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ABSTRACT
Wepropose a new class of transGaussian random fields named Tukey g-and-h (TGH) random fields tomodel
non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions,
possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formu-
lation of the TGH random field enables an automatic search for the most suitable transformation for the
dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood
estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation
procedure, based onmaximum approximated likelihood, is proposed and an extreme spatial outlier detec-
tion algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed
along with prediction confidence intervals. The predictive performance of TGH random fields is demon-
strated through extensive simulation studies and an application to a dataset of total precipitation in the
south east of the United States. Supplementary materials for this article are available online.

1. Introduction

Gaussian random fields are among the most popular tools for
analyzing spatial data because they can be simply character-
ized by a mean structure and a valid covariance function. Var-
ious parametric and nonparametric covariance functions have
been studied in the literature and have proven useful in prac-
tice, which further enhances the modeling power of Gaussian
random fields. Unfortunately, Gaussianity is a strong assump-
tion that is rarelymet in reality. Data collected from awide range
of applications often display strong skewness and heavy tails in
their distributions, for example, wind speed data (Zhu and Gen-
ton 2012), temperature data (North et al. 2011), and precipita-
tion data (Marchenko and Genton 2010), to mention but a few.

As amotivating example, we consider total precipitation data
(in centimeters) inNovember 1994 over the southeasternUnited
States. Longitude in the region under study ranges from−91.23
to −75.55 and latitude ranges from 25.02 to 37.38. The data are
available at http://www.image.ucar.edu/Data/US.monthly.met.
Although there are 991 observations recorded in this region, as
illustrated in Figure 3(a), the locations with observed values still
appear quite sparse on the map. It is of great interest to create
a precipitation map with a much finer resolution based on the
observed data from monitoring stations, which can be useful
for revealing short and long-term climate patterns. There are
ongoing projects to create such climate maps for precipitation
and temperature patterns on a regular basis, see, for example,
the PRISM climate group (http://www.prism.oregonstate.edu).
To this end, it is critical to build geostatistical models that can
explain spatial or spatio-temporal variations in precipitation
well. However, precipitation data usually do not have a marginal
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normal distribution (Allcroft and Glasbey 2003; Johns et al.
2003) and special care must be taken to accommodate the skew-
ness and potential outliers in the data.

Various approaches have been proposed to model non-
Gaussian geostatistical data, such as skew-Gaussian processes
(Zhang and El-Shaarawi 2010; Genton and Zhang 2012; Kim
andMallick 2012; Rimstad andOmre 2014), scale mixing Gaus-
sian random fields (Palacios and Steel 2006; Fonseca and Steel
2011), log-skew-elliptical random fields (Marchenko and Gen-
ton 2010), T-distributed random fields (Røislien and Omre
2006), transGaussian random fields (Cressie 1993; De Oliveira
et al. 1997; Allcroft and Glasbey 2003; Butler and Glasbey 2008),
spatial copula models (Gräler 2014), and non-Gaussian Matérn
fields (Wallin and Bolin 2015). Of these methods, one partic-
ularly appealing approach is the transGaussian random field
obtained by applying some nonlinear transformations to the
original data. Typically,Y (s), s ∈ Rq, q ≥ 1, is said to be a trans-
Gaussian random field if there exists a transformation, ψ (·), so
that

ψ{Y (s)} = ξ + X(s)Tβ +V (s) + ε(s), (1)

where ξ ∈ R is a location parameter, X(s) ∈ Rp is a vector of
some observed covariates at location s, β ∈ Rp is a vector of
regression parameters, V (s) is a Gaussian random field with
mean 0 and some covariance function, and ε(s) is a Gaus-
sian white-noise process independent ofV (s) with mean 0 and
variance σ 2

e . Common choices of transformation ψ (·) include
log-normal (De Oliveira 2006), square-root (Johns et al. 2003),
Box–Cox (De Oliveira et al. 1997), and power transformations
(Allcroft and Glasbey 2003). In principle, statistical analyses
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can be carried out on the transformed data, ψ{Y (s)}, using
any techniques available for Gaussian random fields, which
adds significant flexibility to the transGaussian random fields
when modeling real spatial data. However, it can be difficult to
find an adequate transformation ψ (·), if not impossible. Fur-
thermore, for a given ψ (·), some appealing properties of the
latent Gaussian random field, V (s), may not be inherited by
the transformed random field, Y (s). For example, Wallin and
Bolin (2015) pointed out that the transformation ψ (·) in (1)
may induce dependence between the mean structure and the
covariance function ofY (s). As a result, even ifV (s) is second-
order stationary, the covariance function of Y (s) may still be
nonstationary. Wallin and Bolin (2015) proposed non-Gaussian
Matérn fields derived from stochastic partial differential equa-
tions to model non-Gaussian spatial data. Although this pro-
vides an interesting alternative, their approach is mathemati-
cally involved and its statistical properties are much less under-
stood than the transGaussian random field; seeWallin and Bolin
(2015) for a detailed discussion.

Another challenge ofmodeling non-Gaussian spatial data lies
often in the presence of potential outliers. Although somemod-
erate outliers can be accommodated by using a random field
with heavy-tailed marginal distributions, such as the Student-t
distribution, there is no guarantee that the suggested model will
be flexible enough to cope with more extreme outliers, which in
turn may have significant impacts on the estimation of model
parameters. Consequently, if one wishes to conduct a proba-
bilistic prediction/forecast of the distribution of some uncer-
tain quantity at a spatial location (Gneiting et al. 2007; Gneit-
ing and Katzfuss 2014), imprecise parameter estimates may lead
to appreciable deviations from the truth. Therefore, not only it
is of great importance to construct non-Gaussian random fields
with more flexible marginal distributions, it is also important
to develop methods that can effectively identify extreme out-
liers that cannot be accommodated well by the suggestedmodel.
Identifying spatial outliers in a systematic way can be challeng-
ing because unlike the independent case, extreme outliers in a
spatial random field are not necessarily the largest or the small-
est observations from that field. But rather, because of spatial
dependence, they are more likely to be some observations that
appear to be significantly different from their local neighbors.
We will show how to identify extreme spatial outliers using our
proposed method.

In this article, we propose a new class of transGaussian ran-
dom fields named the Tukey g-and-h (TGH) random fields,
which have extremely flexible marginal distributions. The pro-
posed model is parameterized in a way such that all parame-
ters in the transformation can be estimated together with the
covariance function of the latent Gaussian random field. This
enables us to search for the most suitable transformation for the
observed data in a very large family of transformations. In this
sense, the TGH random field ismore flexible than existing trans-
Gaussian random fields based on pregiven transformations. We
will show that the TGH random field enjoys appealing statistical
properties and can be used to effectively identify extreme spa-
tial outliers, an issue that has not been well studied for existing
transGaussian random fields.

The rest of our article is organized as follows.
The probabilistic properties of TGH random fields, such as

second-order moments, are investigated in Section 2, whereas
their estimation, based on maximum approximated likelihood,
is described in Section 3. Point prediction, also called kriging,
and probabilistic prediction with TGH random fields are con-
sidered in Section 4, along with prediction confidence intervals.
The results of Monte Carlo simulation studies of the estima-
tion and predictive performance with TGH random fields are
reported in Section 5. An application of our methodology to
the aforementioned spatial precipitation dataset is presented
in Section 6. The article ends with a discussion in Section
7. Derivations of our theoretical results are collected in the
supplementary materials.

