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Summary. The problem of non-random sample selectivity often occurs in practice in many fields.
The classical estimators introduced by Heckman are the backbone of the standard statistical
analysis of these models. However, these estimators are very sensitive to small deviations from
the distributional assumptions which are often not satisfied in practice. We develop a general
framework to study the robustness properties of estimators and tests in sample selection models.
We derive the influence function and the change-of-variance function of Heckman’s two-stage
estimator, and we demonstrate the non-robustness of this estimator and its estimated variance
to small deviations from the model assumed. We propose a procedure for robustifying the
estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with
and without an exclusion restriction are covered. This allows us to construct a simple robust
alternative to the sample selection bias test. We illustrate the use of our new methodology in
an analysis of ambulatory expenditures and we compare the performance of the classical and
robust methods in a Monte Carlo simulation study.
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1. Introduction

A sample selectivity problem occurs when an investigator observes a non-random sample of a
population, i.e. when the observations are present according to some selection rule. Consider,
for instance, the analysis of consumer expenditures, where typically the spending amount is
related to the decision to spend. More specifically, the selection bias arises if, controlling for
explanatory variables, the spending amount is not independent from the decision to spend, i.e.
they are dependent through unobservables. This type of problem arises in many research fields
besides economics, including sociology, political science and finance (see, for example, Winship
and Mare (1992), Collier and Mahoney (1996), Bushway et al. (2007), Lennox et al. (2012) and
references therein for various applications).

A sample selection model can be represented by the regression system

yÅ
1i =xT

1iβ1 + e1i, .1/
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yÅ
2i =xT

2iβ2 + e2i, .2/

where the responses yÅ
1i and yÅ

2i are unobserved latent variables, xji is a vector of explanatory
variables, βj is a pj × 1 vector of parameters, j = 1, 2, and the error terms follow a bivariate
normal distribution with variances σ2

1 = 1 and σ2
2, and correlation ρ. Note that the variance

parameter σ2
1 is set to be equal to 1 to ensure identifiability. Here equation (1) is the selec-

tion equation, defining the observability rule, and equation (2) is the equation of interest. The
observed variables are defined by

y1i = I.yÅ
1i > 0/, .3/

y2i =yÅ
2i I.y

Å
1i > 0/, .4/

where I is the indicator function. This model was classified by Amemiya (1984) as a ‘Tobit type-2
model’ or ‘Heckman model’ originally discussed by Heckman (1979) in his seminal paper.

If all the data were available, or the data were missing at random, i.e. no selection mechanism
was involved, we could estimate the model by ordinary least squares (OLS). But in general these
conditions are not satisfied and the OLS estimator is biased and inconsistent.

Heckman (1979) proposed two estimation procedures for this model. The first is a maximum
likelihood estimator (MLE) based on the assumption of bivariate normality of the error terms.
The second is a two-stage procedure. Consider the conditional expectation of y2i given x2i and
the selection rule

E.y2i|x2,i, yÅ
1i > 0/=xT

2iβ2 +E.e2i|e1i >−xT
1iβ1/:

Then the conditional expectation of the error term is in general different from 0, which leads to
the modified regression

y2i =xT
2iβ2 +βλλ.xT

1iβ1/+vi, .5/

where βλ = ρσ2,λ.xT
1iβ1/ =φ.xT

1iβ1/=Φ.xT
1iβ1/ is the inverse Mills ratio (IMR), vi is the error

term with zero expectation and φ.·/ denotes the density and Φ.·/ the cumulative distribution
function of the standard normal distribution. Heckman (1979) proposed then to estimate β1 in
the first stage by probit MLE and to compute estimated values of λ, and in a second stage to
use OLS in equation (5), where the additional variable corrects for the sample selection bias.

Both estimation procedures have advantages and drawbacks, studied extensively in the liter-
ature; see for example Stolzenberg and Relles (1997), Puhani (2000), Toomet and Henningsen
(2008) and the general reviews by Winship and Mare (1992) and Vella (1998) and references
therein. An important criticism is their sensitivity to the normality assumption of the error
terms, which is often violated in practice and is well documented by several Monte Carlo stud-
ies, where the behaviour of these estimators has been investigated under different distributional
assumptions; see Paarsch (1984) and Zuehlke and Zeman (1991). Another important issue is
the presence of outlying observations, which is a well-known problem in many classical models
and is often encountered in practice. For instance, an individual having several chronic diseases
with zero medical expenditures, or a woman with several young children present in the labour
force (see the sensitivity analysis of wage offer data in Zhelonkin (2013)) would generate ob-
servations with high leverage. Outliers can be gross errors or legitimate extreme observations
(perhaps coming from a long-tailed distribution). In both cases it is of interest to identify them
and this can be difficult by using only classical estimators.
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A first simple strategy to tackle this problem is to develop (robust) misspecification tests for
normality as in Montes-Rojas (2011). This can lead to a useful diagnostic strategy, but it does
not provide new, more resistant, estimators and tests for the parameters of the model.

More preventive strategies aiming at relaxing the distributional assumptions have been pro-
posed. They include more flexible parametric methods, such as a sample selection model based
on the t-distribution by Marchenko and Genton (2012), an extension for the skew normal dis-
tribution by Ogundimu and Hutton (2015), a copula-based approach by Smith (2003) and the
generalized additive model with location, scale and shape approach by Rigby and Stasinopou-
los (2005). Although these models are more flexible than the standard normal model in that
they contain additional parameters that can be used to accommodate skewness, kurtosis and
possible outliers, they do not generate full neighbourhoods (in a topological sense) of the central
model and do not offer full protection against possible distributional deviations from the central
model; see Hampel et al. (1986), page 10. Moreover, the introduction of additional parameters
to fit a few possible outliers might be justifiable only when these observations contain important
information about the problem under investigation.

Finally, several researchers have proposed semiparametric (Ahn and Powell, 1993; Newey,
2009; Marra and Radice, 2013) and non-parametric (Das et al., 2003) methods. Gallant and
Nychka (1987) proposed a semi-non-parametric estimator based on Hermite series. Genton
et al. (2012) and Ma et al. (2005, 2013) investigated semiparametric methods in the case of skew
symmetric distributions when no covariates are available.

