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a b s t r a c t

We propose a new copula model for spatial data that are observed
repeatedly in time. The model is based on the assumption that
there exists a common factor that affects the measurements of a
process in space and in time. Unlike models based on multivari-
ate normality, our model can handle data with tail dependence
and asymmetry. The likelihood for the proposed model can be
obtained in a simple form and therefore parameter estimation is
quite fast. Simulation from this model is straightforward and data
can be predicted at any spatial location and time point. We use
simulation studies to show different types of dependencies, both in
space and in time, that can be generated by this model. We apply
the proposed copula model to hourly wind data and compare its
performance with some classical models for spatio-temporal data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Flexible and tractable models for data are often required in real-world applications, but building
such models can be a challenging task if the data have complex structures. One example of such data
is measurements of a process taken in space and in time, such as daily temperature measurements
obtained at different weather stations or concentrations of a certain air pollutant measured by
balloons launched from different locations. The dependence between two measurements that are
made at different locations and at different times is usuallyweakerwith a larger distance and time lag.
Classicalmodels for datawith spatio-temporal dependence often assumemultivariate normalitywith
a spatio-temporal covariance matrix; see, for example, Gneiting (2002), Stein (2005) and Gneiting et
al. (2007) for a review of covariance functions.
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For non-Gaussian spatial data, Bárdossy (2006) introduced the chi-squared copula and Bárdossy
and Li (2008) proposed a v-transformed copula. These copula models are obtained from a non-
monotonic transformation of multivariate normal variables. They can handle dependence asymmetry
but cannot be used for modeling data with tail dependence. Furthermore, the likelihood for these
models is not tractable in high dimensions. To construct flexible distributions for spatial data and
to do the interpolation, vine copulas can be used. Gräler (2014) used spatial vine copulas to model
and interpolate data with very strong dependencies, and Erhardt et al. (2015) used C-vine copulas to
model the spatial dependence structure locally. Parameters in their model can be estimated using the
composite likelihood, and data can be interpolated at arbitrary spatial locations.

For data with spatio-temporal dependence, de Luna and Genton (2005) used vector autoregressive
models with spatial structure for time-forward predictions in environmental applications, but these
models are not computationally tractable if the innovation process is not Gaussian. Stroud et al.
(2011) proposed a model for nonstationary spatio-temporal data in which the mean function at each
time period is a locally-weighted mixture of linear regressions. The authors provided details for the
Gaussian case but did not study the dependence properties of the proposed models in the general
case. In practical applications, however, themultivariate normality assumption is not always suitable.
For example, it would be unsuitable for data with strong joint dependence in the tails (i.e., when
large/small values are simultaneously observed more often than predicted by the normal model), or
for data with reflection asymmetry (i.e., when large values are simultaneously observed more often
than small values, or vice versa). Fonseca and Steel (2011) introduced a model for spatio-temporal
data that can handle heavy tails. However, the likelihood function in that model is not available in
simple form, and it cannot handle dependence asymmetry. Schmidt et al. (2017) proposed a model
for a skewed spatio-temporal process. Their model is based on the combination of Gaussian processes
with purely spatial dependence structures and a purely temporal component. The joint density in that
model is not possible to obtain in a simple form and it cannot handle data with tail dependence; see
also the discussion by Genton and Hering (2017).

To overcome this problem, copulas can be used to construct flexible, multivariate distributions. A
copula is a multivariate cumulative distribution function (cdf) with uniform U(0, 1) marginals. Sklar
(1959) showed that for any continuous d-dimensional cdf F1,...,d with univariate marginals F1, . . . , Fd,
there exists a unique copula C1,...,d such that F1,...,d(z1, . . . , zd) = C1,...,d{F1(z1), . . . , Fd(zd)} for any
z1, . . . , zd. Copulas have been used in many different applications, such as modeling financial returns
data (Patton, 2006; Krupskii and Joe, 2013), hydrology data (Genest and Favre, 2007) and others.

Recently, Krupskii et al. (in press) introduced a copula model for spatial data with replicates and
without temporal dependence. The model is based on the process

W (s) = Z(s) + V0, s ∈ Rd,

where Z is a Gaussian process and V0 is a common factor that does not depend on Z or location s. In
this paper, we propose an extension of this model that is based on the process W measured in space
and in time:

W (s, t) = Z(s, t) + α(s, t)EP(t), s ∈ Rd, t ∈ R+. (1)

Here Z(s, t) is a Gaussian process in space and in time with zero mean, unit variance and covariance
matrix ΣZ, α(s, t) is a non-random function of space (s) and time (t), P(t) is a Poisson process with
intensity functionΛ(t) and Et∼i.i.d.Exp(1) are exponential factors that do not depend on Z(s, t) or on
location s.

The factors EP(t) allow for tail dependence for the copula corresponding to the joint distribution of
the process W (s, t) measured at different spatial locations and at different time points. The intensity
function, Λ(t), of the Poisson process P(t) controls the rate of decay of dependence over time. The
exponential distribution of EP(t) allows one to obtain the joint copula density in this model (1) in
closed form so that the model parameters can be efficiently estimated using the maximum likelihood
approach.

The rest of this paper is organized as follows. In Section 2 we define the model (1) for data
observed at different spatial locations and time points and study its dependence properties based
on the covariance function of Z(s, t) and the choice of α(s, t) and Λ(t). In Section 3 we generate
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various data sets to show the wide range of dependence structures that can be obtained from the
proposed copula model. In Section 4 we give more details about maximum likelihood estimation and
prediction. In Section 5 we apply the model to hourly wind data and compare the performance of
the proposedmodel with some classical models for spatio-temporal data. Finally, Section 6 concludes
with a discussion.