2. Tukey g-and-h Random Fields

2.1. Definitions

The g-and-h distribution was introduced by Tukey (1977) to
model distributions that are severely skewed and subject to large
outliers. Tukey’s g-and-h transformation is

τg,h(z) = g−1{exp(gz) − 1} exp(hz2/2), (2)

which is a strictly monotone function of z when h ≥ 0 and
g ∈ R. Here and in the sequel, for all quantities involving g, their
values for the case with g = 0 are defined as their limits attained
when g → 0. The random variable Y = τg,h{Z} is said to have
a Tukey g-and-h distribution if Z follows a standard normal,
N(0, 1), distribution. The first parameter, g, in (2) controls the
skewness of Y ’s distribution, where g > 0 yields a right-skewed
distribution and g < 0 makes the distribution left-skewed. The
second parameter, h, governs the tail behavior of Y ’s distribu-
tion, with a larger value of h indicating a heavier tail. Because
of its flexible shapes, the Tukey g-and-h distribution provides a
powerful tool to model nonnormal data; see, for example, Field
(2004) and He and Raghunathan (2012).

In this article, we apply the Tukey g-and-h transforma-
tion to a Gaussian random field. More specifically, let Z(s),
s ∈ Rq, q ≥ 1, be a standard Gaussian random field, that is,
E{Z(s)} = 0 and var{Z(s)} = 1, with some correlation func-
tion corr{Z(s1),Z(s2)} = ρZ(s1, s2). A standard Tukey g-and-h
(TGH) random field, T (s), is defined by

T (s) = τg,h{Z(s)}. (3)

Then, a more general Tukey g-and-h random field,Y (s), can be
defined as

Y (s) = ξ + X(s)Tβ + ωT (s), (4)

where ξ ∈ R is a location parameter, ω > 0 is a scale parame-
ter, and X(s),β ∈ Rp are vectors of some observed covariates
at location s and their regression coefficients. This formulation
of Y (s) is close in spirit to the definition of finite-dimensional
multivariate Tukey g-and-h distributions in Field and Genton
(2006) and He and Raghunathan (2012). The TGH random
field, Y (s), includes a large family of transGaussian random
fields with extremely flexible marginal distributions, for exam-
ple, when g = h = 0, Y (s) reduces to a Gaussian random field.
For h = 0 and g > 0, Y (s) is essentially a shifted log-Gaussian
random field and for g = 0 and h > 0,Y (s) becomes a random
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1238 G. XU ANDM. G. GENTON

Figure . TGH distribution (red dash line) approximations to several distributions (solid line): (left) standard Cauchy; (middle) skew-normal with location , scale , and
skewness .; (right) skew-t with location , scale , degrees-of-freedom , and skewness ..

field with a Pareto-like marginal distribution. In fact, the Tukey
g-and-h distribution can adequately approximate many distri-
butions including the Student’s t , exponential, Cauchy, Weibull,
and logistic distributions (Martinez and Iglewicz 1984; Hoaglin
1985). In Figure 1, we give a few examples of distributions
with different levels of skewness and tail heavyness that can be
well approximated by the Tukey g-and-h distribution; see Gen-
ton’s (2004) and Azzalini and Capitanio’s (2014) books for more
information on the skew-normal and skew-t distributions.

2.2. Second-OrderMoments of TGH Random Fields

The following lemma gives the mean, variance, and covariance
functions of a standard Tukey g-and-h random field, T (s).

Lemma 1. If h < 1, then the standard TGH random field T (s)
defined in (3) has a mean

E{T (s)} = 1
g
√
1 − h

[
exp

{
g2

2(1 − h)

}
− 1

]
, (5)

and if h < 1/2, then T (s) has a covariance function
CT (s1, s2) = cov{T (s1),T (s2)} as

CT (s1, s2) =
exp

[
1 + ρZ(s1, s2)

1 − h{1 + ρZ(s1, s2)}
g2
]

− 2 exp
[

1 − h{1 − ρ2Z(s1, s2)}
(1 − h)2 − h2ρ2Z(s1, s2)

g2

2

]
+ 1

g2
√

(1 − h)2 − ρ2Z(s1, s2)h2
− [E{T (s)}]2. (6)

The proof is given in the supplementary materials. Following
Lemma 1, for the general TGH random field, Y (s), defined in
(4), we have

E{Y (s)} = ξ + XT(s)β + ωE{T (s)},
cov{Y (s1),Y (s2)} = ω2cov{T (s1),T (s2)}.

As in any other transGaussian random field, we can intro-
duce complicatedmean and covariance structures forY (s). Any
stationary or nonstationary covariance structure available for
Gaussian random fields can be applied to the TGH random field.
Additional nonstationarity can be added into the formulation of
(4) by allowing the scale parameter, ω, to depend on the loca-
tion, s. For the ease of presentation, we shall keepω as a constant
in this article. The following theorem is a direct consequence of
Lemma 1.
Theorem 1. Suppose that the Gaussian random field Z(s) in
(3) is second-order stationary and that h < 1/2 in the stan-
dard TGH random field T (s). Then we have: (a) T (s) is also

second-order stationary; (b) T (s) is mean-square continuous if
and only if Z(s) is mean-square continuous; (c) T (s) ism-times
mean-square differentiable if Z(s) is m-times mean-square
differentiable.

The proof is given in the supplementary materials.
Theorem 1 states that unlike many other transGaussian

random fields, nice properties such as stationarity, mean-square
continuity, and degrees of mean-square differentiability can be
inherited by the TGH random field from the latent Gaussian
random field, Z(s). The key difference between the TGH ran-
dom field (4) and the traditional transGaussian random field (1)
is that the parameterizations of model (4) allow us to separate
the mean structure from the transformation function τg,h(·)
and assume that the latent Gaussian random field Z(s) always
has a mean 0. This leads to Theorem 1. Of course, we can do
this because model (4) is flexible enough for us to estimate
ξ ,ω, g, h,β together with the parameters in the correlation
function simultaneously. Figure 2 presents realizations of the
standard Gaussian random field Z(s) with Matérn spatial
correlation function (17) and its corresponding standard TGH

random fields with various values of g and h. The blank areas
indicate extreme values produced by the transformation that
cannot fit into the color scheme. Figure 2(a) appears to be much
smoother than Figure 2(c), indicating longer and stronger spa-
tial dependence. Another observation is that although increas-
ing either values of g or h leads to large observations, they
seem to work in different fashions. Between (a) and (b), the
overall image patterns appear to be similar except that almost
every local area becomes more extreme because h can produce
both positive and negative outliers. On the contrary, a positive g
produces mainly positive large values while shrinking smaller
values of Z(s) toward 0 and thus changes the overall image
pattern.

2.3. ConnectionWith Log-Gaussian Random Fields

Log-Gaussian random fields are popular for spatial data anal-
ysis in areas such as ecology and meteorology, where the data
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Figure . Realizations of standard TGH random fields (after removing the mean) with Matérn spatial correlation function ().

collected often have right-skewed distributions with possible
outliers (De Oliveira 2006). In what follows, we show that log-
Gaussian random fields can be viewed as a special type of TGH
random field defined in (4) with h = 0 and appropriately cho-
sen ξ , ω, and g. Following the setting of De Oliveira (2006),
we say that Y ∗(s) is a log-Gaussian random field if Z∗(s) =
log{Y ∗(s)} is a Gaussian random field with E{Z∗(s)} = µZ∗ and
cov{Z∗(s1),Z∗(s2)} = σ 2

Z∗ρZ∗ (s1, s2) for some µZ∗ ∈ R, σ 2
Z∗ >

0 and some correlation function ρZ∗ (s1, s2).

Lemma2. For theTGHrandomfield,Y (s), defined in (4), by let-
ting β = 0, h = 0, and setting the constraint ξ = ω/g and g > 0
for parameters ξ , ω, and g, Y (s) becomes a log-Gaussian ran-
dom field with Z∗(s) = exp(ω) + gZ(s).

The proof of Lemma 2 is trivial and is thus omitted. From
Lemma 2, we see that the TGH random field is more flexible
than the log-Gaussian randomfield inmodeling spatial data. For
example, while the log-Gaussian random field is usually used to
model right-skewed data, the TGH random field can also model
left-skewed data with g < 0.