In this paper we take a middle way between the classical strict parametric model and the fully
non-parametric set-up. We still assume the classical normal model as the central model, but we
believe that it is only approximate in the sense that the true distribution of the error terms lies in
a (small) neighbourhood of the latter. We then derive estimators and tests which are still reliable
in the full neighbourhood. This has the advantage of providing insurance and protection against
small but harmful distributional deviations and still to benefit from the parametric structure,
e.g. its computational simplicity and interpretability. From a data analytic point of view, our
robust procedure fits the majority of the data and identifies outliers and possible substructures
for further special treatment.

Of course, in situations when we are completely uncertain about the underlying distribu-
tion, the use of non-parametric methods would be in principle preferable; see the discussion
in Hampel et al. (1986), page 7. Note, however, that non-parametric methods are not neces-
sarily designed to be robust in the sense mentioned above. Even the arithmetic mean, which
is the non-parametric estimator of the expectation (if it exists) of any underlying distribu-
tion, is very sensitive to outliers and is not robust. For a detailed discussion see Huber (1981),
page 6.

A robustification of the MLE for this model could be carried out by applying standard tools
of robust statistics (Salazar, 2008). However, the resulting robust estimator would be compu-
tationally complex and this would be a clear disadvantage in applications. Indeed simulation
techniques would be required to compute the Fisher consistency correction for the robust (trun-
cated) score function. Therefore, we focus here on the robustness analysis of Heckman’s two-
stage procedure for the model specified by equations (1)–(4). It is structurally simpler, has a
straightforward interpretation and leads to a robust estimator, which is computationally simple.
Moreover, there are numerous extensions of the classical Heckman model, including switching
regressions, simultaneous equations with selectivity and models with self-selectivity, to mention
a few, where the construction of the joint likelihood becomes cumbersome, whereas Heckman’s
estimator can be easily computed. Our robust version can in principle be extended to these
situations.
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In recent decades, robust estimators and tests have been developed for large classes of models
in both the statistical and the econometric literature; see for instance, Huber (1981), Huber and
Ronchetti (2009), Hampel et al. (1986) and Maronna et al. (2006) in the statistical literature
and Peracchi (1990, 1991) and Ronchetti and Trojani (2001) in the econometric literature. In
particular, the quantile regression approach (Koenker, 2005) has proved fruitful as a specific
way to robustify classical procedures and, in the framework of sample selection models, it has
been proposed by Buchinsky (1998) and Huber and Melly (2015). Details about this approach
are provided in Section 4. However, except for a few specific contributions that were mentioned
above, the robustness aspects in sample selection models have not received much attention and
no general theory is available.

In this paper we fill this gap by providing the following contributions to the literature. In
Section 2 we investigate the robustness properties of Heckman’s two-stage estimator and its
estimated variance by deriving the influence function (IF) and the change-of-variance function
(CVF); see Hampel et al. (1986). These functions are used to quantify the bias of the estimator
and its estimated variance respectively, when deviations from the assumed bivariate normal
model are present and the true data-generating process lies in a neighbourhood of the bivariate
normal distribution assumed. It turns out that both functions are unbounded and this implies
that a small deviation can have a large influence on the bias of the estimator and on its variance.
The latter in turn has a large effect on the corresponding confidence intervals. Moreover, by
means of these functions, we provide a von Mises expansion of the test statistic for the test on
sample selection bias (SSB) which demonstrates its non-robustness.

Since the classical estimation and testing procedures are not robust with respect to deviations
from the assumed underlying stochastic model, we propose in Section 3 new robust estimators
and a new robust test for SSB, which are the natural robust counterparts of the classical Heck-
man two-stage estimator and test of SSB. They are available in the R package ssmrob in the
Comprehensive R Archive Network. We study the performance of our estimators in both the
presence and the absence of exclusion restrictions. Section 4 reports the finite sample perfor-
mance of the new estimators and test in a simulation setting with several types of contamination,
degrees of selection bias and severity of censoring. A comparison with the quantile regression
approach is included. Moreover, we compare a classical and robust analysis on a real data
set (ambulatory expenditures data). A technical derivation and assumptions are provided in
Appendix A. The on-line supplementary material contains the derivations of the IF and the
CVF of Heckman’s estimator, additional simulation results, more details about the quantile
regression approach and the use of our results for two important extensions of the basic model,
namely switching regression models and simultaneous equations models with selectivity.

2. Robustness issues with Heckman’s two-stage estimator

In this section we present our main results concerning the two-stage estimator in the general
framework defined by equations (6) and (7). In particular, we derive its IF and its CVF and
discuss the robustness properties of Heckman’s estimator. Moreover, we explain the connection
between its IF and the asymptotic variance. Finally, we explore the robustness properties of the
SSB test. This provides a theoretical framework for the analysis of the robustness properties of
Heckman’s estimator and SSB test.

We consider a parametric sample selection model {Fθ}, where θ= .β1,β2,σ2,ρ/ lies in Θ, a
compact subset of Rp1+p2+2. Let FN be the empirical distribution function putting mass 1=N

at each observation zi = .z1i, z2i/, where zji = .xji, yji/, j = 1, 2, i = 1, : : : , N, and let F be the
distribution function of zi. Heckman’s estimator can be represented as a two-stage M-estimator,
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with probit MLE in the first stage and OLS in the second stage. Define two statistical functionals
S and T corresponding to the estimators of the first and second stage respectively. The domain
of S is a class of probability distributions on Rp1 and its range is a vector in Rp1 . The domain
of T is a class of probability distributions on Rp1+p2+2 and its range is a vector in Rp2+2.

The two-stage estimator (e.g. Zhelonkin et al. (2012)) can be expressed as a solution of the
empirical counterpart of the system∫

Ψ1{.x1, y1/; S.F/}dF =0, .6/

∫
Ψ2[.x2, y2/;λ{.x1, y1/; S.F/}, T.F/]dF =0, .7/

where Ψ1.·; ·/ and Ψ2.·; ·, ·/ are the score functions of the first- and second-stage estimators
respectively. In the classical case Ψ1.·; ·/ and Ψ2.·; ·, ·/ are given by

Ψ1{.x1, y1/; S.F/}={y1 −Φ.xT
1 β1/} φ.xT

1 β1/

Φ.xT
1 β1/{1−Φ.xT

1 β1/}x1, .8/

Ψ2[.x2, y2/;λ{.x1, y1/; S.F/}, T.F/]= .y2 −xT
2 β2 −λβλ/

(
x2
λ

)
y1: .9/

Here λ{.x1, y1/; S.F/} denotes the dependence of λ on S.F/=β1, whereas T.F/ depends directly
on F and indirectly on F through S.F/.

