dependence (moving from scenario (III) to scenario (IV)) is
increased.

5. TOMS Data

This section analyzes Level-3 Total Ozone Mapping Spectrom-
eter (TOMS) data, which include daily total column ozone lev-
els. The data are located on a spatially regular grid (1◦ latitude
by 1.25◦ longitude away from the poles) as reported by Jun and
Stein (2008), and we refer to their article for a detailed descrip-
tion of the data. The original data range from latitude inter-
val [−89.5, 89.5] to the longitudes [−180, 180]. Jun and Stein
(2008) considered a single spatial realization over the horizontal
window [−89.5, 89.5] (with all longitudes) whereas we consider
the daily realizations over 2 weeks (15 observations in time)
and select the horizontal window [−35, 35] and all longitudes
as well. In total, we have a regular grid of 20,160 points (288
longitudinal and 70 latitudinal) observed during 15 days, for a
total of 302,400 observations.

We have missing data and follow the same procedure pro-
posed by Jun and Stein (2008) to handle them. Namely, for each
missing data point, we naively put the average data obtained
from eight neighboring cells in space and two contiguous tem-
poral instants, so that we use 24 observations for each local aver-
aging. The available dataset is definitely too large for likelihood
estimation. We therefore select a subset of the grid with 336
spatial points and all temporal observations, for a total of 5040

observations. We then detrend the data using spatio-temporal
splines and consider the residuals as a realization from a zero
mean space-time Gaussian random field. We consider three
classes of covariance models:

A. Twomodels based on the adapted Gneiting classes as in The-
orem 1, which can be coupled with any of GC, CH, or MP.
Specifically, we used:
A.1 Themodel in Equation (8) with α = 2, γ = 1/2, and δ +
β/2 = 1;

A.2 The model in Equation (9) with α = 2, τ = 1/2, λ = 1,
and δ + β/2 = 1;

B. Three models based on direct construction, hence valid with
GC only. Specifically:
B.1 The model in Equation (12);
B.2 The model in Equation (11) with ε = 0.226;
B.3 The model in Equation (10) with ε = 0.961.
To choose ε, we first maximize the likelihood with respect
to all the parameters in Equations (11) and (10), respectively.
Then, we take the value of ε, which maximizes the likelihood
and maximizes the likelihood again with respect to the other
parameters.

C. A model based on the Gneiting class valid using CH and MP
distances:
C.1 The model in eq. (16) in Gneiting (2002) is valid if cou-

pled with CH or MP (but not with GC), with ν = 1.5,
α = 1, and δ + β/2 = 1. This kind of model is a nonsep-
arable covariance with spatial margin of the Matérn type,
where we fix the smoothness parameter equal to 1.5.

We also tried other models, such as those coming from the
modified Gneiting class, but these were considerably outper-
formed by the ones proposed in this section. Thus, we do not
report the results concerning their constructions here.

For all of the selected models, we consider a space-time
nugget effect, to account for potential microscale effects. This
in turn induces discontinuities at the origin of the associated
covariance functions. For all the parametric families described
above, the parameters are estimated through maximum likeli-
hood techniques.

For all of the models we need to estimate four parameters:
in classes A and C, the variance (denoted σ 2), the spatial scale
(cS), the temporal scale (cT ), and the nonseparability parameter
(β), whereas in class B, the variance (σ 2), the spatial scale (τ ),
the temporal scale (cT ), and the temporal smoothing parameter
(α).

Table 5 summarizes our findings: for obvious reasons, we
only compare the performance (based on likelihood) in terms of
estimation for models based on the same distance. Such a com-
parison is mistakenly reported, for instance, in Jeong and Jun
(2015). In light of this, apparently the models based on direct
construction outperform the others coupled with GC distance
(especially model B.3). Among the models based on CH dis-
tance, clearly model C.1 outperforms the others. As a simple
diagnostic, models B.3 and C.1 are compared in Figure S4 (OS)
in terms of their fit to the marginal spatial and temporal empiri-
cal semivariograms. It seems that model B.3 offers a better fit to
the temporal empirical variogram, whereas the behaviors of the
spatial margins are very similar.
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Table . Parameter estimates for the TOMS data analyzed in Section  for covariance models A (with great circle (GC), chordal (CH), and map projection (MP) distances)
and for covariance models B (with great circle (GC) only) and for covariance models C (with great circle (CH) only).