2. A factor copula model for spatio-temporal data

We use the following notation throughout this paper: ΦΣ and φΣ are the joint cdf and its
probability density function (pdf), respectively, for the multivariate normal random variable Zwith a
covariance matrixΣ. Consider the processW (s, t), as defined in (1), measured at n different locations
s1, . . . , sn and at T different time points t1 < t2 < · · · < tT . For simplicity, let Wi,j := W (si, tj),
Zi,j := Z(si, tj) and αi,j := α(si, tj). From (1) we have:

Wi,j = Zi,j + αi,jEP(tj), i = 1, . . . , n, j = 1, . . . , T . (2)

From the definition of the Poisson process P(t), we see that λj1,j2 := pr{P(tj1 ) = P(tj2 )} =

exp
{
−
∫ tj2

tj1
Λ(t)dt

}
. Let ΣZ and ΣW be the covariance matrices of the vectors

Z = (Z1,1, . . . , Zn,1, . . . , Z1,T , . . . , Zn,T )⊤ and W = (W1,1, . . . ,Wn,1, . . . ,W1,T , . . . ,Wn,T )⊤,

respectively. It follows (with λj,j = 1) that

Σ
j1,j2
W = {Σ

j1,j2
Z + λj1,j2α1(tj1 )α1(tj2 )

⊤
}/{α2(tj1 )α2(tj2 )

⊤
}, 1 ≤ j1, j2 ≤ T ,

where α1(t) = {α1,t , . . . , αn,t}
⊤, α2(t) = {1n + α1(t)2}1/2, 1n is a vector of ones of length n, and

the superscripts j1, j2 denote the n × n block of the covariance matrix (ΣZ or ΣW) corresponding to
cross-covariances at time tj1 and tj2 , for different locations.

The correlation for the process W (s, t) is larger for smaller distances and smaller lags in time
because (Σj1,j2

Z )s1,s2 and λj1,j2 become large when the quantities ∥s1 − s2∥ and |tj1 − tj2 | are small.
Here we assume that the covariance matrix ΣZ is parameterized in such a way that correlations are
smaller for pairs of observationswith larger distances and larger time lags.Most of the classical spatio-
temporal covariance models satisfy this property.

Let FW and fW be the joint cdf and pdf of the vectorW, and FW
i,j and fWi,j be the marginal cdf and pdf

of Wi,j, respectively. The copula CW and its density, cW, corresponding to the joint distribution, FW,
can then be written as follows:

CW(u) = FW(w), cW(u) = fW(w)
/ n,T∏

i=1,j=1

fWi,j (wij),

where w = (w11, . . . , wn1, . . . , w1T , . . . , wnT )⊤, u = (u11, . . . , un1, . . . , u1T , . . . , unT )⊤ and wij =

(FW
i,j )

−1(uij). Here, the copula CW can be used for modeling data with arbitrary marginals (not
necessarily those of the vectorW), thus allowing greater flexibility in the proposed model.

In the next section we show that the copula density cW can be obtained in a simple form and
therefore the maximum likelihood estimates can be obtained quite fast. Furthermore, the proposed
copula has appealing tail properties as it allows one to control the strength of dependence in the upper
tail. Classicalmeasures of tail dependence are the lower and upper tail dependence coefficients,λL and
λU , defined for a bivariate copula, C1,2:

λL := lim
q→0

C1,2(q, q)/q ∈ [0, 1] and λU := lim
q→0

C̄1,2(1 − q, 1 − q)/q ∈ [0, 1],

where C̄1,2(u1, u2) := 1 − u1 − u2 + C1,2(u1, u2) is the survival copula. If λL > 0 (λU > 0), then the
copula C1,2 is said to have lower (upper) tail dependence. For the Gaussian copula, λL = λU = 0, and
therefore this copula may not be suitable for modeling data with strong dependence in the tails. At
the same time, the copula CW allows for upper tail dependence, and this dependence is weaker with
a larger distance or with a larger time lag as the following proposition shows.
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Proposition 1. Let CW
1,j1;2,j2

be the bivariate copula corresponding to the joint distribution of the vector
(W1,j1 ,W2,j2 )

⊤ and let CW
1,j1;2,j2

be the corresponding extreme-value copula (Segers, 2012). It follows that

CW
1,j1;2,j2 (u1, u2) = {HR(u1, u2;ϑHR)}λj1,j2 (u1u2)1−λj1,j2 ,

where HR is a bivariate copula corresponding to the Hüsler–Reiss distribution (Hüsler and Reiss, 1989)
with parameter ϑHR which depends on spatial locations s1, s2 and time points tj1 , tj2 :

ϑHR = ϑHR(tj1 , tj2 , s1, s2) =

{
α2
1,j1

+ α2
2,j2

− 2α1,j1α2,j2 (Σ
j1,j2
Z )s1,s2

}1/2
α1,j1α2,j2

.

The proof is given in Appendix A.1. Let λU be the upper tail dependence coefficient for CW
1,j1;2,j2

. It
implies thatλU depends on spatial locations, s1, s2, and timepoints, tj1 , tj2 , andλU = λU (tj1 , tj2 , s1, s2) =

2λj1,j2Φ{−ϑHR(tj1 , tj2 , s1, s2)/2}. To simplify the notation, thereafter we use ϑHR and λU without
showing the spatial locations and time points these two quantities depend on.

A special case of spatio-temporal isotropy can be obtained in the proposed model when α(s, t) =

α > 0 andΛ(t) = λ > 0 for any s ∈ Rd and t ∈ R+. It implies that all marginal cdfs FW
i,j , i = 1, . . . , n,

j = 1, . . . , T , are the same and that ΣW = (ΣZ + α21nT1⊤

nT )/(1 + α2). The upper tail dependence
coefficient in this model

λU = 2 exp{−λ|tj1 − tj2 |}Φ

⎡⎣−
1
α

{
1 − (Σj1,j2

Z )s1,s2
2

}1/2
⎤⎦ .

It follows that, if Z(s, t) is an isotropic Gaussian process both in space and in time, thenW (s, t) is also
an isotropic process in space and in time. Formore general structures, one can select various functions
α(s, t) andΛ(t); see Section 4.3 for more details.

3. Simulated examples

Simulating data from the proposed model is straightforward. To generate a vector W as given
by (2), a multivariate normal vector Z with zero mean and the covariance matrix ΣZ should be
generated first. One then generates a Poisson process with the intensity functionΛ(t) at time points
t1 < · · · < tT and constructs the vector W using (2). Finally, Krupskii et al. (in press) showed that
FW
i,j (w) = Φ(w) − exp{1/(2α2

i,j) − w/αi,j}Φ(w − 1/αi,j) and therefore, to get the data with uniform
U(0, 1) marginals, one should use the probability integral transform: uij = FW

i,j (wij), i = 1, . . . , n,
j = 1, . . . , T .