2.1. Influence function
For a given functional T.F/, the IF was defined by Hampel (1974) as

IF.z; T , F/= lim
ε→0

[T{.1− ε/F + εΔz}−T.F/]=ε,

where Δz is the probability measure which puts mass 1 at the point z. In our case .1− ε/F + εΔz

is a contamination of the joint distribution of zi, but marginal contaminations on the compo-
nents of zi can also be considered; see the comments below. The IF describes the standardized
asymptotic bias on the estimator due to a small amount of contamination ε at the point z. More-
over, using a von Mises (1947) expansion, the maximum bias over the neighbourhood described
by the perturbations Fε = .1 − ε/F + εG, where G is some arbitrary distribution function, is
approximately

sup
G

‖T.Fε/−T.F/‖∼= ε sup
z

‖IF.z; T , F/‖:

Therefore, a condition for (local) robustness is a bounded IF with respect to z, which means
that if the IF.·; ·, ·/ is unbounded then the bias of the estimator can become arbitrarily large.

The following proposition gives the IF of Heckman’s two-stage estimator.

Proposition 1. For model (1)–(4), the IF of the Heckman’s two-stage estimator is

IF.z; T , F/=
{∫ (

x2xT
2 λx2

λxT
2 λ2

)
y1dF

}−1 {
.y2 −xT

2 β2 −λβλ/

(
x2
λ

)
y1

+
∫ (

x2βλ
λβλ

)
y1λ

′ dF IF.z; S, F/

}
, .10/
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where

λ′ = −Φ.xT
1 β1/φ.xT

1 /xT
1 β1 −φ.xT

1 β1/2

Φ.xT
1 β1/2

xT
1

and

IF.z; S, F/=
[∫

φ.xT
1 β1/2x1xT

1

Φ.xT
1 β1/{1−Φ.xT

1 β1/} dF

]−1

{y1 −Φ.xT
1 β1/} φ.xT

1 β1/x1

Φ.xT
1 β1/{1−Φ.xT

1 β1/} : .11/

The proof is given in the on-line supplementary material.
The first term of equation (10) is the score function of the second stage and it corresponds to

the IF of a standard OLS regression. The second term contains the IF of the first-stage estimator.
Clearly, the first term is unbounded with respect to y2, x2 and λ. Note that the function λ is
unbounded from the left and tends to 0 from the right. From equation (11) we can see that the
second term is also unbounded, which means that there is a second source of unboundedness
arising from the selection stage. Therefore, the estimator fails to be locally robust. A small
amount of contamination is enough for the estimator to become arbitrarily biased. In Section
3 we present a way to construct a two-stage estimator with a bounded IF.

2.2. Asymptotic variance and change-of-variance function
The expression of the asymptotic variance for the two-stage estimator has been derived by Heck-
man (1979), and later corrected by Greene (1981). Duncan (1987) suggested another approach
to derive the asymptotic variance by using the M-estimation framework. Using the result in
Hampel et al. (1986), the general expression of the asymptotic variance is given by

V.T , F/=
∫

IF.z; T , F /IF.z; T , F /T dF.z/:

Specifically, denote the components of the IF as

a.z/= .y2 −xT
2 β2 −λβλ/

(
x2
λ

)
y1,

b.z/=
{∫ (

x2βλ
λβλ

)
y1λ

′ dF

}
IF.z; S, F/,

M.Ψ2/=
∫ (

x2xT
2 λx2

λxT
2 λ2

)
y1 dF:

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.12/

Then the expression of the asymptotic variance of Heckman’s two-stage estimator is

V.T , F/=M.Ψ2/−1
∫

{a.z/a.z/T +a.z/b.z/T +b.z/a.z/T +b.z/b.z/T}dF.z/M.Ψ2/−1:

After integration and some simplifications we obtain the asymptotic variance of the classical
estimator

V

{(
β2
βλ

)
, F

}
= .XTX/−1

[
σ2

2

{
XT

(
I − β2

λ

σ2
2

Δ
)

X

}
+β2

λXTΔX1var.S, F/XT
1 ΔX

]
.XTX/−1,

where Δ is a diagonal matrix with elements δii = @λ.x1iβ1/=@.x1iβ1/, the matrix X consists of
vectors .x2i

λi
/ and var.S, F/ denotes the asymptotic variance of the probit MLE.
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Robustness issues are not limited to the bias of the estimator but concern also the stability
of the asymptotic variance. Indeed, the latter is used to construct confidence intervals for the
parameters and we want the influence of small deviations from the underlying distribution on
their coverage probability and length to be bounded. Therefore, we investigate the behaviour
of the asymptotic variance of the estimator under a contaminated distribution Fε and derive
the CVF, which reflects the influence of a small amount of contamination on the asymptotic
variance of the estimator. These results are used in Section 2.3 to investigate the robustness
properties of the SSB test.

The CVF of an M-estimator T at a distribution F is defined by the matrix CVF.z; T , F/ =
[.@=@ε/V{T , .1− ε/F + εΔz}]ε=0, for all z where this expression exists; see Hampel et al. (1981)
and Genton and Rousseeuw (1995). Again a von Mises (1947) expansion of log{V.T , Fε/} at F

gives

V.T , Fε/∼=V.T , F/ exp
{
ε

∫
CVF.z; T , F/

V.T , F/
dG

}
: .13/

If CVF.z; T , F/ is unbounded then the variance can behave unpredictably (arbitrarily large or
small); see Hampel et al. (1986), page 175. Using expression (13) one can obtain the numerical
approximation of the variance of the estimator T at a given underlying distribution .1−ε/F +εG
for a given G.

Proposition 2. The CVF of Heckman’s two-stage estimator is given by

CVF.z; S, T , F/=V −M.Ψ2/−1
{∫

DH dF +
(

x2xT
2 λx2

λxT
2 λ2

)
y1

}
V

+M.Ψ2/−1
∫

{AHaT +AHbT +BHbT}dF M.Ψ2/−1

+M.Ψ2/−1
∫

{aAT
H +bAT

H +bBT
H}dF M.Ψ2/−1

+M.Ψ2/−1{a.z/a.z/T +a.z/b.z/T +b.z/a.z/T +b.z/b.z/T}M.Ψ2/−1

−V

{∫
DH dF +

(
x2xT

2 λx2

λxT
2 λ2

)
y1

}
M.Ψ2/−1, .14/

where V denotes the asymptotic variance of the Heckman (1979) two-stage estimator, and
a.z/, b.z/ and M.Ψ2/ are defined by expression (12). Explicit expressions for these terms are
given in the on-line supplementary material.