3. Estimation of TGH Random Fields

3.1. Asymptotic Properties of theMLE

Denote θ1 = (βT, ξ ,ω, g, h)T and let θ2 be the parame-
ter vector of ρZ(s1, s2) in (4). Consider a dataset Dn =
{(y(s1), x(s1)), . . . , (y(sn), x(sn))} collected from the TGH
random field,Y (s), at locations s1, . . . , sn. Themaximum likeli-
hood estimator (MLE) θ̂n of θ = (θT1 , θ

T
2 )T is defined as themax-

imizer of the log-likelihood function

Ln(θ1, θ2|Dn) ∝ − 1
2
ZT

θ1
(R−1

θ2
+ hIn)Zθ1 − 1

2
log |Rθ2 |

−
n∑

i=1

log
[
exp(gzθ1,si ) + g−1{exp(gzθ1,si )

− 1}hzθ1,si
]
− n logω, (7)

where zθ1,si = τ−1
g,h { y(si)−x(si )Tβ−ξ

ω
}, Zθ1 = (zθ1,s1 , . . . , zθ1,sn )

T,
and Rθ2 is the n × n correlation matrix whose (i, j)th element
is ρZ(si, s j).

To study the asymptotic properties of θ̂n, we follow the work
of Sweeting (1980). Suppose # is an open subset of Rp and
assume that Ln(θ1, θ2|Dn) is twice continuously differentiable
for any θ ∈ #. Let Hn(θ) be the random matrix consisting

of sub-matrices Hθiθ j,n = − ∂Ln(θ1,θ2|Dn)

∂θi∂θ
T
j

, i, j = 1, 2. Following
Sweeting (1980), we use→u and⇒u to indicate uniformconver-
gence and uniform weak convergence in compact subsets of #,
respectively. Define the normof amatrixA as ∥A∥ =

√
tr(ATA)

and a matrix sequence A1, . . . ,An converges to A if and only if
∥An − A∥ → 0 as n → ∞. Assume that Bi,n(θ) = Eθ(Hθiθi,n),
i = 1, 2, exist and are positive definite for all θ ∈ #. The follow-
ing conditions are sufficient to ensure the asymptotic normality
of the maximum likelihood estimator θ̂n:

C1 (Information Growth): The nonrandommatrices B1,n(θ)

and B2,n(θ) are both continuous in θ and as n → ∞,
∥B−1

i,n (θ)∥ →u 0, i = 1, 2, for all θ ∈ #.
C2 (Convergence): There exists a (random) matrix W(θ),

which is positive definite with probability 1, such that for
any θ ∈ #, as n → ∞:

Wn(θ) =
(
B−1/2
1,n (θ) 0
0 B−1/2

2,n (θ)

)(
Hθ1θ1,n Hθ1θ2,n

Hθ2θ1,n Hθ2θ2,n

)

×
(
B−1/2
1,n (θ) 0
0 B−1/2

2,n (θ)

)

⇒u W(θ).

C3 (Continuity): Let An(θ) = diag{B1/2
1,n (θ),B1/2

2,n (θ)}. We
assume that for any c > 0, (i) supθ′ ∥A−1

n (θ)An(θ
′) −

Ip∥ →u 0, where the supremum is taken over
the set {θ′ : ∥An(θ)(θ′ − θ)∥ ≤ c}; (ii) define
a p× p matrix $ = (θ′

1, . . . , θ
′
p) with θ′

k ∈ #
and let Hn($) be the matrix whose kth row
is the kth row of Hn(θ

′
k), k = 1, . . . , p. Then,

sup$ ∥A−1
n (θ){Hn($) − Hn(θ)}A−1

n (θ) − Ip∥ →u 0 in
probability, where the supremum is taken over the set
{$ : ∥An(θ)(θ′

k − θ)∥ ≤ c, k = 1, . . . , p}.

Theorem 2. Under conditions C1–C3, the MLE θ̂n is consistent
for θ and

An(θ)(̂θn − θ) ⇒u Np(0,W−1(θ)),

where An(θ) = diag{B1/2
1,n (θ),B1/2

2,n (θ)} and ∥A−1
n (θ)∥ →u 0 as

n → ∞.

Theorem 2 follows readily from Theorems 1 and 2 of Sweet-
ing (1980) and thus the proof is omitted. Conditions C1–C3 are
standard conditions used to derive asymptotic normality of a
general maximum likelihood estimator and have been used by
many authors, for example, see Sweeting (1980), Mardia and
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1240 G. XU ANDM. G. GENTON

Marshall (1984), and Cressie and Lahiri (1993). Condition C3
essentially imposes some mild smoothness conditions on the
likelihood function and is generally reasonable for a spatial
model with a covariance function that is twice differentiable
with respect to its parameters. Condition C1 is critical to ensure
the consistency of θ̂n. Tailored to the likelihood function (7),
Theorem 3 of Mardia and Marshall (1984) shows that, under
the increasing domain asymptotic framework, when the data
are observed in a spatial domain s ∈ Dn ⊆ Rd that is increas-
ing with the sample size n, one has that ∥B−1

2,n(θ)∥ →u 0 and
B−1/2
2,n (θ)Hθ2θ2,nB

−1/2
2,n (θ) ⇒u Ip2 . In addition, under the increas-

ing domain framework, condition (i) of Theorem 2 in Mardia
and Marshall (1984) requires that λmax{Rθ2} < C for some con-
stantC > 0, which essentially controls the overall strength of the
spatial dependence. It is reasonable to expect that ∥B−1

1,n(θ)∥ →u

0 andB−1/2
1,n (θ)Hθ1θ1,nB

−1/2
1,n (θ) ⇒u Ip1 as long as the overall spa-

tial dependence is not too strong, with an extreme caseRθ2 = In
being supported byXu andGenton (2015).Our simulation study
in Section 5.1 also confirms the consistency of the MLE θ̂n.

ConditionsC1–C2 are suitable for increasing domain asymp-
totic framework but may break down in the infill asymptotic
framework,when the spatial domainD ⊆ Rd isfixed as the sam-
ple size n increases. LetPk, k = 1, 2, be two probabilitymeasures
defined on the same measurable space (*,F). If P1(A) = 0
for any A ∈ F such that P2(A) = 0, P1 is said to be absolutely
continuous with respect to P2, denoted as P1 ≪ P2. Next, P1
is said to be equivalent to P2, denoted as P1 ≡P2, if P1 ≪ P2
and P2 ≪ P1. It is well known that for a family of equivalent
measures {Pθ : θ ∈ #}, regardless of what is observed, any esti-
mator θ̂n cannot be weakly consistent for all θ ∈ #; see Stein
(1999) and Zhang (2004) for more detailed discussions. Using
this argument, the following theorem indicates that, under the
infill asymptotic framework, the parameter θ for the TGH ran-
dom field may not be consistently estimable.

Theorem 3. Let D be a bounded subset of Rd for d =
1, 2, 3 and PY,k, k = 1, 2, be two probability measures such
that under PY,k, Y (s), s ∈ D, is a TGH random field (4)
with βk = 0 and a Matérn correlation function (17). Assume
that the parameter vector associated with PY,k is of the
form θ(k) = (ξ ,ωk, gk, hk,φk, ν)T, hk > 0, k = 1, 2. If g1/ω1 =
g2/ω2, h1/ω2

1 = h2/ω2
2, andω2

1/φ
2ν
1 = ω2

2/φ
2ν
2 , thenPY,1 ≡PY,2

on the path ofY (s), s ∈ D.

The proof is given in the supplementary materials.
In practice, for a given n, both infill and increasing domain

asymptotics may be appropriate. The key difference is whether
the conditionC1 can bemet, see Zhang andZimmerman (2005).
Our results show that the TGH random field may be more suit-
able for applications where the increasing domain framework is
appropriate. More general infill asymptotic properties of TGH
random fields is an interesting future research topic.