Here we generate some data sets with standard normal marginals assuming α(s, t) = 1 and
applying different functionsΛ(t) to show the flexibility of the proposedmodel. We discuss the choice
of these functions in more detail in the next section. For illustration purposes, we use a simple,
separable isotropic structure for the covariance matrix ΣZ in all three cases. Namely, we assume

cov(Z1,1, Z2,2) = exp(−θSP∥s1 − s2∥ − θTM |t1 − t2|),

that is, the cross-covariance in space and in time only depends on the distance ds = ∥s1 − s2∥ and
the time lag dt = |t1 − t2|. In applications, more flexible nonseparable models for ΣZ can be used
if needed to increase the flexibility of the model in the middle of the joint distribution, whereas the
functions α(s, t) andΛ(t) control the tail behavior of the copula CW.

We use the following specifications (models):

M1 α(s, t) = 1,Λ(t) = 0.15, θSP = 0.2, θTM = 0.3 (isotropicmodel; dependence quickly decreases
in time);

M2 α(s, t) = 1,Λ(t) = 0.05, θSP = 0.2, θTM = 0.3 (isotropic model; dependence slowly decreases
in time).

M3 α(s, t) = 1,Λ(t) = 0.05+0.25t, θSP = 0.2, θTM = 0.1 (tail dependence decreases very quickly
in time).
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Fig. 1. Scatter plots of 1000 replicates of data generated frommodel M1: distance = 0.5 (left), distance = 1 (middle), distance =
2 (right); time lag = 0 (top), time lag = 1 (middle), time lag = 2 (bottom).

Fig. 1 shows bivariate scatter plots for different pairs of data generated from (isotropic) model
M1, defined above, with time lags dt = 0, 1, 2 and with distances ds = 0.5, 1, 2. We can see that
the dependence is stronger in the upper tail and weaker with a larger distance or a larger time lag.
Because model M1 is isotropic in space and in time, the dependence between two realizations of the
spatio-temporal process measured at two different locations only depends on the time lag and the
distance between these locations.

Fig. 2 shows the Spearman’s rho, Sρ , and the upper tail dependence coefficient, λU , of the copula
CW
1,1;2,2 for t1 = 0 and t2 = 1, . . . , 20 and for distance ∥s1 − s2∥ = 0.5, 2. We see that the

dependence (as measured by Sρ and by λU ) decreases more slowly in time for model M2 (normal
line) than for model M1 (thick line) because of its smaller intensity λ for the Poisson process Pt .
This parameter controls the rate of decay of spatio-temporal dependence with time, especially for
λU . In particular, as seen in Proposition 1, the corresponding limiting extreme-value copula, CW

1,1;2,2,

converges to independence at rate λ1,2 = exp
{
−
∫ t2

0 Λ(t)dt
}
. For model M3, the rate of decay of Sρ

is comparable to that for model M1; however, the rate of decay of λU is much larger. This is because
the intensity functionΛ(t) = 0.05+ 0.25t is an increasing function of the time lag, t , and with larger
t , Λ(t) becomes very large. More flexible models can be obtained with different values of α(s, t) for
different locations, s, and with nonseparable cross-covariance matrices ΣZ. Of course, the choice of
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Fig. 2. Spearman’s rho, Sρ , and upper tail dependence coefficient, λU , for model M1 (thick line), model M2 (normal line) and
model M3 (thin line) for different time lags and distance = 0.5 (top) and distance = 2 (bottom).

these functions, α(s, t),Λ(t), and the covariancematrixΣZ, depends on the particular application and
structure of the data; see Section 4.3 for more guidelines.

4. Maximum likelihood estimates

In this section we obtain the formula for the copula density cW and provide more details about
maximum likelihood estimates.

4.1. The copula density

Following the notation in Section 2, wt = (w1t , . . . , wnt )⊤ and αt = {α(s1, t), . . . , α(sn, t)}⊤,
t = 1, . . . , T . To compute the copula density, one needs to compute the joint density fW(w).

Conditional on the factors EP(tj), j = 1, . . . , T , the joint density fW(w) is the multivariate normal
density by construction. To obtain the unconditional density, one therefore needs to integrate the
multivariate normal densitywith respect to the common factors. The number of these factors depends
on howmany jumps the processP(t) has, and on the times of these jumps. To describe the distribution
of the jumps, we define the vector j = (j1, . . . , jT )⊤ where j1 = 1 and jk+1 = jk (the process P(t) has
no jump for jk < t < jk+1) or jk+1 = jk + 1 (the process P(t) has at least one jump for jk < t < jk+1)
for any k = 1, . . . , T − 1. In particular, if no jumps occurred for t1 < t < tT , then j = (1, 1, . . . , 1)⊤,
and if at least one jump occurred for any jk < t < jk+1, k = 1, . . . , T − 1, then j = (1, 2, . . . , T )⊤.
There are 2T−1 possible vectors j; we denote this set of vectors j as J .
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To compute fW(w), one can use the formula of total probability: fW(w) =
∑

j∈J p(j)I(j), where I(j)
is the conditional density I(j) = I(j,w) = fW(w|j) and

p(j) = pr{P(t2) = j2, . . . ,P(tT ) = jT |P(t1) = 1} =

∏
k: jk−1=jk

λk−1,k ·

∏
k: jk−1 ̸=jk

(1 − λk−1,k).

Because |J | = 2T−1, the joint density fW is a weighted sum of 2T−1 terms of this type:

I(j) =

∫
Rmax(j)

+

φΣZ (w1 − α1vj1 , . . . ,wT − αTvjT ) exp

(
−

max(j)∑
k=1

vk

)
dv1 · · · dvmax(j).

In the integrand of I(j), there are max(j) integration variables which we redefine as v1, . . . , vmax(j) for
simplicity. For example, if j = (1, 1, . . . , 1)⊤, then max(j) = 1 and v1 := vj1 = vj2 = · · · = vjT . By
combining terms with the same integration variables, v1, . . . , vmax(j), we can see that

I(j) =

∫
Rmax(j)

+

φΣZ (w̃1 − α̃1v1, . . . , w̃max(j) − α̃max(j)vmax(j)) exp

(
−

max(j)∑
k=1

vk

)
dv1 · · · dvmax(j),

where w̃k (α̃k) is a subvector of w = (w⊤

1 , . . . ,w
⊤

T )
⊤ (α = (α⊤

1 , . . . ,α
⊤

T )
⊤, respectively) that includes

all wt (αt ) such that jt = k, k = 1, . . . , T . In Appendix A.2, we show that integrals of this form can be
obtained in closed form so that numerical integration is not required.

