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We would first like to thank the authors for this paper

that highlights the important problem of building models for

non-Gaussian space-time processes. We will hereafter refer to

the paper as SGV, and we also would like to acknowledge and

thank them for providing us with the temporally detrended

temperatures, plotted in their Figure 1, along with the coordi-

nates of the twenty-one locations and the posterior means of

the parameters for the MA1 model. We find much of interest

to discuss in this paper, and as we progress through points of

interest, we pose some questions to the authors that we hope

they will be able to address.

1 OTHER APPROACHES

SGV presents an extension of the spatial skewed model pro-

posed by Zhang and El-Shaarawi (2010). Indeed, there has

not been much work to build skewness into models for the

space-time setting. Some additional tools that could be used

in the spatiotemporal context to model skewed processes are

transformations, copulas, and quantile regression. First, let

Y(s, t) = 𝜓{Z(s, t)}, where Z(s, t) is a Gaussian spatiotempo-

ral random field and 𝜓 is a one-to-one transformation. Here,

𝜓(·) could be the exponential function, a power function, or

the Tukey g-and-h transformation; see Xu and Genton (2017)

and references therein for the purely spatial case.

Secondly, a factor copula model, Y(s) = Z(s) + V0, where

Z(s) is a replicated Gaussian spatial random field and V0 is a

common factor that does not depend on the location s has been

proposed by Krupskii, Huser, and Genton (2017). If V0 = |Z0|,
Z0 ∼ N(0,1), then a skew-Gaussian random field is obtained.

Some identifiability issues with this model when applied to

purely spatial data (i.e., with no replicates) were discussed

by Genton and Zhang (2012). They proposed some simple

remedies. With an appropriate choice of the distribution of

the common factor, V0, the common factor copula spatial

model has both tail dependence and asymmetric dependence

between the two tails. An extension to the spatiotemporal

context is under way (Krupskii & Genton, 2017).

Finally, in the non-Gaussian setting, one of the primary

interests is the behavior in the tails of the distribution. To

model such behavior, quantile regression methods are often

employed, and recently Sun, Wang, and Fuentes (2016) intro-

duced a new quantile function estimator for spatial and

temporal data with a special Lasso penalty designed to accom-

modate this type of dependence. In that work, only one

realization of the process is needed to estimate the quantile

function.

2 OTHER APPLICATIONS

Temperature distributions can display skewness (Anderson,

Browning, Comeaux, Hering, & Nychka, 2016), but other

variables that are more highly skewed may benefit more from

models such as SGV’s. In fact, the residuals from Figure 1

in SGV, in which the effects of altitude and the annual tem-

perature cycle have been removed, are not strongly skewed.

The boxplots in SGV’s Figure 1 do display a few outliers, and

some medians are not in the center of each box. However,

using these residuals, we fit the skew-normal (SN) and also

the skew-t distributions and test for the presence of skewness

using the built-in functions in the R package sn (Azza-

lini, 2016). Figure 1 presents the estimated skewness of the

SN distribution on the [−1, 1] scale, each with an associated

95% confidence interval, and Table 1 summarizes the agree-

ment between this figure and SGV’s Figure 6. No adjustment

is made for multiple testing. The direction of the skewness

and its significance agrees with that plotted in SGV’s Figure 6

in some of the locations (8 out of 21), but in many instances,

the SN estimated skewness is not significant when SGV esti-

mate it to be positive or negative (12 locations), and in one

case, the SN estimates the opposite direction of the skew-

ness. Figure 2 shows the histograms of the residuals when the
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FIGURE 1 Estimated skewness parameter 𝛼 from a skew-normal distribution along with 95% confidence intervals. Those intervals that do not cross the line

of symmetry are colored in red

TABLE 1 Instances in which the significance and sign of the SGV
estimated skewness agrees with the estimate of skewness of the
skew-normal parameter, plotted in Figure 1

Skew-normal
Positive None Negative

Positive 4 8 0

SGV None 0 3 0

Negative 1 4 1

SGV model and the SN estimates agree on the direction and

significance of the skewness (left) and the case when they

disagree (right). In the right-hand panel, the SGV model indi-

cates that Urussanga is negatively skewed, but in our opinion,

the histogram indicates that the skewness is in the opposite

direction, and the SN distribution supports this opinion. Note

that when a skew-t distribution is fit to the residuals at each

location, the degrees of freedom parameter is very large, with

two exceptions when it is between 15 and 20. Thus, there is

not much evidence that these residuals present heavy tails.