The CVF has several sources of unboundedness. The second term of equation (14) contains
the derivative of the score function Ψ2.·; ·, ·/ with respect to the parameter which is unbounded.
The same holds for the last term. Finally, in the fifth term there are two components depending
on the score functions of two estimators which are unbounded. Clearly, the CVF is unbounded,
which means that the variance can become arbitrarily large. Taking into account that the two-
stage estimator by definition is not efficient, we can observe a combined effect of inefficiency
with non-robustness of the variance estimator. These problems can lead to misleading p-values
and incorrect confidence intervals. Second-order effects in the von Mises expansion have been
discussed in general in La Vecchia et al. (2012).

2.3. Sample selection bias test
Heckman (1979) proposed to test for the selection bias by using the standard t-test of the co-
efficient βλ. Melino (1982) showed that this test is equivalent to a Lagrange multiplier test and
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has desirable asymptotic properties. Several other proposals are available in the literature (see
for example Vella (1992)), but the simple Heckman test is the most widely used in applications.
Here we investigate the effect of contamination on the test statistic τn = β̂λ

√
n=

√
V.βλ, F/:

Using the expressions for the IF and CVF of the estimator and its asymptotic variance, we
obtain the von Mises expansion of the test statistic:

T.Fε/

{V.Fε/=n}1=2 = T.F/

{V.F/=n}1=2 + ε

[
IF.z; T , F/

{V.F/=n}1=2 + 1
2n

T.F/
CVF.z; T , F/

{V.F/=n}5=2

]
+o.ε/,

which provides an approximation of the bias of the test statistic under contamination. It is
clear that the IF of the test depends on the IF and CVF of the estimator. Hence, the IF of the
test statistic is also unbounded. Since, according to Hampel et al. (1986), page 199, the IFs of
the level and of the power of the test are proportional to the IF of the test statistic, the test is
not robust. Moreover, because Heckman’s two-stage estimator suffers from a lack of efficiency,
small deviations from the model can enhance this effect and increase the probability of type I
and type II errors of the SSB test.

Note, however, that the term containing the CVF is of higher order, which means that the
influence of the contamination on the test statistic is mostly explained by the IF of the corres-
ponding estimator. Hence, for practical purposes we need to have at least a robust estimator
with a bounded IF with an additional bonus if the CVF is bounded as well.

3. Robust estimation and inference

In this section we suggest how to robustify the two-stage estimator and we propose a simple
robust alternative to the SSB test.

3.1. Robust two-stage estimator
From the expression of the IF in equation (10), it is natural to construct a robust two-stage
estimator by robustifying the estimators in both stages. The idea is to obtain an estimator with
bounded bias in the first stage, then to compute λ, which will transfer potential leverage effects
from the first stage to the second, and to use the robust estimator in the second stage, which
will correct for the remaining outliers.

Consider the two-stage M-estimation framework that is given by equations (6) and (7). We
can obtain a robust estimator by bounding both score functions. In the first stage, we construct
a robust probit estimator. We use a general class of M-estimators of Mallows type, where the
influence of deviations on y1 and x1 are bounded separately; see Cantoni and Ronchetti (2001).
The estimator is defined by the score function

ΨR
1 {z1; S.F/}=ν.z1;μ/ω1.x1/μ′ −α.β1/, .15/

where α.β1/ = .1=n/Σn
i=1E{ν.z1i;μi/}ω1.x1i/μ

′
i is a term to ensure the unbiasedness of the

estimating function with the expectation taken with respect to the conditional distribution of y|x,
ν.·|·/, ω1.x1/ are weight functions defined below, μi =μi.z1i,β1/=Φ.xT

1iβ1/ and μ′
i = @μi=@β1.

The weight functions are defined by

ν.z1i;μi/=ψc1.ri/
1

V 1=2.μi/
,

where ri = .y1i −μi/=V 1=2.μi/ are Pearson residuals and ψc1 is the Huber function defined by
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ψc1.r/=
{

r, |r|� c1,
c1 sgn.r/, |r|>c1:

.16/

The tuning constant c1 is chosen to ensure a given level of asymptotic efficiency at the normal
model. A typical value is 1.345, as advocated by Cantoni and Ronchetti (2001) in the generalized
linear model setting. A simple choice of the weight function ω1.·/ is ω1i =√

.1−Hii/, where Hii

is the ith diagonal element of the hat matrix H =X.XTX/−1XT. More sophisticated choices for
ω1 are available, e.g. the inverse of the robust Mahalanobis distance based on high breakdown
robust estimators of location and scatter of the x1i. For the probit case we have thatμi =Φ.xT

1iβ1/

and V.μi/=Φ.xT
1iβ1/{1−Φ.xT

1iβ1/} and hence the quasi-likelihood estimating equations are

n∑
i=1

{
ψc1.ri/ω1.x1i/

1

[Φ.xT
1iβ1/{1−Φ.xT

1iβ−1/}]1=2
φ.xT

1iβ1/x1i −α.β1/

}
=0,

and E{ψc1.ri/} in the α.β1/ term is equal to

E

[
ψc1

{
y1i −μi

V 1=2.μi/

}]
=ψc1

{ −μi

V 1=2.μi/

}
{1−Φ.xT

1iβ1/}+ψc1

{
1−μi

V 1=2.μi/

}
Φ.xT

1iβ1/:

This estimator has a bounded IF and ensures robustness of the first estimation stage.
To obtain a robust estimator for the equation of interest (second stage), we propose to use an

M-estimator of Mallows type with the Ψ-function

ΨR
2 .z2;λ, T/=Ψc2.y2 −xT

2 β2 −λβλ/ω.x2,λ/y1, .17/

where Ψc2.·/ is the classical Huber function defined by expression (16), but with possibly a
different tuning constant c2, ω.·/ is a weight function on the xs, which can also be based on the
robust Mahalanobis distance d.x2,λ/, e.g.