While there are 2T−1 terms that need to be calculated, they are all available in closed form, so the
computationally most demanding part is in fact calculating the inverse quantities wij = (FW

i,j )
−1(uij),

i = 1, . . . , n, j = 1, . . . , T . These can be calculated just once and then used to compute all of the
2T−1 terms I(j). The marginal distribution FW

i,j (w) = Φ(w)− exp{1/(2α2
i,j)−w/αi,j}Φ(w− 1/αi,j) and,

therefore, the inverse function can be calculated quite easily using numerical methods. As a result, the
joint copula density cW(u) can be calculated fairly quickly, at least for T ≤ 10; see the next section for
more details.

4.2. The log-likelihood function

Assume we have N replicates of i.i.d. data (ξk)Nk=1, where ξk = (ξ11,k, . . . , ξn1,k, . . . , ξ1T ,k, . . . ,
ξnT ,k)⊤ has the joint distribution corresponding to the copula CW, k = 1, . . . ,N . As we noticed earlier
in Section 2, this vector can have arbitrary continuous univariatemarginal cdfs; these need not be cdfs
ofWij, FW

ij , for i = 1, . . . , n and j = 1, . . . , T . To estimate the parameters of CW, we need to transform
the original data into uniform data. This can be done by estimating the marginal distributions of ξij
(values observed at the ith location and at time tj), F

ξ

ij . The estimated marginal cdfs, F̂ ξ

ij can then be
used to obtain uniform data:

uij,k = F̂ ξ

ij (ξij,k), i = 1, . . . , n, j = 1, . . . , Tand k = 1, . . . ,N.

Alternatively, nonparametric ranks can be used to convert the original data to uniform scores for
i = 1, . . . , n and j = 1, . . . , T as follows:

uij,k = {rank(ξij,k) − 0.5}/N, k = 1, . . . ,N.

Let uk = (u11, . . . , un1, . . . , u1T , . . . , unT )⊤ and u = (u⊤

1 , . . . ,u
⊤

N )
⊤. The pseudo log-likelihood can

then be written as follows:

L(u) =

N∑
k=1

ln

⎧⎨⎩∑
j∈J

p(j; θλ)I(j,wk; θΣ , θα)

⎫⎬⎭−

n,T ,N∑
i,j,k=1

fWi,j (wij,k; θα), (3)

where the formula for I(j,wk) = I(j,wk; θΣ, θα) is given in the previous section, wk = (w11,k, . . . ,
wn1,k, . . . , w1T ,k, . . . , wnT ,k)⊤ and wij,k = (FW

ij )
−1(uij,k). Here we assume that the functions α(s, t),

Λ(t) and the covariance matrix ΣZ are parameterized with vectors of parameters θα , θλ and θΣ,
respectively. If the copula CW is specified correctly and the number of replicates N → ∞, then the
parameter estimates θ̂α, θ̂λ and θ̂Σ obtained bymaximizing the value ofL(u) in (3) are asymptotically
unbiased; see chapter 5.9 of Joe (2014) for details.
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4.3. The choice of ΣZ, α(s, t) andΛ(t)

To estimate the parameters in model (2), one needs a parametric form for α(s, t) and forΛ(t). The
former functionmodels the change of spatial structurewith time (and in space) and the latter function
determines how quickly the dependence diminishes with time. Assume that ΣZ is parameterized
using an isotropic covariance function. We now consider some important cases:

• Anisotropic spatial structure that does not change in time. One can select α(s, t) = α(s)
where α(s) can be parameterized depending on a particular application, for example, α(s) =

α0 + α1sx + α2sy where s = (sx, sy)⊤ is a vector of geographical coordinates (longitude and
latitude);

• Isotropic spatial structure (at a given time t) that changes in time. One can select α(s, t) = α(t).
The function α(t) is parameterized depending on how quickly the spatial dependence changes
in time, for example, α(t) = α0 exp(−α1t);

• Isotropic spatial structure (at a given time t) that does not change in space and in time. One can
select α(s, t) = α0 ≥ 0 (a nonnegative constant). If in additionΛ(t) = λ > 0, then we obtain a
model with isotropic spatio-temporal dependence;

• Temporal dependence for a fixed time lag that changes in time. This can be modeled using the
intensity functionΛ(t); for example, one can setΛ(t) = λt if the temporal dependence quickly
decreases with time;

• Temporal dependence for a fixed time lag that is constant. This implies that the intensity
functionΛ(t) = λ > 0 is constant and the function α(s, t) = α(s) does not depend on time t .

Different types of asymmetric dependencies can be obtained as well in the proposed model. For
example, for permutation asymmetry in space (in time), when the order of variables is important,
one can use the function α(s, t) such that α(s1, t) ̸= α(s2, t) for s1 ̸= s2 (α(s, t1) ̸= α(s, t2) for
t1 ̸= t2, respectively). If the modeling process lacks full space–time symmetry, then one can select an
asymmetric model for the covariancematrixΣZ; see Gneiting (2002), Stein (2005), and Gneiting et al.
(2007).

4.4. Interpolation in space and prediction in time

The estimated model (2) can be used for interpolating (predicting) data at new locations (time
points). For a given set of locations s1, . . . , sn, when the time point t > 0 and a vector of uniform
data ut = (u1t , . . . , unt )⊤, one can compute the joint density of uT ,t = (un+1,T ,u⊤

t )
⊤ where un+1,T

corresponds to the measurement of process in (1) at time T > t and a spatial location sn+1 (this
can be one of the locations s1, . . . , sn or a new location), on a uniform scale. This is possible if the
cross-covariance matrix ΣZ is parameterized using a spatio-temporal covariance function: with a
new location and time point, one can recalculate ΣZ corresponding to the joint distribution of the
vector uT ,t .

The conditional copula density is then given by

cn+1,T |t (un+1,T |ut ) =
cn+1,T ,t (uT ,t; θ̂α, θ̂λ, θ̂Σ)

ct (ut; θ̂α, θ̂Σ)
,

where ct is the copula density of ut and θ̂α, θ̂λ, θ̂Σ are parameter estimates. Note that ct does not
depend on θλ because ct does not depend onΛ(t):

ct (ut; θα, θΣ) =

∫
R+
φΣZ (wt − αtv1) exp(−v1) dv1∏n

i=1 f
W
i,t (wit )

.