This approach of initially fitting the skew-normal distribution

to detrended residuals could be a simple test to determine if

fitting a model that accounts for skewness is warranted.

Other applications, such as wind, could benefit greatly from

fitting a skewed process. For example, in the Irish Wind

dataset of Haslett and Raftery (1989), daily averages of wind

speed at 11 meteorological stations in Ireland are recorded.

In Gneiting, Genton, and Guttorp (2007), a square root trans-

formation is applied after which a common seasonal trend is

removed along with location-specific means. They found that

the square root transformation stabilized the variance across

locations and made the marginal distributions approximately

normal. In addition, Hering, Kazor, and Kleiber (2015) used

a Gaussian copula to handle the strong right-skew in wind

speed distributions, and the strength of the skewness did vary

spatially (results not shown). One of the advantages of not

transforming the data and modeling the skewness directly, as

SGV do, is that an estimate of the skewness is obtained, and

this is informative for understanding the process holistically.

Q1: This discussion leads us to question how much
skewness in the data can the SGV modeling approach han-
dle? Even though the temperatures are not extremely skewed,

the MA1 and MA2 models still show improvement in the

predictions for the withheld last year of observations. We

wonder how well such a model would do in the presence of

extreme skewness and if there are any limitations. The moti-

vation for this line of questioning stems from the comment in

SGV that the skewness is not very strong in the simulated data

(Section 3.2).

Second, the computational requirements of the SGV model

appear to be high given that only 20 datasets are simulated

in the simulation study. Furthermore, the dataset that SGV

use only has 21 locations and 120 monthly measurements,

totalling 2,520 observations, which is not a large spatial

dataset, and 90% of the observations are used to train the

model with only 10% being withheld for prediction compar-

isons. Q2: Thus, what are the computational limitations of
this method? How much data is recommended for train-
ing, and how much larger can the dataset be before the
limits of computation are reached?

3 SPATIAL COVARIANCE

Using the residuals from SGV Figure 1, we explore their

purely empirical spatial dependence (under the assumption

that temporal dependence has been removed as illustrated

in SGV’s Figure A.3). The top left-hand panel of Figure 3

shows the empirical spatial semivariogram with each curve

based on the residuals in a different month, colored from past

(red) to present (purple). There are 115 months and there-

fore 115 curves. Many of the semivariograms do not level off,
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FIGURE 2 Distribution of the residuals for locations Santa Vitoria do Palmar (left) and Urussanga (right). On the left is an example wherein both the SGV

model and the SN distribution estimate negative skewness. On the right, the SGV model indicates negative skewness, while the SN distribution estimates

positive skewness. The estimated SN distributions are overlaid in blue
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FIGURE 3 Empirical spatial semivariograms for each point in time, colored from red to purple (left) and the functional boxplot summary of these curves

(right). Top row is based on the residuals from SGV’s Figure 1, and the bottom is based on the spatially detrended residuals

an indicator that some spatial trend may be present. The top

right-hand panel of Figure 3 summarizes these curves with a

functional boxplot (Sun & Genton, 2011), assuming that the

temporal dependence of the residuals has been removed, mak-

ing the functions independent. This assumption is verified by

SGV’s Figure A.3 that plots the autocorrelation function of

each location and does not demonstrate any significant lags.

Otherwise, an adjustment would be needed in the computa-

tion for identifying the functional outliers (Sun & Genton,

2012). Here, the functional boxplot identifies four curves as

unusual with respect to the others. The values of the residuals

are plotted in space for each of these four months in Figure 4.