ω.x2,λ/=
{

x2, if d.x2,λ/<cm,
x2cm=d.x2,λ/, if d.x2,λ/� cm,

.18/

where cm is chosen according to the level of tolerance, given that the squared Mahalanobis
distance follows a χ2-distribution. The choices of c2, ω.·/ and cm come from the results in the
theory of robust linear regression; see Hampel et al. (1986). In our numerical applications, we
use c2 =1:345 and cm corresponding to the 5% critical level.

The robust estimator that was derived above assumes implicitly the presence of exclusion
restrictions, i.e. x1 �= x2, but often in practice the sets of explanatory variables are the same
for both selection and outcome equations, i.e. x1 = x2. This issue can lead to multicollinearity
because of quasi-linearity of the IMR in a substantial range of its support. In practice it is
recommended that there should be a predictor which explains y1 and is not significant for y2,
although it might not be easy to find such a variable. The lack of exclusion restriction is not a
peculiar problem of the two-stage estimator, but the MLE can also suffer from it (Leung and
Yu, 2000). This topic has generated much research and discussion; see Nelson (1984) and Leung
and Yu (1996) among others, and a review by Leung and Yu (2000) for a general discussion.
From a robustness perspective, we would like our estimator to be still reliable also when the
exclusion restriction is not available. Therefore, we now propose a slight modification of the
robust estimator that was developed above to cover this situation.
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In the presence of a high degree of correlation between the explanatory variables, the Mahal-
anobis distance can become inflated. This leads to an increase in the number of zero weights
in expression (18) and, hence, to an additional loss of efficiency. Given that the source of the
multicollinearity is known, i.e. λ can be (approximately) expressed as a linear combination
of x2s, a simple solution is to split the design space .x2,λ/ while computing the robustness
weights ω.x2,λ/. We split the (approximately) linearly dependent components .x

.1/
2 , : : : , x

.p2/
2 ,λ/

into two independent components .x
.1/
2 , : : : , x

.q/
2 / and .x

.q+1/
2 , : : : , x

.p2/
2 ,λ/ and compute the

robustness weights ω.x
.1/
2 , : : : , x

.q/
2 / and ω.x

.q+1/
2 , : : : , x

.p2/
2 ,λ/. Then, we combine these weights

as ω.x2,λ/=ω.x
.1/
2 , : : : , x

.q/
2 /ω.x

.q+1/
2 , : : : , x

.p2/
2 ,λ/, which guarantee robustness in this case. As

a general rule, we suggest grouping λ with variable(s) having the smallest correlation with it.
The question of an optimal split of the design space for the entire class of the Mallows-type
estimators is beyond the scope of this paper and is left for future research.

We summarize the properties of the proposed estimator in the following proposition.

Proposition 3. Under the assumptions stated in Appendix A, Heckman’s two-stage estima-
tor defined by equations (15) and (17) is robust, consistent and asymptotically normal, with
asymptotic variance given by

V.T , F/=M.ΨR
2 /−1

∫
{aR.z/aR.z/T +bR.z/bR.z/T}dF M.ΨR

2 /−1, .19/

where

M.ΨR
2 /=−

∫
@

@β2
ΨR

2 .z;λ, T /dF ,

aR.z/=ΨR
2 .z;λ, T/ and

bR.z/=
∫

@

@λ
ΨR

2 .z;λ, T/
@

@β1
λdF

{∫
@

@β1
ΨR

1 .z; S/dF

}−1

ΨR
1 .z; S/:

The asymptotic variance of the robust estimator has the same structure as that of the classical
Heckman estimator. Its computation can become complicated, depending on the choice of the
score function, but for simple cases, e.g. the Huber function, it is relatively simple. The estimator
can be obtained numerically by using standard techniques, e.g. the Newton–Raphson procedure.
New R (R Development Core Team, 2012) functions for robust estimation and inference in
sample selection models are provided in a package ssmrob.

Remark 1. In the likelihood framework, the Huber function defines the most efficient estim-
ator, subject to a bounded IF. Therefore, in addition to its computational simplicity, it seems
natural to use this function in our case. Of course, in principle other bounded score functions
could be used, such as that defining the MLE, under a tν-distribution; see in a more restricted
setting Marchenko and Genton (2012).

3.2. Robust sample selection bias test
To test SSB, i.e. H0 :βλ = 0 versus HA :βλ �= 0, we simply propose to use a t-test based on the
robust estimator of βλ and the corresponding estimator of its standard error derived in Section
3.1, where the latter is obtained by estimating equation (19).

The first term of equation (19), M.ΨR
2 /−1

∫
aR.z/aR.z/T dF M.ΨR

2 /−1, is similar to the asymp-
totic variance of standard linear regression, but with heteroscedasticity. Therefore, we use the
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Table 1. Bias, variance and mean-squared error MSE of the classical, robust probit and semiparametric
binary regression estimator at the model and under two types of contamination (N D1000)

Parameter Results for not Results for x1 Results for x1
contaminated is contaminated, y1 =1 is contaminated, y1 =0

Bias Variance MSE Bias Variance MSE Bias Variance MSE

Classical
β10 −0:013 0.015 0.015 −0:074 0.011 0.016 −0:194 0.012 0.050
β11 0.007 0.005 0.005 −0:323 0.005 0.110 −0:291 0.005 0.089
β12 0.002 0.011 0.011 −0:456 0.013 0.221 −0:419 0.013 0.189
β13 0.008 0.004 0.004 −0:274 0.004 0.079 −0:247 0.004 0.065

Robust probit
β10 −0:011 0.016 0.016 −0:011 0.016 0.016 −0:013 0.016 0.016
β11 0.008 0.006 0.006 0.006 0.006 0.006 0.003 0.006 0.006
β12 0.004 0.013 0.013 0.002 0.013 0.013 −0:003 0.013 0.013
β13 0.009 0.004 0.004 0.007 0.004 0.004 0.004 0.005 0.005

Klein–Spady + probit
β10 −0:014 0.020 0.020 0.024 0.010 0.011 −0:102 0.011 0.021
β11 0.005 0.005 0.005 −0:364 0.006 0.138 −0:330 0.005 0.114
β12 −0:001 0.015 0.015 −0:352 0.011 0.135 −0:320 0.011 0.113
β13 0.007 0.005 0.005 −0:267 0.004 0.075 −0:240 0.004 0.062

Eicker (1967)–Huber (1967)–White (1980) heteroscedasticity consistent variance estimator, i.e.
we estimate this first term by

M̂.ΨR
2 /−1 1

n

∑
â.zi/ â.zi/

T M̂.ΨR
2 /−1,

where M̂.ΨR
2 / and âR.z/ are the sample versions of M and aR.z/ respectively.