3.2. Efficient Computation of theMLE

Although the maximum likelihood estimator θ̂n has appealing
asymptotic properties, its computation is challenging. The main
reason is that the inverse function of τg,h(z) in (2), denoted by

τ−1
g,h (·), does not have a closed form. As a result, a direct max-
imization of Ln(θ1, θ2|Dn) in (7) is not feasible. For indepen-
dent data, one popular strategy to bypass this issue is to estimate
ξ ,ω, g, and h by matching a set of sample quantiles with their
population counterparts; see Xu and Genton (2015) and refer-
ences therein for a complete review. However, for spatial data,
how to define quantiles is still an open problem and thus the
quantile-matching method is not applicable. As an alternative,
Xu and Genton (2015) proposed to use the estimator obtained
bymaximizing an approximated likelihood function, which was
shown to be as efficient as the maximum likelihood estimator.
The following estimation procedure can be viewed as an exten-
sion of Xu and Genton (2015) from independent to spatially
dependent data.

For a fixed sample size n, we first choose a positive
number bn and then introduce Kn equally spaced knots
over the interval [−bn, bn], denoted as −bn = t1 < t2 <

· · · < tKn = bn. Correspondingly, Tk,θ1 = ξ + ωτg,h(tk), k =
1, . . . ,Kn define Kn knots in the transformed scale. If y(si) −
x(si)Tβ ∈ [T1,θ1 ,TKn,θ1 ], there must exist a k such that Tk,θ1 ≤
y(si) − x(si)Tβ < Tk+1,θ1 . Since τg,h(·) is a monotone function,
the zθ1,si associated with y(si) − x(si)Tβ must lie between the
knots tk and tk+1. As a result, we can define the following approx-
imation to zθ1,si as

z̃θ1,si = tk + y(si) − x(si)Tβ − Tk,θ1
Tk+1,θ1 − Tk,θ1

(tk+1 − tk) if

Tk,θ1 ≤ y(si) − x(si)Tβ < Tk+1,θ1 , (8)

i = 1, . . . , n. Since τg,h(z) is continuous with a bounded deriva-
tive for any z ∈ [−bn, bn], zθ1,si can be well approximated by
z̃θ1,si provided thatKn is sufficiently large. Furthermore, if we can
choose an appropriate bn such that all data points inDn meet the
condition that y(si) − x(si)Tβ ∈ [T1,θ1 ,TKn,θ1 ], the likelihood
function (7) can also be well approximated by replacing zθ1,si
with z̃θ1,si for i = 1, . . . , n. Such a choice of bn is equivalent to
finding a bn such that all zθ1,si ’s fall into the interval [−bn, bn].
When θ1 = θ10 with θ10 being the true values of θ1, the zθ1,si ’s
are realizations from the standard Gaussian random field Z(s)
by definition. From a practical point of view, almost all observa-
tions fromanN(0, 1)distribution lie between [−4, 4] and hence
bn needs not be an extremely large value. In fact, we found that
bn = 10 is sufficiently large for most applications, as long as θ1
is not too far away from its true value θ10. More rigorous dis-
cussions can be found in Xu and Genton (2015). After choosing
appropriate values for Kn and bn, for any given θ = (θT1 , θ

T
2 )T, if

all y(si) − x(si)Tβ ∈ [T1,θ1 ,TKn,θ1 ], i = 1, . . . , n, we define the
approximated likelihood function as

L̃n(θ1, θ2|Dn) ∝ − 1
2
Z̃T

θ1
(R−1

θ2
+ hIn)Z̃θ1 − 1

2
log |Rθ2 |

−
n∑

i=1

log
[
exp(gz̃θ1,si ) + g−1{exp(gz̃θ1,si )

− 1}hz̃θ1,si
]
− n logω, (9)

where Z̃θ1 = (z̃θ1,s1 , . . . , z̃θ1,sn )
T with z̃θ1,si ’s obtained using (8)

for all y(si) − x(si)Tβ’s. If there exist any y(si) − x(si)Tβ /∈
[T1,θ1 ,TKn,θ1 ], we set L̃n(θ1, θ2|Dn) = −∞.
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Using this L̃n(θ1, θ2|Dn), it is important to pick a sensible
starting value θ1,0 = (βT

0 , ξ0,ω0, g0, h0)T such that all observed
y(si) − x(si)Tβ0’s fall into the interval [ξ0 + ω0τg0,h0 (−bn), ξ0 +
ω0τg0,h0 (bn)]. Once a sensible initial θ1,0 is chosen, Algorithm I
described belowwill start searching for localmaxima in a neigh-
borhood of θ1,0. Like in many other maximum likelihood esti-
mation procedures, one can trymultiple initial starting values to
search for a global maximum.

Algorithm I: the maximum approximated likelihood
estimator

Step I: Set Kn = max(1000, n) and bn = 10;
Step II: Obtain initial values for θ1 = (βT, ξ ,ω, g, h)T:

(a) Find the ordinary least-square fit
β̂0 = {XTX}−1XTY where X is the covariate
design matrix and Y the vector of observations;

(b) Use the residuals ε̂i(si) = y(si) − x(si)Tβ̂0 to
find initial estimators (ξ̂0, ω̂0, ĝ0, ĥ0) using
Algorithms in Xu and Genton (2015).

Step III: Suppose we have obtained an estimator
θ̂
k
= (θ̂

kT
1 , θ̂

kT
2 )T, k = 0, 1, 2, . . .;

(a) Fix θ1 = θ̂
k
1, obtain θ̂

k+1
2 by maximizing (9) with

respect to θ2;
(b) Fix θ2 = θ̂

k+1
2 , obtain θ̂

k+1
1 by maximizing (9)

with respect to θ1;
Repeat Step III until θ̂

k+1
= (θ̂

(k+1)T
1 , θ̂

(k+1)T
2 )T converges.

The choice Kn = max(1000, n) is recommended by Xu and
Genton (2015) and yields sufficiently good estimation accuracy
in all our simulation studies. In practice, one can increase Kn
as long as the computational cost is acceptable. In all our sim-
ulation studies, Algorithm I converges quickly. To increase the
chance of finding the global maxima of the approximated likeli-
hood function, it is highly recommended to usemultiple starting
values for parameters in θ2.

With regard to the computational cost of Algorithm I, Step I
costsO(Kn + n) floating operations (Xu and Genton 2015) pro-
vided that R−1

θ2
and |Rθ2 | were returned from Step II, which cost

O(n3) floating operations to compute. Hence, the overall com-
putational complexity of Algorithm I is of the orderO(Kn + n3),
which is only feasible for small to moderate n. If n is large to
massive, tools such as Gaussian predictive processes (Banerjee
et al. 2008), fixed rank kriging (Cressie and Johannesson 2008),
or Gaussian Markov Random Fields (Rue and Held 2005; Xu
et al. 2015), can be used for the efficient computation of the TGH
random field; see also the review by Sun et al. (2012).

3.3. Detection of Extreme Spatial Outliers

In practice, every geostatistical model has its limitations and it
is always possible that some extreme observations from a spa-
tial random field cannot be modeled well. In such cases, even a
small number of extreme outliers may have a significant impact
onmodel estimation. In particular, the parameter h in the defini-
tion of the TGH random field (4) is introduced to accommodate
possible outliers in the random field and therefore its estima-
tion is more sensitive to extreme outliers. Detection of extreme

spatial outliers can be challenging because unlike in the inde-
pendent case, the extreme outliers in a spatial random field are
not necessarily the largest or the smallest observations from that
field. Instead, because of the spatial dependence, they are more
likely to be observations that appear to be significantly different
from their local neighbors.

Next, we show how to use the TGH random field to iden-
tify extreme spatial outliers. Suppose we have obtained an initial
estimator of θ1 and θ2 using Algorithm I with all available data
and denote them by θ̂

int
1 and θ̂

int
2 where “int” stands for “initial.”