In May 2002, the two closest locations are very dissimilar,

causing the large spike for the shortest distance in Figure 3. In

the other three cases, a strong spatial gradient is present with

northern locations being hotter than southern locations.

This is quite commonly observed for other points in time,

and it is not clear that the SGV model will account for

this, given that the effect of altitude has already been

removed.
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FIGURE 4 Spatial plot of residuals whose empirical semivariograms are identified as outliers by the functional boxplot
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FIGURE 5 Relationship between the residuals in SGV’s Figure 1 and

latitude

In fact, Figure 5 shows the relationship between latitude

and the residuals from SGV’s Figure 1. Fitting a simple lin-

ear regression model to these values results in 42% of the

variability being explained. Once this trend is removed from

the residuals, the semivariograms are computed again and

shown in the bottom row of Figure 3. The effect is that now

many of the empirical semivariograms level off, indicating

that the nonconstant spatial trend has been removed. Q3: As
a point of interest, how do the model fits for MA1 and
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FIGURE 6 Empirical spatial correlations and the fitted exponential, Whittle,

and Matérn correlation functions with effective ranges of 1,118, 863, and

610 km, respectively

MA2 change when latitude is included as a covariate in
the trend?

Now, we investigate further the spatial features of the SGV

residuals along with the implied spatial covariance of the

SGV model. Figure 6 shows the empirical spatial correlation

between every pair of locations. Namely, the points plotted

are
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Ĉ(h) = 1

nh

nh∑
t=1

{
R(s, t) − R

}{
R(s′, t) − R

}
,

where R is the overall mean of the residuals across space and

time; nh is the number of pairs of points for each distance

h with ||s − s′|| = h; and R(s, t) is the value of the resid-

ual at location s and time t. For each pair of locations, nh
is 115. Ĉ(h) is then scaled by the square root of the sample

variance at each location to obtain the empirical correlation.

There are (n2 − n)/2 = (212 − 21)/2 = 210 unique distances

and therefore 210 plotted points. Overlaid on this is the fit-

ted exponential model in red, which appears to drop near the

origin too quickly and also does not approach the x-axis fast

enough. It has an effective range of 1,118 km. The Matérn

model in blue has a smoothness parameter that is very large,

so it does not drop as rapidly as the exponential model does

near the origin, and it also reaches the x-axis more quickly

with an effective range of 610 km. The fit of the Matérn model

nearly coincides with the fit of a Gaussian correlation model.

The additional flexibility that the Matérn model’s smoothness

parameter gives it clearly improves the fit.

Alternatively, when the Matérn model’s smoothness

parameter is fixed to one, this equates to the Whittle model,

and it is also overlaid on Figure 6 in green. With an effective

range of 863 km, it lies in between the exponential and Matérn

models. We make this comparison because North, Wang, and

Genton (2011) motivate and advise using a Whittle model due

to the physical dynamics of temperature. In fact, in that paper,

the authors compare the spatial “decorrelation lengths” at var-

ious temporal frequencies for two regions with relatively flat

terrain, one on land and one in the ocean. For 1 month tem-

perature averages, fitting the Whittle model, the distance at

which the observations become uncorrelated are 1,700 and

1,500 km for land and ocean, respectively. For the Brazilian

data, the geography is more complex, so we suspect that the

effective range will be much smaller than 1,700 km, and all

three of the models fitted here support this conclusion.