By construction, the copula density cn+1,T ,t is

cn+1,T ,t (uT ,t ) =

exp
{
−
∫ T

t Λ(t)dt
}
I1 +

[
1 − exp

{
−
∫ T

t Λ(t)dt
}]

I2

fWn+1,T (wn+1,T )
∏n

i=1 f
W
i,t (wit )

,
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where

I1 =

∫
R1

+

φΣZ

{(
w⊤

t , wn+1,T
)⊤

−
(
α⊤

t , αn+1,T
)⊤
v1

}
exp(−v1) dv1

I2 =

∫
R2

+

φΣZ

(
wt − αtv1, wn+1,T − αn+1,Tv2

)
exp(−v1 − v2) dv1dv2 .

Both I1 and I2 can be obtained in closed form; see Appendix A.2 for details.
The distribution of un+1,T conditional on ut is

Cn+1,T |t (un+1,T |ut ) =

∫ un+1,T

0
cn+1,T |t (ũ|ut )dũ.

This distribution, Cn+1,T |t , and its density, cn+1,T |t , can be used to compute different quantities of
interest, including the conditional expectation, m̂, or the conditional median, q̂0.5:

m̂ :=

∫ 1

0
ũ cn+1,T |t (ũ|ut ) dũ, q̂0.5 := C−1

n+1,T |t (0.5|ut ).

One can similarly compute the distribution of un+1,T , conditional on data (u⊤
t1 , . . . , u

⊤
tk )

⊤ observed at
several time points in the past t1 < · · · < tk < T . It is not necessary to use all the spatial locations,
s1, . . . , sn, to do interpolation or prediction. If the number of spatial locations is large, one can use
5–10 closest neighbors.

Note that m̂ and q̂0.5 are the interpolated values on the uniform scale. If Ĝn+1,T is the estimated
univariate marginal distribution function for the process in (1) measured at time T and location sn+1,
one can use Ĝn+1,T to convert these values to the original scale. For example, the predicted median on
the original scale is ẑ0.5 = Ĝ−1

n+1,T (̂q0.5), and the predicted mean is m̂z =
∫ 1
0 Ĝ−1

n+1,T (ũ)cn+1,T |t (ũ|ut )dũ.

5. Empirical studies

In this section, we evaluate the performance of the algorithm in obtaining maximum likelihood
estimates for simulated data sets and then apply the proposed model to hourly wind data. We
also include classical models based on multivariate normal and Student-t distributions with spatio-
temporal covariance matrices for comparison.

5.1. Maximum likelihood estimates for simulated data sets

In this section, we focus on spatio-temporal isotropic models with α(s, t) = α ≥ 0 and Λ(t) =

λ ≥ 0. In more general (non-isotropic) cases, the running time is usually 2–3 times slower since
more parameters need to be estimated and more inverse functions (FW

i,j )
−1(uij) need to be calculated,

i = 1, . . . , n, j = 1, . . . , T . We also assume that the matrixΣZ is a Kronecker productΣZ = ΣS ⊗ ΣT.
Here, ΣS is an n × n matrix that models spatial covariance structure and ΣT is a T × T matrix that
models temporal covariance structure. Similar results can obtained for other (nonseparable) models
of ΣZ and therefore we use the separable structure for simplicity. Note that ΣW is not a separable
covariance matrix even if ΣZ is separable.

We further assume that ΣS is a powered-exponential covariance matrix with the covariance
function CS(h) = exp(−αS∥h∥

ξ ) and ΣT is an exponential covariance matrix with the covariance
function CT(u) = exp(−αT|u|) where h is a spatial lag, u is a temporal lag, 0 < ξ ≤ 2, αS, αT ≥ 0.

Simulation 1. Let T = 5 and ti = i, i = 1, . . . , 5. We generate 500 data sets from the model (2) with
(αS, ξ , αT, α, λ)⊤ = (0.3, 0.8, 0.1, 1.2, 0.16)⊤. We use n = 10 locations that are generated randomly
in [−3, 3]2 ⊂ R2. For each data set, we compute maximum likelihood estimates and then calculate
the bias and standard deviation for the obtained estimates. We repeat this simulation for data sets
with N = 50, 100, 200 replicates; see Table 1.

The bias and standard deviation are smaller with a larger sample size, as expected. The average
running time on a Core i5-2410M CPU@2.3 GHz is 17 min for a data set with N = 200 replicates. The
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Table 1
Bias and standard deviation for maximum likelihood estimates in the exponential common factor model with N =

50, 100, 200 replicates (based on 500 simulations). The true parameter is (αS, ξ , αT, α, λ)⊤ = (0.3, 0.8, 0.1, 1.2, 0.16)⊤ .

N Bias Standard deviation

50 (0.03,−0.25, 0.06,−0.31,−0.03)⊤ (0.07, 0.06, 0.02, 0.28, 0.07)⊤

100 (0.01,−0.19, 0.03,−0.26,−0.03)⊤ (0.05, 0.05, 0.01, 0.25, 0.03)⊤

200 (0.00,−0.13, 0.02,−0.20,−0.02)⊤ (0.03, 0.04, 0.01, 0.17, 0.03)⊤

Table 2
∆ρ , |∆ρ |,∆L, |∆L|,∆U , |∆U |, AIC and BIC values for A1, A2 and A3. Original data are simulated frommodel (2) with the Pareto
common factor.

Model ∆ρ |∆ρ | ∆L |∆L| ∆U |∆U | AIC BIC

A1 −0.02 0.04 −0.02 0.10 0.06 0.07 −56 362 −56 346
A2 −0.01 0.04 0.40 0.40 −0.11 0.14 −52 996 −52 986
A3 −0.01 0.04 0.35 0.35 −0.15 0.17 −54 102 −54 089

estimates do not depend on the choice of starting points. We obtained similar results for data sets
generated from the model with different sets of parameters (αS, ξ , αT, α, λ)⊤.