Distance GC CH MP GC CH MP GC CH MP

Model A. A. C.
cS . .. . . . . – . .
cT . . . . . . – . .
β   .    – . .
σ 2 . . . . . . – . .
Nugget . . . . . . – . .
Likelihood − . − . − . − . − . − . – − . − .
Model B. B. B.
τ . – – . – – . – –
cT . – – . – – . – –
α . – – . – – . – –
σ 2 . – – . – – . – –
Nugget . – – . – – . – –
Likelihood − . – – − . – – − . – –

We also assess the prediction performance of the covariance
models proposed in our analysis, through predictive scores (see
Table S4 inOS). This allow us to (a) compare the predictive skills
of each estimated covariance model and (b) compare, when
allowable, for a fixed estimated covariancemodel, the impact on
prediction when using different distances. For the first goal, it
can be appreciated that the best models from a prediction point
of view are the models C.1 and the model B.3, followed by the
models B.1, B.2, and the models of the class A. In particular the
model C.1 based on the chordal distance slightly outperforms
themodel B.3 based on direct construction. For the second goal,
the comparison is possible only for the covariance models in the
class A, and we see that, as expected from the simulation study,
there is not much difference in terms of prediction when com-
paring the predictive scores using GC or CH distances while the
use of the MP distances affects considerably the quality of the
prediction.

Summing up, a first conclusion is that all our models favor
a nonseparable structure over the sphere cross time. This is
directly highlighted by the value of the beta parameter in the
adapted Gneiting class, while models based on direct construc-
tion do not admit separability as special case. Second, the mod-
els based on direct construction outperform the models belong-
ing to the adapted Gneiting class in terms of prediction. Nev-
ertheless, the Gneiting model based on chordal distance, with
a Matérn spatial margin, slightly outperforms the other mod-
els. This might be explained by the fact that models based on
direct construction do not allow the smoothness of the under-
lying Gaussian field to be parameterized.

The analysis and the simulation study have been carried
out using an upcoming version of the R package CompRand-
Fld (Padoan and Bevilacqua 2015), avalaible at http://cran.r-
project.org/.

6. Discussion

In this article, we have proposed stationary covariance func-
tions for processes evolving temporally over the sphere, as well
as cross-covariance functions for multivariate random fields
defined over the sphere. We have illustrated several methods
of construction and provided closed-form expressions for both
cases. A simulation study assessed the discrepancy between
the great circle, chordal, and Euclidean from map projection

distances both in terms of estimation and prediction in a space-
time and a bivariate spatial settings, where the space is in this
case the Earth. The results highlight that when global data are
available, the choice of the chordal or the Euclidean distance
based on map projection can seriously affect the quality of the
estimation particularly when data are available for a large por-
tion of the Earth’s surface. In this sense, the classes of parametric
covariance models that are valid on the sphere presented in this
article are useful when working with space-time or multivari-
ate data. The predictions are less affected by the choice of dis-
tance, but theGCdistance is nevertheless themost realistic from
a physics point of view. In particular, prediction results based on
GC and CH distances are very similar while the use of the MP
distance can affect the quality of the prediction. We have revis-
ited the analysis of TOMS data and investigated differences in
terms of estimation and prediction between great circle, chordal,
and Euclidean frommap projection distance-based approaches.

The extension of our work to nonstationary models can
be tackled by using spatially adaptive parameters in the com-
pletely monotone function in Equation (4). One possibility is
to follow the lines of the proof proposed by Porcu, Mateu,
and Christakos (2010). An intriguing challenge is to extend
the approach by Jun and Stein (2008) to generate nonstation-
ary models on the sphere. Another possible generalization is
to make the anisotropic covariance models of Hitczenko and
Stein (2012) on the sphere functions of the great circle dis-
tance. Some challenges regarding the class ! p

d,T remain open.
One of them is to find the analog of Schoenberg’s representation
in terms of Gegenbauer polynomials for the elements of such
classes.

Supplementary Materials

The supplementary materials contain: Tables of completely
monotone and Bernstein functions; a realization of a space-time
Gaussian process with covariance from the adapted Gneiting
class; plots of space-time covariances from the direct construc-
tion; the results of the simulation study and the TOMS data in
terms of prediction; and all proofs of the results of the paper.
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