Finally, using the fitted posterior means of the parameters

for MA1 reported by SGV, we can obtain the implied spatial

correlation of their model. The covariance given by SGV is

cov{Kt(s),Kt(s′)} = 2

𝜋
𝜎(s)𝜎(s′)

[√
1 − 𝜌2

𝜂(h, 𝜙𝜂) + 𝜌𝜂(h, 𝜙𝜂) arcsin{𝜌𝜂(h, 𝜙𝜂)} − 1

]
+ Vt𝜌(h, 𝜙) + 𝜏I(h),

(1)

where 𝜎(s) is a spatially varying scale controlling the skew-

ness at each location; Vt is a temporally varying variance;

𝜏 is a nugget effect; and I(h) is an indicator function of

h = ||s − s′||. Here, 𝜌 and 𝜌𝜂 are two correlation functions

that SGV chose to be of exponential form with range param-

eters 𝜙 and 𝜙𝜂 , respectively. If 𝜎(s) = 0, then we retrieve the

usual Gaussian model with exponential spatial correlation sat-

isfying 𝜌′(0, 𝜙) = −1/𝜙 at the origin. When substituting the

posterior means of the parameters for MA1 into Equation (1),

we can obtain the implied spatial correlation of this model.

We do not overlay this fitted covariance on the empirical spa-

tial covariance of the residuals in our Figure 6 because the

fitted trend of MA1 can differ from the trend fit in Section

1.1 of SGV. However, it would be nice if the authors can

provide a plot of empirical correlations of the residuals of

their detrended MA1 model in order to compare it with

Figure 6. Q4: Is the spatial dependence of the detrended
MA1 model still strong, as we see from the residuals from
SGV’s Figure 1?

The fitted SGV correlations are plotted for each pair of loca-

tions in Figure 7 (left). The strength of the implied spatial

dependence is stronger than the empirical spatial dependence

shown in Figure 6. The practical range for this fitted model

is not reached for any of the pairs of locations in this dataset.

FIGURE 7 On the left, fitted values of the SGV correlation for each of the 21 locations are plotted (gray dots are at observed distances between pairs of points)

along with an exponential function (blue) with the estimated 𝜙𝜂 parameter from the SGV model. On the right are all of the estimated SGV pairwise correlations
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FIGURE 8 The posterior mean of 𝛿(s) of the MA1 model, plotted for each

location. Note, the average across the four different prior specifications is

plotted here, but the plot of the posterior mean for each individual prior

distribution follows the same pattern shown here

When overlaying the spatial correlation, 𝜌𝜂(·) with �̂�𝜂 =
33.31946 plotted in blue, we see that the transformation of

𝜌𝜂(·) in the square brackets of Equation (1) dampens the

spatial dependence of the corresponding exponential model

because all of the gray dots lie below the blue line. The

right-hand panel of Figure 7 shows all of the pairwise SGV

fitted correlations with those on the diagonal that are equal

to the one removed. The smallest correlation is 0.55, so most

of them are strongly positive. One location, Santa Vitoria do

Palmar, which is the farthest south, is naturally less strongly

correlated to the other locations, and this is evident in the 13th

row and column of this matrix. Ultimately, we wonder how

close the fitted spatial correlations are to the empirical spatial

dependence of the detrended model MA1.

Finally, in Figure 8, we plot the posterior mean of 𝛿(s) of the

MA1 model at each location. Here, 𝛿(s) = 𝛼(s)∕
√

1 + 𝛼(s)
and 𝛼(s) = 𝜎(s)∕

√
V + 𝜏. We find it interesting that there also

appears to be a spatial trend in the skewness and wonder if the

authors can comment on this. Q5: In particular, how does
the interpolation of 𝜎(s) to a new location occur, as these
are needed to make predictions at new locations? In the

case study, 1 year of observations is withheld, and forecasts

are made at the existing 21 locations. Q6: How well does spa-
tial prediction of the model perform? In other words, if a

location is withheld and not used to fit the model, how well

does the fitted model predict the temperatures at this withheld

location? If this could be repeated across multiple locations

(or all 21), then a good sense of the spatial prediction ability

of the model could be established.

4 CONCLUSION

We thank the authors again for motivating a stimulating dis-

cussion of skewed models for space-time data and congratu-

late them on their proposed model. Our goal in this discussion

has primarily been to probe more deeply into the interpreta-

tion of the skewness and spatial dependence properties that

their model implies. We believe that their responses to the

questions that we have posed will ultimately provide readers

with a better understanding of their model so that it may gain

traction and application in the sciences.
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