The second term of the asymptotic variance, M.ΨR
2 /−1

∫
bR.z/bR.z/T dF M.ΨR

2 /−1, is the
asymptotic variance of the probit MLE pre and post multiplied by the constant matrix, which
depends on the form of the score function of the second stage. Thus, a consistent estimator is

M̂.ΨR
2 /−1 1

n

∑
b̂R.zi/ b̂R.zi/

T M̂.ΨR
2 /−1 = M̂.ΨR

2 /−1 1
n

×∑ @ΨR
2i

@β1
v̂ar.S, F/

(
1
n

∑ @ΨR
2i

@β1

)T

M̂.ΨR
2 /−1,

where

@ΨR
2i

@β1
= @Ψ2{z2i;λ, T.F/}

@λ

@λ{z1i; S.F/}
@β1

:

4. Numerical examples

4.1. Simulation study
We carry out a Monte Carlo study to illustrate the robustness issues in the model that was
described in Section 1.1 and compare various estimators. In our experiment we generate yÅ

1i =
x11i + x12i + 0:75x13i + e1i, where x11i ∼ N.0, 1/, x12i ∼ N.−1, 0:5/ and x13i ∼ N.1, 1/. For the
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Table 2. Bias, variance and mean-squared error MSE of the classical and robust two-stage estimators at
the model and under two types of contamination, when the exclusion restriction is not available (N D1000)

Parameter Results for Results for x1 Results for x1
not contaminated is contaminated, y1 =1 is contaminated, y1 =0

Bias Variance MSE Bias Variance MSE Bias Variance MSE

Classical
β20 0.000 0.064 0.064 −1:872 0.445 3.947 −0:695 0.339 0.822
β21 −0:004 0.016 0.016 0.615 0.044 0.422 0.197 0.046 0.085
β22 0.000 0.023 0.023 0.406 0.040 0.205 0.111 0.041 0.053
β23 0.001 0.011 0.011 0.411 0.022 0.191 0.129 0.025 0.041
βλ −0:003 0.073 0.073 2.237 0.491 5.497 0.682 0.350 0.815

Robust probit + OLS
β20 0.001 0.064 0.064 −0:520 0.051 0.322 −0:004 0.065 0.065
β21 −0:005 0.016 0.016 0.229 0.012 0.064 −0:003 0.016 0.016
β22 −0:001 0.024 0.024 0.217 0.021 0.068 0.001 0.024 0.024
β23 −0:001 0.011 0.011 0.172 0.008 0.038 0.002 0.011 0.011
βλ −0:005 0.073 0.073 0.653 0.040 0.466 0.001 0.074 0.074

Robust two stage
β20 −0:027 0.080 0.081 −0:072 0.075 0.080 −0:030 0.081 0.082
β21 −0:005 0.020 0.020 0.025 0.018 0.019 0.006 0.020 0.020
β22 0.009 0.027 0.027 0.028 0.026 0.027 0.008 0.028 0.028
β23 0.008 0.013 0.013 0.022 0.012 0.013 0.008 0.013 0.013
βλ 0.019 0.099 0.099 0.078 0.088 0.094 0.021 0.100 0.100

equation of interest when the exclusion restriction is not available, we use the same explanatory
variables x2 =x1. When it is available, the variable x23i is generated independently from x13i and
follows the same distribution. The errors e1 and e2 are from a bivariate normal distribution with
expectation 0, σ1 =σ2 =1 and ρ=0:7, which give βλ=0:7. The degree of censoring is controlled
by the intercept in the selection equation, which is denoted byβ10 and set to 0, which corresponds
to approximately 45% of censoring. Results (which are not shown here) are similar for other
censoring proportions such as 75% and 25%. In the equation of interest the intercept is β20 =0
and the slope coefficients are β2 = .1:5, 1, 0:5/T. We find the estimates of β1 and β2 without
contamination and with two types of contamination. In the first scenario we contaminate x1
when the corresponding y1 =0. We generate observations from the model described above and
replace them with probability ε= 0:01 by a point mass at .x11, x12, x13, y1, y2/ = .2, 0, 3, 0, 1/.
In this case we study the effect of leverage outliers when they are not transferred to the main
equation. In the second scenario we contaminate x1 when the corresponding y1 =1. We use the
same type of contamination as in the first scenario, but the point mass is at (−2,−2,−1,1,0).
Note that the contaminating point deviates by two standard deviations from the centres of
distributions of the explanatory variables, which are very difficult to identify by using standard
exploratory analysis. In the on-line supplementary material we report additional simulations
when the distribution of the error terms deviates from the normal distribution. The sample
size is N =1000 and we repeat the experiment 500 times. For other sample sizes, e.g. N =2000
or N = 500, the behaviour of the estimators is the same. A second simulation design (which is
very simple and mostly pedagogical) with one explanatory variable is presented in the on-line
supplementary material. In addition, we study there a type of contamination when the outliers
emerge only in the selection stage.
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Table 3. Bias, variance and mean-squared error MSE of the classical and robust two-stage estimators and
the quantile regression estimator at the model and under two types of contamination, when the exclusion
restriction is available (N D1000)

Parameter Results for Results for x1 Results for x1
not contaminated is contaminated, y1 =1 is contaminated, y1 =0

Bias Variance MSE Bias Variance MSE Bias Variance MSE

Classical
β20 0.006 0.015 0.015 −0:638 0.062 0.469 −0:249 0.032 0.094
β21 −0:000 0.005 0.005 0.153 0.009 0.032 0.036 0.006 0.008
β22 0.002 0.011 0.011 0.002 0.015 0.015 −0:024 0.012 0.012
β23 −0:004 0.002 0.002 −0:041 0.002 0.004 −0:004 0.002 0.002
βλ −0:003 0.016 0.016 1.018 0.090 1.127 0.225 0.038 0.089

Robust probit + OLS
β20 0.007 0.015 0.015 −0:150 0.017 0.039 0.005 0.015 0.015
β21 −0:000 0.005 0.005 0.078 0.005 0.011 0.000 0.005 0.005
β22 0.002 0.011 0.011 0.056 0.012 0.016 0.002 0.011 0.011
β23 −0:004 0.002 0.002 −0:028 0.002 0.003 −0:004 0.002 0.002
βλ −0:003 0.017 0.016 0.368 0.012 0.148 −0:001 0.017 0.017