Simulation 2.We generate a data set frommodel (2), howeverwe assume that Ej∼i.i.d.Pareto(1, 2),
that is, pr(Ej < r) = 1 − r−2 for r ≥ 1, j = 1, . . . , T . With a Pareto factor and a time lag of
zero, the variables are strongly dependent and, in fact, the upper tail dependence coefficient for
the corresponding bivariate copula λU = 1 for any pair of variables, and λU does not depend on
the distance between any two locations; see Krupskii and Genton (submitted for publication). We
again assume T = 5 and ti = i, i = 1, . . . , 5. We generate a data set for (αS, ξ , αT, α, λ)⊤ =

(0.3, 0.8, 0.1, 1.0, 0.16)⊤ with 200 replicates and n = 20 spatial locations in [−3, 3]2 ⊂ R2. We
calculatemaximum likelihood estimates assuming an exponential distribution for the common factor
Ej; the estimated parameters are θ̂MLE = (0.38, 0.66, 0.14, 1.40, 0.13)⊤.

To assess the goodness of fit of this misspecified model (2), we use the following measures of
dependence applied to each pair (U1,U2) of multivariate data. We assume Ui ∼ U(0, 1), otherwise
nonparametric ranks can be used to transform the data into uniform scores.

1. We use Spearman’s correlation Sρ = cor(U1,U2) to assess the fit in the middle of the
distribution;

2. The tail-weightedmeasures of dependence are: ϱL = cor{(1−2U1)6, (1−2U2)6|U1 < 0.5,U2 <

0.5}, ϱU = cor{(1 − 2U1)6, (1 − 2U2)6|U1 > 0.5,U2 > 0.5}. These measures can be used to
assess the fit in the lower and upper tails, respectively; see Krupskii and Joe (2015).

We calculate the theoretical values of Sρ ,ϱL andϱU for the estimatedmodel. To do this, we simulate
200,000 replicates frommodel (2)with parameters θ̂MLE (model A1) and estimate the abovementioned
measures of dependence for each pair of variables of the simulated data set. We also compute empir-
ical estimates of these measures for the original data set and then compute the difference between
the empirical estimates and the theoretical estimates based on the misspecified model (2) with the
exponential common factor. The average (absolute) differences of Sρ, ϱL and ϱU for all different pairs
of variables are denoted by ∆ρ,∆L,∆U (|∆ρ |, |∆L|, |∆U |), respectively. We also use a multivariate
normal copula and a multivariate Student-t copula with separable covariance matrix ΣZ (models A2
and A3, respectively) to fit the original data. We then calculate ∆ρ, |∆ρ |,∆L, |∆L|,∆U , |∆U | for A2
and A3. The results are presented in Table 2.

Models A1, A2 and A3 have different number of parameters (5, 3 and 4, respectively) and therefore
we use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to compare
these models. We can see that the spatio-temporal covariance structure is fitted well by all three
models. However, models A2 and A3 fail to fit the data well in the tails. Both multivariate normal
and Student-t copulas significantly underestimate the strength of dependence in the upper tail. The
latter copula can handle tail dependence; however, this is a symmetric copula and therefore it is
not suitable for modeling asymmetric dependence for the original data set. Model A1 fits the data
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quite well even in the tails, although the distribution for the common factor is misspecified for this
model. The good fit of A1 implies that the proposed model (2) with the exponential common factor
can be appropriate for modeling asymmetric dependence and tail dependence for spatio-temporal
data, and that the assumption about the distribution of Ej is not very restrictive. In addition, with the
exponential common factor, the likelihood estimation is fairly fast even in high dimensions, and the
resulting model (2) has some appealing properties as discussed in Sections 2 and 3.

5.2. Application to wind data

In this section, we apply the proposed model (2) to hourly wind speed data measured at 10
weather stations located in the Netherlands. We use data measured from 9:00 to 23:00 because the
averagewind speed is higher during this time; we therefore expect dependencies amongwind speeds
measured at different stations to be stronger. We use wind measurements from February to August
2016, sevenmonths in total, excluding the stormy autumnmonths because of possibly different wind
patterns. For each station with spatial locations s1, . . . , s10, we compute the average wind speed
measured at hours: 9, 10, 11; 12, 13, 14; 15, 16, 17; 18, 19, 20 and 21, 22, 23, to get five variables,
Wi,1, . . . ,Wi,5, i = 1, . . . , 10, with strong temporal dependence. We use the proposed copula model
(2) to estimate the joint dependence of these variables, at different spatial locations. These variables
are equally spaced in time but unequally spaced variables can be modeled as well if needed.

We treat different days as replicates; however, there is a weak temporal dependence between the
variablesWij measured on two consecutive days.We therefore use only every other day to remove any
temporal dependence, 106 days in total. LetWij,n be the value ofWij measured at day n = 1, . . . , 106.
For every location i = 1, . . . , 10 and time j = 1, . . . , 5, we compute the uniform scores:

Uij,n =
rank(Wij,n) − 0.5

106
, i = 1, . . . , 10, j = 1, . . . , 5.

We transform the uniform scores to normal scores data; Fig. 3 shows bivariate scatter plots for
some variables Wij. These scatter plots can be used as a diagnostic tool to detect departures from
normality (Nikoloulopoulos et al., 2012). Under the joint normality of the normal scores, the scatter
plots should have an elliptical shape. However, we can see in Fig. 3 that the dependence is stronger
in the upper tail, so the Gaussian copula may not be suitable for modeling the wind data. Also, the
dependence is weaker where there is a larger distance between the stations, as expected for data
with spatial dependence.

Some ties can be observed in the data due to rounding errors. However, adding small perturbations
to the original data (in order to remove the ties) has no significant effect on the results. Kojadinovic
and Yan (2010) showed that the randomization-based approach, when using pseudo-observations by
randomly breaking the ties, can give satisfactory results when ties are present in data.

We use the following three models to fit the uniform scores data:

B1 Gaussian copula (symmetric dependence, no tail dependence);
B2 Student-t copula with ν degrees of freedom (symmetric dependence, tail dependence);
B3 Factor copula model based on the process (1).

For all the three models we use the covariance matrix ΣZ based on the nonseparable spatio-
temporal cross-covariance function ψ(h, u) =

1
θT|u|2+1

exp
{
−

(
θS∥h∥

2

θT|u|2+1

)γ}
, with θS, θT > 0 and

0 < γ < 1. Here, h is a spatial lag and u is a temporal lag. For B3, we assume Λ(t) = λ ≥ 0
(i.e., intensity is a constant) and α(s, t) = α0 + α1LAT + α2LON where LAT and LON are spatial
coordinates (latitude and longitude, respectively).