Define

Ẑint = L̂Z̃
θ̂
int
1
, (10)

where L̂ = R−1/2
θ̂
int
2

, Z̃
θ̂
int
1
and R

θ̂
int
2
are as defined in (9) with θ j =

θ̂
int
j for j = 1, 2. The L̂ matrix can be computed through an

eigen decomposition of R−1
θ̂
int
2

= P%PT with the diagonal matrix

% = diag{λ1, . . . , λn} and then let L̂ = P%1/2PT where %1/2 =
diag{λ1/21 , . . . , λ

1/2
n }. If the TGH random field (4) provides an

adequate fit for the dataset Dn, the elements in the n × 1 vec-
tor Ẑint are independent N(0, 1) random variables. Unusually
large values in Ẑint often indicate potential existence of extreme
outliers in the spatial random field. Denote the jth element of
Ẑint as ẑintj and L̂Tj = (l̂ j,1, . . . , l̂ j,n) as the jth row of the matrix
L̂. Then we have the relationship ẑintj = L̂Tj Z̃θ̂

int
1
. If |ẑintj | is suspi-

ciously large, for example, larger than 3, we can trace the major
source of this abnormality back to those components in Z̃

θ̂
int
1
.

Then we shall remove the most extreme outlier from the entire
random field and refit the TGH random field to compute new
values of Ẑint.Wewill keep repeating this process until the result-
ing Ẑint appears to be close enough to a N(0, 1) distribution.
We summarize the extreme spatial outlier detection procedure
in the following algorithm.

Algorithm II: extreme spatial outlier detection
Step I: Find the initial estimates θ̂

int
1 and θ̂

int
2 using Algo-

rithm I with all available data;
Step II: Find R

θ̂
int
2
and Z̃

θ̂
int
1
in (9) by plugging in θ j = θ̂

int
j for

j = 1, 2;
Step III: Perform the eigen-decomposition of R−1

θ̂
int
2

= PT%P

and L̂ = PT%1/2P;
Step IV: Find Ẑint = L̂Z̃

θ̂
int
1
, compute the p-value of Shapiro–

Wilk test on Ẑint;
(a) If p-value> 0.10, stop the algorithm; otherwise,

continue as follows;
(b) If the setJ = { j : |zintj | > η} for some η > 0 (we

recommend using η = 3) is empty, stop the algo-
rithm; otherwise, continue as follows;

(c) Let jo = argmaxl=1,...,n; |zintj | and remove the
largest contributor to zintj0 , that is, remove the
point k = argmaxl=1,...,n;{|l̂ jo,l z̃θ̂

int
1 ,l

|}.
Repeat Steps I–IV until algorithm stops.

As an illustration, we apply Algorithm II to the precipitation
dataset described in Section 6. Figure 3(c) gives the QQ-plot
of the initial fitted value of Ẑint in (10) obtained by fitting the
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Figure . (a) Locations (“×”) of  extreme outliers; (b) Boxplots of  extreme identified outliers (“×”) and their nearest  neighbors, (“+” indicate other identified outliers
in its neighborhoods); (c) and (d) Q-Q plot of components in Ẑint in () and Ẑpsc .

TGH random field (20) with all n = 991 observed data points.
Obviously, the potential inadequate fit to the data is indicated by
the existence of very large and small values in Ẑint. By applying
the Algorithm II with η = 3, we successfully identify 13 extreme
spatial outliers in the original dataset as indicated in Figure 3(a).
To see whether these 13 points are truly extreme spatial out-
liers, we give the boxplots of observations of identified loca-
tions together with their nearest 20 neighbors in Figure 3(b).
We can see that all 13 points can be considered as extreme out-
liers in their local spatial neighborhoods, which demonstrates
the effectiveness of Algorithm II in detecting extreme spatial
outliers.

After identifying these 13 extreme spatial outliers, we manu-
ally remove them and refit the TGH random field (20) with the
remaining n = 978 data points. Denote the resulting estimator
of θ1 and θ2 as θ̂

psc
1 and θ̂

psc
2 , where the superscript “psc” stands

for the “post-screen” estimator. As illustrated in Figure 3(d), the
components in Ẑpsc obtained by replacing θ̂

int
1 and θ̂

int
2 with θ̂

psc
1

and θ̂
psc
2 in (10) appear to be much closer to a N(0, 1) distribu-

tion. The vectorZpsc was computed based only on the remaining
978 data points. This is a strong indication of an adequate fit of
the TGH random field to the remaining precipitation data. In
Table 1 of Section 6, we summarize the parameter estimates for
the TGH random field before and after removing the 13 extreme
spatial outliers, where we can see that the estimate for the
parameter h decreases from 0.095 to 0.045. This is expected
considering that the role of h is to model outliers in the

TGH random field, making it sensitive to extreme spatial
outliers.

4. Spatial Prediction with TGH Random Fields

One of the primary goals of geostatistical modeling is to make
predictions at spatial locations without observations. There have
been twomajor approaches tomake spatial predictions: (i) point
prediction or kriging (Cressie 1993); (ii) probabilistic prediction
or forecast (Gneiting et al. 2007; Gneiting and Katzfuss 2014).
The goal of kriging is to predict the actual value ofY (s0) at a new
location s0 based on observed data Dn. On the contrary, prob-
abilistic prediction aims at providing a complete predictive dis-
tribution forY (s0) conditional onDn. Either approach requires
partial or full knowledge of the conditional distribution ofY (s0)
given Dn, which we derive in this section for the TGH random
field. First, we give a definition of themultivariate g-and-h distri-
bution. For simplicity, from now on, we use τg,h(Z) (or τ−1

g,h (Z))
to denote componentwise (or componentwise inverse) Tukey g-
and-h transformation of elements in a vector Z.

A random vector T = (T1, . . . ,Tn)T is said to have a
multivariate Tukey g-and-h distribution if T = τg,h(Z) with
Z = (Z1, . . . ,Zn)

T having a multivariate normal distribution
Nn(µn,&n) with a mean vector µn and a covariance matrix &n.
We denote it by T ∼GHn(µn,&n, g, h). With this definition,
the following Lemma 3 states that if two random vectors T1 and
T2 have a jointmultivariate Tukey g-and-h distribution, then the
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marginal distributions ofT1,T2 and the conditional distribution
of T1 given T2 are all still within this family of distributions.

Lemma 3. Suppose that (TT
1 ,TT

2 )T ∼GHn1+n2[(
µ1
µ2

)
,
(

&11 &12
&21 &22

)
,g,h
]

for some µ1,µ2 and h ≥ 0. Then we
have

T1 ∼GHn1 (µ1,&11, g, h), T2 ∼GHn2 (µ2,&22, g, h), and

T1|T2 ∼GHn1

[
µ1 + &12&

−1
22 {τ−1

g,h (T2) − µ2},

&11 − &12&
−1
22 &21, g, h

]
.

The proof is given in the supplementary materials.

4.1. KrigingWith TGH Random Fields

The goal of kriging is to find an optimal point estimator of
Y (s0) by minimizing some accuracy measures. For TGH ran-
dom fields, we consider two suchmeasures: the absolute loss and
the squared loss, under which the optimal predictors for Y (s0)
are

absolute loss: Ŷ opt
1 (s0) = argmin

c
E[{|Y (s0) − c|}|Dn]

= med{Y (s0)|Dn},
squared loss: Ŷ opt

2 (s0) = argmin
c

E[{Y (s0) − c}2|Dn]

= E{Y (s0)|Dn},

where E{Y (s0)|Dn} and med{Y (s0)|Dn} stand for the condi-
tional mean and the conditional median ofY (s0) given the data
Dn. For a general transGaussian random field Y (s) = ψ{Z(s)},
the exact form of E{Y (s0)|Dn} is usually not available except for
some specialψ (·). The following theorem provides closed-form
solutions for Ŷ opt

1 (s0) and Ŷ opt
2 (s0).