Robust two stage
β20 −0:001 0.017 0.017 −0:011 0.017 0.017 −0:003 0.017 0.017
β21 −0:001 0.005 0.005 0.003 0.005 0.005 −0:001 0.005 0.005
β22 0.004 0.012 0.012 0.008 0.012 0.012 0.004 0.012 0.012
β23 −0:004 0.002 0.002 −0:005 0.002 0.002 −0:004 0.002 0.002
βλ −0:001 0.021 0.021 0.023 0.021 0.021 0.001 0.022 0.022

Quantile regression estimator
β20 0.020 0.168 0.168 −0:029 5.998 5.999 0.099 3.299 3.310
β21 −0:009 0.010 0.010 0.011 0.009 0.009 −0:011 0.009 0.009
β22 −0:001 0.021 0.021 0.005 0.021 0.021 0.002 0.021 0.021
β23 −0:005 0.003 0.003 −0:005 0.003 0.003 −0:006 0.003 0.003
βλ −0:234 11.370 11.370 −0:575 338.820 339.150 −1:306 174.335 176.040

We compare Heckman’s estimator with two robust versions derived in Section 3, i.e. the robust
probit with OLS and the robust two-stage estimator. Moreover, when an exclusion restriction
is available, we add the quantile regression estimator. This is the estimator that was proposed
by Buchinsky (1998) and extended by Huber and Melly (2015), which is a combination of a
semiparametric binary regression as in Klein and Spady (1993) in the first stage and quan-
tile regression in the second stage. It is computed by using the code kindly provided to us by
M. Huber. More details and a discussion of the robustness properties of this estimator can be
found in the on-line supplementary material.

In Table 1 we first consider only the first stage. We note that the three estimators perform well
at the model (with very small efficiency losses for our robust proposal and for semiparametric
binary regression with respect to the classical estimator). However, under contamination only
the robust proposal remains nearly unbiased. In Tables 2 and 3 and Figs 1–3 we consider classical
and robust two-stage estimators. The quantile regression estimator is included only when an
exclusion restriction is available.

Again all estimators perform well without contamination. As expected, under contamination
Heckman’s estimator breaks down. This effect can be seen in Fig. 2 (with exclusion restriction)
and Fig. 3 (without exclusion restriction). When the exclusion restriction is not available the mag-
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Fig. 5. Receiver operating characteristic curves for the sample selection bias test ( , classical test;
- - - - -, robust test): (a) case without exclusion restriction without contamination; (b) case without exclu-
sion restriction with contamination; (c) case with exclusion restriction without contamination; (d) case with
exclusion restriction with contamination

nitude of the bias of the classical estimator is considerably higher than that when the exclusion
restriction is available. The estimation of the slope coefficients by quantile regression estimator
are robust. However, the estimators of the intercept and βλ become severely biased. Athough it
is true that often one is mostly interested only in the slopes, the non-robustness with respect to
βλ affects the subsequent test for selectivity. Finally, note that the quantile regression estimators
of the slopes have larger mean-squared error than those of the robust two-stage estimator.

In the case when the outlier is not transferred to the equation of interest (Figs 2(a)–2(e) and
3(a)–3(e)) it is enough to use a robust probit but, when the outlier emerges in the equation of
interest (Figs 2(f)–2(j) and 3(f)–3(j)), a robust estimation of the second stage is necessary. In
this case the outliers influence not only both estimation stages directly, but also the effect of
contamination is amplified by the influence through λ. The behaviour of the variances of the
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Table 4. Estimation results of the medical expenditures data by the classical estimator, by the robust
two-stage estimator from Section 3.1 and by OLS, with standard errors in parentheses

Parameter Results for without exclusion restriction Results for with exclusion restriction Results for OLS

Classical Robust Classical Robust

Selection
intercept −0:71771 −0:74914 −0:66865 −0:70043

(0.19247)† (0.19507)† (0.19413)† (0.19640)†
age 0.09732 0.10541 0.08682 0.09459

(0.02702)† (0.02770)† (0.02746)‡ (0.02814)†
female 0.64421 0.68741 0.66351 0.70361

(0.06015)† (0.06226)† (0.06097)† (0.06298)†
educ 0.07017 0.07012 0.06188 0.06231

(0.01134)† (0.01147)† (0.01204)† (0.01212)†
blhisp −0:37449 −0:39775 −0.36578 −0:38861

(0.06175)† (0.06265)† (0.06191)† (0.06280)†
totchr 0.79352 0.83284 0.79575 0.83405

(0.07112)† (0.08028)† (0.07122)† (0.08023)†
ins 0.18124 0.18256 0.16911 0.17255

(0.06259)‡ (0.06371)‡ (0.06293)‡ (0.06403)‡
income 0.00268 0.00253

(0.00131)§ (0.00134)§§

Outcome
intercept 5.30257 5.40154 5.28893 5.40933 4.90783

(0.29414)† (0.27673)† (0.28852)† (0.27291)† (0.16815)†
age 0.20212 0.20062 0.20247 0.20029 0.21723

(0.02430)† (0.02451)† (0.02422)† (0.02447)† (0.02222)†
female 0.28916 0.25501 0.29213 0.25214 0.37938

(0.07369)† (0.06992)† (0.07258)† (0.06994)† (0.04858)†
educ 0.01199 0.01325 0.01239 0.01318 0.02223

(0.01168) (0.01162) (0.01157) (0.01158) (0.00976)§
blhisp −0:18106 −0:15508 −0:18287 −0:15342 −0:23853

(0.06585)‡ (0.06507)§ (0.06534)‡ (0.06514)§ (0.05519)†
totchr 0.49833 0.48116 0.50063 0.47956 0.56182

(0.04947)† (0.03822)† (0.04855)† (0.03805)† (0.03051)†
ins −0:04740 −0:06707 −0:04651 −0:06825 −0:02082

(0.05315) (0.05159) (0.05297) (0.05174) (0.05001)
IMR −0:4802 −0:67676 −0:4637 −0:68995

(0.2907)§§ (0.25928)‡ (0.2826) (0.25544)‡

†Level of significance 0.001.
‡Level of significance 0.01.
§Level of significance 0.05.
§§Level of significance 0.1.

robust estimators remains stable, whereas the variance of the classical estimator is seriously
affected by the contamination.