We estimate models B1, B2 and B3 using maximum likelihood. To assess the goodness of fit,
we calculate the theoretical values of the Spearman’s rho, Sρ , and the tail-weighted measures of
dependence, ϱL and ϱU , and then compare these estimates with the empirical (non-parametric)
estimates of these measures as we did in the previous section. Similarly, we compute ∆ρ,∆L,∆U
and |∆ρ |, |∆L|, |∆U | for the three models B1, B2 and B3; Table 3 shows the results.

Models B1, B2 and B3 have different number of parameters (3, 4 and 8, respectively) and we use
AIC and BIC to compare these models. It is seen that both models B1 and B2 have a very bad fit in the
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Fig. 3. Normal scores scatter plots for pair (W11,W3j) (top) and (W31,W10j) (bottom) with j = 1 (left), j = 2 (middle) and j = 3
(right).

Table 3
∆ρ , |∆ρ |,∆L, |∆L|,∆U , |∆U |, AIC and BIC values for models B1, B2 and B3 applied to the wind data.

Model ∆ρ |∆ρ | ∆L |∆L| ∆U |∆U | AIC BIC

B1 0.24 0.24 0.04 0.16 0.33 0.34 −8819 −8811
B2 0.24 0.25 0.01 0.15 0.30 0.30 −8915 −8904
B3 0.04 0.08 0.03 0.15 −0.05 0.11 −9084 −9063

middle and in the upper tails of the joint distribution of the wind data, as indicated by the very large
values of∆ρ and∆U , respectively. A positive sign implies that B1 and B2 significantly underestimate
the strength of dependence in the upper tail and the overall dependence. This is because these are
symmetric models and they cannot handle data with significant asymmetry. On the other hand,
model B3 significantly improves the fit and has the lowest AIC value. The choice of spatio-temporal
covariance function ψ(h, u) does not significantly change the fit of any of these models; in all cases
model B3 is significantly better, both in terms of AIC and the goodness of fit.

Finally, we use the morning wind speed measurements, wi1, to compute wi2, . . . , wi5, i =

1, . . . , 10. Here, we do not interpolate data but rather do prediction because the data are predicted for
different time points. For simplicity, we predict data at the same locations and the predicted values
(we use medians) can then be treated as the wind forecast at these particular locations. In general,
data can be predicted at different locations and different time points as described in Section 4.4.

For prediction, the marginal distributions need to be estimated. We assumeWit ∼ Gamma(scale
= k1 + tk2 + k3LATi + k4LONi, shape = k5 + tk6), where LATi, LONi are spatial coordinates of the ith
station (latitude and longitude, respectively). Parameter estimates k̂1, . . . , k̂6 are obtained using the
same data as we used to fit the copula models B1, B2 and B3.

For a given day (to do prediction, we select days that were not used to fit the marginal distribution
and the copula), the observed values wi1 are transformed into uniform data using the estimated
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Table 4
δT (in 0.1 m per second) and RδT (shown in parentheses), T = 2, . . . , 5, for model B1 (based on the Gaussian copula, left) and
model B3 (the proposed exponential factor copula model, right). Smaller values are shown in bold font.

Date Time lags, B1 Time lags, B3

1 2 3 4 1 2 3 4

06.03 23(26%) 27(32%) 27(43%) 17(29%) 14(15%) 11(12%) 13(16%) 10(21%)
11.04 29(29%) 47(45%) 30(38%) 51(58%) 13(13%) 20(18%) 9(12%) 19(21%)
21.04 27(31%) 37(41%) 11(20%) 10(38%) 22(25%) 28(30%) 15(36%) 11(53%)
11.05 24(25%) 35(39%) 34(41%) 38(47%) 9(10%) 8(9%) 10(12%) 16(19%)
21.05 15(19%) 17(23%) 7(16%) 11(31%) 7(9%) 11(19%) 19(46%) 18(63%)
04.06 31(29%) 50(45%) 54(52%) 56(59%) 8(7%) 15(13%) 16(15%) 15(16%)
27.08 14(16%) 13(17%) 11(23%) 28(39%) 7(10%) 9(17%) 22(58%) 13(20%)

marginal model:

ui1 = Γ (wi1; scale = k̂1 + k̂2 + k̂3LATi + k̂4LONi, shape = k̂5 + k̂6), (t = 1)

and the predicted values on the uniform scale are obtained using the predicted medians: uiT |1 =

C−1
i,T |1(0.5|u11, . . . , u10,1; θ̂α, θ̂λ, θ̂Σ), i = 1, . . . , 10, T = 2, . . . , 5. The predicted medians are then

transformed back to the original scale:

wiT |1 = Γ −1(uiT |1; scale = k̂1 + T k̂2 + k̂3LATi + k̂4LONi, shape = k̂5 + T k̂6) (T = 2, . . . , 5).

Here Γ and Γ −1 are the Gamma cdf and inverse cdf, respectively.
For T = 2, . . . , 5 (corresponding to time lags 1,. . . ,4), we compute the mean absolute errors

δT = 0.1
∑10

i=1|wiT |1 − wiT | and the mean relative absolute errors RδT = 10
∑10

i=1|1 − wiT |1/wiT |,
measured in percents, where wiT are the actual (observed) wind data at the ith station and time T .
Table 4 shows the mean absolute errors for model B1 (assuming multivariate normal copula) and
model B3 (the proposed model) for seven different days with strong winds in the morning (high
measured values w11, . . . , w10,1).

We see that the proposed model B3 has smaller prediction errors than B1 based on the Gaussian
copula, especially for the first two time lags. Model B3 improves the prediction by taking into account
the strong spatio-temporal dependence between high wind speed measurements. At the same time,
the prediction errors are comparable for B1 and B3 if we select days with weak to moderate winds
in the morning. This implies that the classical multivariate normal model can adequately fit the wind
data with moderate dependence but fails to account for strong upper tail dependence.

Finally, we compute the predicted medians for the mean wind speed as shown in Section 4.4 for a
25× 25 uniform grid in the region located between 51.9◦ and 53.6◦ North and between 5.2◦ and 6.8◦

East. We select a day with strong winds in themorning, June 4th, and use themorningmeasurements
for the ten stations, W1,1, . . . ,W1,10, to predict wind speeds at different spatial locations in the
afternoon (12–2 pm), corresponding to the time lag equals one. Fig. 4 shows the predicted medians
for models B1 and B3.