Theorem 4. Given a dataset Dn = {(y(s1), x(s1)), . . . ,
(y(sn), x(sn))} generated from the TGH random field, Y (s),
defined in (4) with 0 ≤ h < 1, let Rθ2 and Zθ1 be as defined in
(7) and rθ2 be the n × 1 vector whose ith element is ρZ(si, s0)
for a new location s0. Then the conditional distribution of T (s0)
given the dataDn is

T (s0)|Dn ∼GH1(µ̃, σ̃ 2, g, h), (11)

where µ̃ = rTθ2R
−1
θ2
Zθ1 and σ̃ 2 = 1 − rTθ2R

−1
θ2
rθ2 . As a result, the

optimal predictors forY (s0) given the datasetDn using the abso-
lute loss and the squared loss are

Ŷ opt
1 (s0) = ξ + X(s0)Tβ + ωτg,h(µ̃), (12)

Ŷ opt
2 (s0) = ξ + X(s0)Tβ + ω

g
√
1 − hσ̃ 2

exp
{

hµ̃2

2(1 − hσ̃ 2)

}

×
[
exp

{
g2σ̃ 2 + 2gµ̃
2(1 − hσ̃ 2)

}
− 1

]
. (13)

The proof is given in the supplementary materials.
Although both Ŷ opt

1 (s0) and Ŷ opt
2 (s0) can be used in practice,

we shall focus onY opt
1 (s0) because it is more robust to the skew-

ness and potential outliers.

4.2. Probabilistic PredictionWith TGH Random Fields

Unlike kriging, probabilistic prediction aims at predicting the
whole conditional distribution of some uncertain quantity at a
location without observations (Gneiting et al. 2007; Gneiting
andKatzfuss 2014), which ismore informative and better at cap-
turing the uncertainty in prediction. Tailored to our case, we
wish to use the conditional distribution of Y (s0)|Dn based on
the TGH random field, denoted by Fs0 , to predict the true con-
ditional distribution ofY (s0)|Dn, denoted as Gs0 . By Theorem 4,
the closed form of Fs0 can be easily obtained through the dis-
tribution (11). The general practice of probabilistic prediction
involves two steps: (i) calibration; and (ii) assessment of the
sharpness of the predictive distribution (Gneiting et al. 2007).
The calibration step is to provide some guidance on how close
are Fs0 and Gs0 . Let Fs0 (·) and Gs0 (·) be the cumulative dis-
tribution functions of Fs0 and Gs0 , respectively. An important
tool to assess the calibration is the probability integral transform
(PIT; Dawid 1984; Diebold et al. 1998), whose value is defined
as ps0 = Fs0{y(s0)}, where y(s0) is an observed value from the
distribution Gs0 . If the predictive distribution Fs0 = Gs0 and Fs0
is continuous, then ps0 should have a uniform distribution. In
practice, a histogram of PIT values at different locations of the
random field can be created and an approximately uniform PIT
histogram indicates calibration (Gneiting et al. 2006). After the
predictive distribution passes the calibration, its sharpness can
be assessed by the average width of confidence intervals, as dis-
cussed in Section 4.3.

Numerical assessments of probabilistic predictions are usu-
ally done based on someproper scoring rules such as theHyväri-
nen score (Hyvärinen 2005) and the continuous ranked proba-
bility score (CRPS; Gneiting et al. 2007). In particular,

CRPS(F, y) =
∫ ∞

−∞
{F(x) − I(y ≤ x)}2 dx

= E(|Y − y|) − 1
2
E(|Y −Y ∗|), (14)

where F(·) is a cumulative distribution function, I(·) is an indi-
cator function,Y andY ∗ are independent randomvariables with
the same cumulative distribution function F(y) and a finite first
moment (Gneiting and Katzfuss 2014). The CRPS enjoys many
appealing properties butmay be difficult to derive in closed form
for a general distribution. However, using Theorem 4, we can
easily derive the closed form of CRPS for the predictive distri-
bution based on the TGH random field.

Lemma 4. The continuous ranked probability score for the
predictive cumulative distribution function Fs0 (·) given in
Theorem 4 for the TGH random field is

CRPS{Fs0 , y(s0)}

=
{
y(s0) − ξ − xT(s0)β

} [
2.

{
z(s0) − µ̃

σ̃

}
− 1

]

+
2ω exp

(
hµ̃2

2p∗

)

g
√
p∗

(
.

[√
p∗

σ̃

{
z(s0) − µ̃

p∗

}]

+ .

(
hµ̃σ̃
q∗

)
− 1

)
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−
2ω exp

(
g2σ̃ 2+2µ̃g+hµ̃2

2p∗

)

g
√
p∗

(
.

[√
p∗

σ̃

{
z(s0) − µ̃ + gσ̃ 2

p∗

}]

+.
(
hµ̃σ̃ + gσ̃

q∗

)
− 1

)
, (15)

with µ̃ and σ̃ as defined in (11), 0 ≤ h < 1 and
z(s0) = τ−1

g,h { y(s0)−ξ−xT(s0)β
ω

}, p∗ = 1 − hσ̃ 2 and q∗ =
√
2 − 3hσ̃ 2 + h2σ̃ 4.

The proof is given in the supplementary materials.

4.3. Prediction Confidence IntervalsWith TGH Random
Fields

Whether it is to quantify the uncertainty of kriging or to
assess the sharpness of the predictive distribution from the
probabilistic prediction, a valid prediction confidence inter-
val plays an important role. By Theorem 4, the most straight-
forward (1 − α)100% prediction confidence interval can be
defined as [ξ + xT(s0)β + ωτg,h(µ̃ − z1−α/2σ̃ ), ξ + xT(s0)β +
ωτg,h(µ̃ + z1−α/2σ̃ )], where µ̃ and σ̃ 2 are as given in Theorem 4
and zα is the αth quantile of the standard normal distribution.
However, this interval can be unnecessarily wide when the pre-
dictive distribution Fs0 is severely skewed (i.e., |g| is large). To
resolve this issue, we follow the work of De Oliveira and Rui
(2009) and propose the following shortest prediction interval for
the TGH random field

[
ξ + xT(s0)β + ωτg,h(µ̃ − z1−γ opt σ̃ ), ξ + xT(s0)β

+ωτg,h(µ̃ + z1−α+γ opt σ̃ )

]
, (16)

where γ opt ∈ [0,α] is chosen by minimizing the length of the
interval

γ opt = arg min
γ∈[0,α]

{
τg,h(µ̃ + z1−α+γ opt σ̃ ) − τg,h(µ̃ − z1−γ opt σ̃ )

}
.

In practice, we need to plug-in the estimated values for parame-
ters in the TGH random field and then obtain γ opt numerically.
As De Oliveira and Rui (2009) pointed out for log-Gaussian
random fields, such a plug-in strategy may lead to undercov-
erage and needs to be adjusted when the sample size is small.
We believe this might also be the case for the TGH random
fields. How to make such adjustments is an interesting research
topic.

5. Monte Carlo Simulation Study

In this section, we use Monte Carlo simulations to evaluate the
performance of the proposed TGH random field. In all simu-
lation studies, we assume that the latent Gaussian random field
Z(s) has the Matérn correlation function

ρZ(s1, s2) = 1
1(v )2v−1

(
4
√
2ν

∥s1 − s2∥
φ

)v

Kv

(
4
√
2ν

∥s1 − s2∥
φ

)
,

(17)

where ∥s1 − s2∥ is the distance between locations s1 and s2, ν is
the smoothness parameter, φ is the range parameter, 1(·) is the
gamma function, and Kν (·) is the modified Bessel function of
the second kind of order ν. We adopt this special parameteriza-
tion for the range parameter φ such that ρZ(s1, s2) ≈0.01 for
∥s1 − s2∥ = φ when φ = 40 and ν = 1. For all simulations, we
fix parameters ξ = 0, ω = 2, φ = 40, ν = 1 for the TGH ran-
dom field. In addition, one covariate X ∼N(0, 1) was intro-
duced in (4) as the regression randomvariable, whose coefficient
was set to β = 2.