In Fig. 4 we study the efficiency of the estimators. We present the plots of the relative effi-
ciency of the robust two-stage estimator versus the classical estimator, depending on the amount
of contamination ε, which varies from 0% to 3%. We show the figures for the case when the
contaminated observations emerge at both stages (y1i =1; the case when y1i =0 is presented in
the on-line supplementary material). As is expected from the theory, the robust estimator is less
efficient than the classical estimator, when the distributional assumptions hold exactly. How-
ever, when a small amount of contamination is introduced, the situation changes completely.
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For instance, when the exclusion restriction is not available and the contaminated observations
emerge in the second stage, the classical estimator of βλ becomes less efficient than the robust
estimator with only 0.1% contamination (Fig. 4(e)). The efficiency loss of the classical estimator
concerns not only the IMR parameter, but also the other explanatory variables. Note that the
behaviour of the variance of the robust estimator remains stable under contamination (Table 1
and Table 2). Finally, in Fig. 5 we plot the receiver operating characteristic curves. The data-
generating process is as discussed above except for ρ= −0:7, and the contamination is very
mild (ε= 0:001). We study the case when y1 = 1 and put the contaminating point mass at
(−1.5,−1.75,−0.5,1,0). Without contamination the curves are close; however; when the data
are slightly contaminated the classical test loses its power.

4.2. Ambulatory expenditures data
To illustrate the behaviour of our new robust methodology further, we consider the data on
ambulatory expenditures from the 2001 Medical Expenditure Panel Survey that were analysed
by Cameron and Trivedi (2009), page 545. The data consist of 3328 observations, where 526
(15.8%) correspond to zero expenditures. The distribution of the expenditures is skewed, so
the log-scale is used. The selection equation includes such explanatory variables as age, gender
(female), education status (educ), ethnicity (blhisp), number of chronic diseases (totchr) and
insurance status (ins). The outcome equation holds the same variables. The exclusion restriction
can be introduced by means of the income variable. We explore both cases, with and without
exclusion restriction (sections 16.6.5 and 16.6.4 in Cameron and Trivedi (2009) respectively).

The results of the estimation obtained by using the R package sampleSelection are
reported in Table 4. Using the classical estimator, both with and without exclusion restriction,
all the variables are significant for the decision to spend, and all except education status and
insurance status are significant for the spending amount. The p-values of the SSB t-test are 0.099
and 0.101, which are not significant at the 5% level. The possible conclusion of no selection bias
seems to be doubtful. The estimation of this model by using the joint MLE returns the p-value
of the Wald test equal to 0.380 and 0.395 with and without exclusion restriction respectively.
Theoretically, when the SSB test is not significant, the conclusion of absence of the sample
selectivity is made, and we should use the OLS estimator. However, if the presence of sample
selectivity is hidden by the deviation from the model assumed, then OLS can produce biased
estimates. The last column of Table 4 reports the results of the estimation by OLS. The values
of the parameters and the significance of the variables are different from those obtained by
using the sample selection model. Cameron and Trivedi (2009) noted that the conclusions about
the absence of sample selectivity obtained by the classical tests should be treated with caution
because of lack of robustness.

Using the robust two-stage estimator, we obtained results that are similar to those obtained by
using the classical estimators but with an important difference. The output is reported in Table 4.
For all the variables the differences (regarding estimates and standard errors) are not dramatic,
except for the IMR parameter. The robust estimator returns β̂RIMR =−0:677, compared with
Heckman’s β̂IMR =−0:480. The robust SSB test is highly significant with a p-value p= 0:009.
If the exclusion restriction is used, then the results are similar both for the estimators and
for the tests. Using the robust estimator we obtain β̂RIMR =−0:690 with a p-value p = 0:006.
The robust analysis indicates that sample selection is present and that the two parts of the
model are not independent. The lack of agreement between the classical and robust analysis is
important diagnostic information for the analyst. Our simulations have shown that even small
contaminations can bias the parameters and change the inference, which is likely to be the
reason in this example.
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5. Discussion

We introduced a framework for robust estimation and testing for sample selection models. These
methods allow us to deal with data deviating from the assumed model and to carry out reliable
inference even in the presence of small deviations from the normality model assumed. Monte
Carlo simulations demonstrated the good performance of the robust estimators under the model
and with different types of contamination. Although at the inference stage one is concerned only
with potential small deviations from the model assumed, at an early exploratory stage one could
look for possible large deviations. Robustness against this type of deviation would require the
development of high breakdown estimators, which could possibly be obtained by replacing the
Huber function in expression (16) by a redescending score function. However, this is the subject
of future research. Although we focused on the basic sample selection model, our methodology
can be easily extended to more general frameworks, including for instance Copas and Li (1997).
Moreover, our techniques can be adapted to models beyond simple regression. The switching
regression model and the simultaneous equations model with selectivity are briefly discussed in
the on-line supplementary material.
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Appendix A: Assumptions and proof of proposition 3

Denote ΨR.z; θ/={ΨR
1 .z;β1/

T, ΨR
2 .z;β1,β2/

T}. Assume the following conditions, which have been adapted
from Duncan (1987):

(a) z1, : : : , zN is a sequence of independent identically distributed random vectors with distribution F
defined on a space Z;

(b) Θ is a compact subset of Rp1+p2 ;
(c)

∫
ΨR.z; θ/dF =0 has a unique solution θ0 in the interior of Θ;

(d) ΨR.z; θ/ and @ΨR.z; θ/=@θ are measurable for each θ in Θ and continuous for each z in Z, and there
are F -integrable functions ξ1 and ξ2 such that, for all θ∈Θ and z∈Z,|ΨR.z; θ/ΨR.z; θ/T|� ξ1 and
|@ΨR.z; θ/=@θ|� ξ2;

(e)
∫

ΨR.z; θ/ΨR.z; θ/T dF is non-singular for each θ∈Θ;
(f)

∫
@ΨR.z; θ0/=@θdF is finite and non-singular.

A.1. Proof of proposition 3
Consistency and asymptotic normality follow directly from theorems 1–4 in Duncan (1987). The asymp-
totic variance consists of two terms, because aR.z/bR.z/T and bR.z/aR.z/T vanish after integration, owing
to the independence of the error terms.
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