It is seen that model B1 significantly underestimates the wind speeds and model B3 has smaller
prediction errors. The proposed copula model (2) can be used to construct the maps of predicted
medians at any time lags and any spatial locations. We tried other days and got similar results with
strong winds in the morning. The difference between the two models, B1 and B3, is significantly
smaller, when the predicted medians are calculated for days with no strong winds.

6. Discussion

In this paper, we proposed an extension of the factor copula model for replicated spatial data by
Krupskii et al. (in press). This extended model can handle data with asymmetric dependence where
the dependence is stronger in the joint upper tail. Simulation studies showed that different types of
spatio-temporal dependencies can be obtained with this model, and the rate of decay of dependence
in time can be controlled using the intensity function, Λ(t), as well as parameters of the covariance
matrixΣZ. The likelihood function for the proposed model does not require a numerical multivariate
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Fig. 4. Predicted medians for model B1 (left) and model B3 (right) for the wind speed data in the area of study (in 0.1 m/s),
calculated for the period of 12–2pm on June 4th, 2016. The 10 stations with recordedwind data are shown as circles. The actual
speed measurements (in 0.1 m/s),W2,1, . . . ,W2,10 , are shown next to each station.

integration and so estimation is fairly easy unless the number of time lags is very large. This copula
model can be used with arbitrary univariate marginals, thus allowing greater flexibility in modeling
spatio-temporal data.

Despite its flexibility, the proposed model requires replicates to estimate its parameters if the
number of time lags is small. With a large number of time lags, estimation for this model becomes
very difficult because of the exponentially growing number of terms to be calculated for the likelihood
function. This model is ergodic in time but not in space because the purely spatial model of Krupskii
et al. (in press) is not ergodic in space. In geostatistical applications, data often have only one
replicate. One direction for future research is therefore to find a copula model for spatio-temporal
data that does not require replicates for estimation. Another topic for future research is to define
models formultivariate datawith spatio-temporal dependencewhendifferent variables aremeasured
repeatedly in time and at different spatial locations. Examples include weather data (temperature,
pressure,wind speed)measured at differentweather stations or concentrations of different pollutants
measured by weather balloons launched from different sites.

Acknowledgment

This research was supported by the King Abdullah University of Science and Technology (KAUST).

Appendix

A.1. Proof of Proposition 1

Let E1, E2∼i.i.d. Exp(1) and let E1, E2 be independent of Z1,j1 , Z2,j2 . For ui ∈ (0, 1) definewi = F−1
i,ji

(ui),
i = 1, 2. We have:

CW
1,j1;2,j2 (u1, u2) = pr(W1,j1 < w1,W2,j2 < w2)

= pr(Z1,j1 + α1,j1E1 < w1, Z2,j2 + α2,j2E1 < w2)pr{P(tj1 ) = P(tj2 )}
+ pr(Z1,j1 + α1,j1E1 < w1, Z2,j2 + α2,j2E2 < w2)pr{P(tj1 ) < P(tj2 )}

= λj1,j2C
W
1,1(u1, u2) + (1 − λj1,j2 )C

W
1,2(u1, u2),
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where CW
1,k is a copula corresponding to the joint distribution of the vector (Z1,j1 + α1,j1E1, Z2,j2 +

α2,j2Ek)
⊤, k = 1, 2. Krupskii andGenton (submitted for publication) showed that the limiting extreme-

value copula for CW
1,1(u1, u2) is

CW
1,1(u1, u2) = lim

k→0
CW
1,1(u

k
1, u

k
2)

1/k
= HR(u1, u2;ϑHR),

where

ϑHR =

{
α2
1,j1

+ α2
2,j2

− 2α1,j1α2,j2 (Σ
j1,j2
Z )s1,s2

}1/2
α1,j1α2,j2

.

At the same time, CW
1,2(u1, u2) = limk→0CW

1,2(u
k
1, u

k
2)

1/k
= u1u2, and

CW
1,j1;2,j2 (u1, u2) = lim

k→0

{
λj1,j2C

W
1,1(u

k
1, u

k
2) + (1 − λj1,j2 )C

W
1,2(u

k
1, u

k
2)
}1/k

= HR(u1, u2;ϑHR) lim
k→0

{
1 − (1 − λj1,j2 )C

∗(u1, u2; k)
}1/k

,

where C∗(u1, u2; k) = 1 −
CW
1,2(u

k
1,u

k
2)

CW
1,1(u

k
1,u

k
2)

= −k ln
{

u1u2
HR(u1,u2;ϑHR)

}
+ o(k) and therefore

CW
1,j1;2,j2 (u1, u2) = HR(u1, u2;ϑHR) lim

k→0

[
1 + k(1 − λj1,j2 ) ln

{
u1u2

HR(u1, u2;ϑHR)

}]1/k
= {HR(u1, u2;ϑHR)}λj1,j2 (u1u2)1−λj1,j2 . □

A.2. Closed-form formula for I(j) from Section 4

Letm = max(j). It follows that

I(j) = (2π )−nT/2
|Σ Z|

−1/2
∫
Rm

+

exp{h(v1, . . ., vm)}dv1 · · · dvm,

where

h(v1, . . . , vm) = −
1
2
(w̃1 − α̃1v1, . . . , w̃m − α̃mvm)⊤Σ

−1
Z (w̃1 − α̃1v1, . . . , w̃m − α̃mvm) −

m∑
k=1

vk

= C0 −
1
2
(v1 − v∗

1, . . . , vm − v∗

m)
⊤Σ−1

∗
(v1 − v∗

1, . . . , vm − v∗

m). (4)

By equating coefficients of the two quadratic functions of v1, . . . , vm in (4), we get:

Σ−1
∗

= A⊤Σ
−1
Z A, v∗

= Σ∗(−Im + W⊤Σ−1
Z A)1m,

C0 = −0.51⊤

m(W − Av∗)⊤Σ
−1
Z (W − Av∗)1m − v∗

1 − · · · − v∗

m,

whereA andW are nT ×mmatrices such that the kth column is equal to α∗

k (w
∗

k , respectively) where
α∗

k (w∗

k) is a vector α (w) with all elements but αk (wk) replaced by zeros. It implies that

I(j) = (2π )(m−nT )/2
|Σ Z|

−1/2
|ΣZ∗ |

1/2 exp(C0)ΦΣ∗
(v∗

1, . . ., v
∗

m),

so that I(j) has a closed form and no numerical integration is required. □
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