5.1. Evaluation of Estimation AccuracyWith TGH Random
Fields

In this simulation study, the data were generated using the TGH
random field (4) with multiple values of g and h. The main
goal is to investigate whether Algorithm I can produce consis-
tent estimators for all parameters in model (4). To be consis-
tent with the conditions of Theorem 2, we choose the spatial
locations in an increasing domain as follows: n = c2n locations
were drawn uniformly over the region [0, 10cn] × [0, 10cn],
with cn = 10, 15, 20. Furthermore, for each simulation run, we
applied the Algorithm II to the simulated dataset and removed
the detected outliers first. Then the remaining data were used
to estimate the parameters. The empirical bias and root mean-
squared error (RMSE) of the proposed estimators were com-
puted based on 500 simulation runs, which are summarized in
Table 1. In particular, β̂0 represents the least-square estimator for
β by ignoring spatial dependence in (4) while β̂ is the estimator
of β using Algorithm I. As we can see from Table 1, β̂ is much
more efficient than β̂0, which could lead to better spatial predic-
tions because the mean structure of model (4) is estimatedmore
precisely. Overall, from Table 1, we can see that the proposed
estimators obtained using Algorithm I are unbiased and consis-
tent for all parameters when the sample size is large enough. For
the spatial case g = h = 0, we also report the estimation accu-
racies of the maximum likelihood estimator using the Gaussian
random field (GRF), which appears to be quite close to those of
the estimators obtained using Algorithm I. This partially illus-
trates the effectiveness of the estimation procedure outlined in
Algorithm I.

5.2. Evaluation of KrigingWith TGH Random Fields

In this subsection, we compare the kriging performance of the
TGH random field with that of the Gaussian random field.
When generating data, we fix g = 0.5 and change h from 0 to
0.4 to illustrate the impacts of outliers on prediction accuracy.
The data were generated on a 15 × 15 regular lattice over the
region [0, 100] × [0, 100], as illustrated in Figure 4(a). Observa-
tions from 125 locations were used as the training data, and the
remaining observationswere held out as the validation data. The
same set of spatial locationswere used for estimation andpredic-
tion in each of 500 simulation runs. Therefore, each location in
the validation set has 500 predictions. Three kriging approaches
are considered: the TGH random field (gh-krig), the TGH ran-
dom field by fixing h = 0 (g-krig), and the Gaussian random
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Table . Empirical biases and RMSE (in parentheses) of the parameter estimators of the TGH random field using Algorithm I for various values of (g, h ) and of parameters
defined in the text.

(g, h ) n ĝ ĥ ξ̂ ω̂ φ̂ ν̂ β̂ β̂0

g = 0 102 . . − . − . − . . . .
h = 0 (.) (.) (.) (.) (.) (.) (.) (.)

152 − . . . − . − . . − . .
(.) (.) (.) (.) (.) (.) (.) (.)

202 . . − . − . − . . − . − .
(.) (.) (.) (.) (.) (.) (.) (.)

g = 0 102 n/a n/a − . − . − . . . .
h = 0 n/a n/a (.) (.) (.) (.) (.) (.)
(GRF 152 n/a n/a . − . − . . − . .
Estim.) n/a n/a (.) (.) (.) (.) (.) (.)

202 n/a n/a − . − . − . . − . − .
n/a n/a (.) (.) (.) (.) (.) (.)

g = 0.5 102 − . − . . − . − . . . .
h = 0.1 (.) (.) (.) (.) (.) (.) (.) (.)

152 − . − . . − . − . . . .
(.) (.) (.) (.) (.) (.) (.) (.)

202 − . − . . . − . . − . − .
(.) (.) (.) (.) (.) (.) (.) (.)

g = 0.5 102 − . − . . − . − . . . .
h = 0.3 (.) (.) (.) (.) (.) (.) (.) (.)

152 − . − . . − . − . . . − .
(.) (.) (.) (.) (.) (.) (.) (.)

202 − . − . . . − . . − . − .
(.) (.) (.) (.) (.) (.) (.) (.)

field (Gau-krig). For each prediction location, the kriging accu-
racy was measured by the following criterion

MAD(spi ) = med
{
|̂y(spi )b − y(spi )

b|, b = 1, . . . , 500
}
,

i = 1, . . . , 100, (18)

where y(spi )b and ŷ(spi )b are the observed and predicted values
at a prediction location spi for the bth simulation run, respec-
tively. In Figure 4(b), we summarize the predictive performance
of these three kriging methods for h = 0, 0.2, 0.4 at 100 predic-
tion locations. As we can see from Figure 4(b), when h = 0, gh-
krig and g-krig yield almost identical results, and both are better
than Gau-krig. As h increases, g-krig is not flexible enough to
accommodate additional outliers introduced by large values of h
and thus yields suboptimal prediction results compared to those
of gh-krig. Nevertheless, g-krig still manages to control the effect
of the skewness in the random field to some extent and was able
to outperform Gau-krig.

5.3. Evaluation of Probabilistic PredictionWith TGH
Random Fields

The same simulation setup was used as in the previous subsec-
tion. For each prediction location, the accuracy of the proba-
bilistic prediction was measured by

mCRPS(spi ) = med{CRPS(F̂b
spi
, y(spi )

b), b = 1, . . . , 500},
i = 1, . . . , 100, (19)

where F̂b
spi
is the estimated predictive distribution at the predic-

tion location spi for the bth simulation run and y(spi )b is the
observed value. For h = 0, 0.2, 0.4, boxplots ofmCPRS(spi )’s in
Figure 4(c) are used to illustrate the performance of predictive

distributions using the general TGH random field (gh-pred),
the simplified TGH random field with h = 0 (g-pred), and the
Gaussian random field (Gau-pred). We can see that as the value
of h increases, the benefit of using the general TGH random
field becomes more significant. In Figure 4(d)–4(f), we also plot
the PIT histograms of the three predictive distributions for the
case with g = 0.5 and h = 0.2. In this case, the difference in the
mCRPS between gh-pred and g-pred is much smaller than the
difference between their PIT histograms, indicating that simple
comparison of mCRPSmay be misleading for assessing the per-
formance of probabilistic prediction.

5.4. Evaluation of Prediction Confidence IntervalsWith
TGH Random Fields

To study the sharpness of the three predictive distributions, we
compute the average length of the 50% and 90% confidence
intervals. For the gh-pred and g-pred methods, the confidence
interval defined in (16) is adopted while for the Gaussian ran-
dom field, the usual symmetric prediction interval is used. The
results are summarized inTable 2. As expected, the gh-pred gives
the shortest confidence intervals on average.

6. Application to Precipitation Data

In this section, we apply the proposed TGH random field to the
precipitation dataset introduced in Section 1; see Figure 3(a).
Denote by V (s) a stationary Gaussian random field with mean
0, variance σ 2

v , and a Matérn correlation function as defined in
(17). Let ε(s) be a Gaussian white-noise process independent of
V (s) with a variance σ 2

e . Three covariates were considered for
themean structure: the longitude (Lon(s)), the latitude (Lat(s)),
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1246 G. XU ANDM. G. GENTON

Figure. (a) Spatial locations: “◦”training sites and “+”prediction sites; (b) and (c)MAD(spi )’s andmCRPS(spi )’s of three kriging approaches forg = 0.5 and h = 0, 0.2, 0.4
at  prediction locations; (d)–(f ) PIT histograms of three predictive distributions for g = 0.5 and h = 0.2.

and the elevation (Elev(s)), which were standardized by remov-
ing themeans and then dividing themby the standard deviations
in the region under study.

Thefirstmodel we use tomodel this dataset is a TGH random
field

Y (s) = ξ + β1Lon(s) + β2Lat(s) + β3Elev(s)

+ωτg,h{V (s) + ε(s)}, (20)

which is a special case of (4) with Z(s) = V (s) + ε(s) after
imposing the constraint σ 2

v + σ 2
e = 1. For comparison, we also

consider transGaussian random fields of the form

ψ{Y (s)} = ξ + β1Lon(s) + β2Lat(s)

+β3Elev(s) + V(s) + ε(s). (21)

Table . Coverage probabilities (CP) and average lengths (Length) of prediction CIs.

(g, h ) Method CP(50%) Length CP(%) Length

g = −0.5 gh-pred 47.9% . 88.5% .
h = 0.2 g-pred 54.7% . 89.6% .

Gau-pred 45.9% . 81.5% .

g = 0.5 gh-pred 48.0% . 88.5% .
h = 0.2 g-pred 55.1% . 89.6% .

Gau-pred 47.4% . 82.0% .

g = −0.5 gh-pred 47.9% . 88.7% .
h = 0.4 g-pred 64.3% . 91.1% .

Gau-pred 61.7% . 89.1% .

g = 0.5 gh-pred 47.9% . 88.5% .
h = 0.4 g-pred 63.3% . 90.9% .

Gau-pred 61.5% . 89.2% .

Two transformations are studied: ψ (y) = √y and ψ (y) = y,
corresponding to the Root-Gaussian random field (RGRF) and
the Gaussian random field (GRF).

The parameters of models (20) and (21) were estimated
in two ways: the first approach uses all n = 991 observations
for estimation (Without Screen) and the second approach first
removed the 13 extreme outliers identified in Section 3.3 and
then used the remaining data to estimate all parameters (With
Screen). Results are summarized in Table 3. In addition, we use
the lengths of the 90% bootstrap confidence intervals (bLen)
based on 500 parametric bootstrap samples generated using esti-
mated models to quantify the uncertainties of point estimators.
It is also worth pointing out that estimated regression coeffi-
cients for Root-Gaussian random field have different interpre-
tations than those for other fields and should not be compared
directly with them.

We want to further evaluate the predictive performances of
all fitted models. To compute the PIT and CRPS values, we use
the following resampling approach: (a) randomly choose 80%
of the data to estimate the three random fields; (b) use the esti-
mated random fields to compute PIT and CRPS values at the
remaining 20% spatial locations. Repeat (a) and (b) for 500
times and record all PIT and CRPS values. We then first use
the PIThistograms to calibrate the predictive distributionsmade
by these three models, as illustrated in Figure 5. Obviously, the
PIT histogramof predictive distributionsmade by the TGH ran-
dom field estimated after screening out all extreme spatial out-
liers using Algorithm II appears more uniform than for all other
models. In contrast, we observe systematic deviations from uni-
formity in Figure 5(b) and 5(c), suggesting departures of the

D
ow

nl
oa

de
d 

by
 [K

in
g 

A
bd

ul
la

h 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 &

 T
ec

hn
ol

og
y 

K
A

U
ST

] a
t 2

3:
18

 3
0 

O
ct

ob
er

 2
01

7 



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1247

Table . Parameter estimates of the precipitation data.

Model β̂1 β̂2 β̂3 ξ̂ ω̂ ĝ ĥ φ̂ ν̂ σ̂ 2
v σ̂ 2

e

Without TGH . . . . . . . . . . .
screen (bLen) . . . . . . . . . . .

RGRF . . . . n/a n/a n/a . . . .
(bLen) . . . . n/a n/a n/a . . . .
GRF . . . . n/a n/a n/a . . . .
(bLen) . . . . n/a n/a n/a . . . .

With TGH − . . . . . . . . . . .
screen (bLen) . . . . . . . . . . .

RGRF . . . . n/a n/a n/a . . . .
(bLen) . . . . n/a n/a n/a . . . .
GRF . . . . n/a n/a n/a . . . .
(bLen) . . . . n/a n/a n/a . . . .

predictive distributions based on the Root-Gaussian and Gaus-
sian random fields from calibration. Another noticeable feature
is that by removing 13 extreme outliers, the PIT histograms of
the Root-Gaussian random field and even the Gaussian random
field become better. This indicates that the proposed Algorithm
II for identifying extreme spatial outliers not only can improve
the probabilistic predictive ability of the TGH random field, but
also can be beneficial for other models.

Table 4 summarizes numerical assessments of prediction per-
formances of the three models using the resampling approach
mentioned above. The MAD and mCRPS are as defined in (18)
and (19), respectively. The CP andmLen represent the empirical
coverage probabilities and median interval length of the predic-
tion confidence intervals, respectively, for all spatial locations.
We can see that while the MAD and mCRPS do not show much
differences between models, the TGH random field fitted with
screen gives the overall shortest confidence intervals with satis-
factory coverage probabilities. Considering that the TGH ran-
dom field fitted with screen also gives the best PIT histogram,

we argue that it provides the best fit for this precipitation data
among all candidates.

Finally, as mentioned earlier, one important goal in spatial
modeling of precipitation data is to create a high-resolution pre-
cipitation map in a spatial region using the observed data. In
Figure 6(a) and 6(b), we plot the precipitation map produced by
the fitted TGH random field (with screen) and the fitted Gaus-
sian random field. Figure 6(c) illustrates the length differences
of the 90% prediction confidence intervals produced using the
TGH andGaussian random field (Gaussian−TGH).We observe
that the TGH random field produces much shorter prediction
confidence intervals than the Gaussian random field in most
areas of the map, except for those areas with large predicted
values.

7. Discussion

We have introduced a new class of transGaussian random fields
named Tukey g-and-h random fields to model non-Gaussian

Figure . The PIT histogram of the probabilistic predictions made by three models: (a)–(c) without screen; (d)–(f ) with screen.
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1248 G. XU ANDM. G. GENTON

Table . Predictive performances of models for the precipitation data.

50%CI 90%CI

Model MAD mCRPS CP mLen CP mLen

Without screen TGH . . 54.5% . 91.1% .
RGRF . . 59.0% . 92.0% .
GRF . . 59.8% . 92.4% .

With screen TGH . . 52.7% . 89.8% .
RGRF . . 54.9% . 90.0% .
GRF . . 56.8% . 90.6% .

Figure . Predicted values using (a) TGH random field (with screen) and (b) Gaussian random field; (c) Length differences of 90% prediction intervals (Gaussian−TGH).

spatial data. The proposed TGH random fields have extremely
flexible marginal distributions and can, therefore, be applied to
a wide range of applications. Unlike most of the existing trans-
Gaussian random fields, the special formulation of TGH ran-
dom fields enables us to automatically search for the best trans-
formation among a large class of candidates for the dataset in
hand while estimating model parameters. We have investigated
the statistical properties of the TGH random field, proposed an
efficient estimation approach and developed an extreme spatial
outlier detection procedure based on the TGH random field.
The estimation and predictive performances of the TGH ran-
dom field were evaluated through extensive simulation studies
and an application to a precipitation dataset, all ofwhich demon-
strated the effectiveness of the proposed model.

One limitation of the current work lies in that if the mea-
surement error is of interest, it can only be included in the
Tukey g-and-h transformation function, as we did in the model
(20) of the rainfall application. While this may make sense for
some applications, an interesting alternative is to consider a
TGH random field with additive measurement errors of the
formY (s) = ξ + X(s)Tβ + ωτg,h{Z(s)} + ε(s), where ε(s) is a
Gaussian measurement error process. The current Algorithm
I cannot be directly used to estimate such a model because
the joint finite-dimensional distribution of the random field
τg,h{Z(s)} + ε(s) is a convolution of amultivariate Tukey g-and-
h distribution given in Lemma 3 and a multivariate normal dis-
tribution, which is quite complicated. As a result, the likelihood
function does not have a closed form as given in (7) and thus the
Algorithm I is no longer applicable. We believe this issue can be
resolved under a suitable Bayesian framework and this will be
studied in future work.

SupplementaryMaterials

The supplementary materials contain the proofs of Theorems 1, 3, and 4,
and of Lemmas 1, 3, and 4.
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