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Abstract—We present ExaGeoStat, a high performance software for geospatial statistics in climate and environment modeling. In

contrast to simulation based on partial differential equations derived from first-principles modeling, ExaGeoStat employs a statistical

model based on the evaluation of the Gaussian log-likelihood function, which operates on a large dense covariance matrix. Generated

by the parametrizable Mat�ern covariance function, the resulting matrix is symmetric and positive definite. The computational tasks

involved during the evaluation of the Gaussian log-likelihood function become daunting as the number n of geographical locations

grows, asOðn2Þ storage andOðn3Þ operations are required. While many approximation methods have been devised from the side of

statistical modeling to ameliorate these polynomial complexities, we are interested here in the complementary approach of evaluating

the exact algebraic result by exploiting advances in solution algorithms and many-core computer architectures. Using state-of-the-art

high performance dense linear algebra libraries associated with various leading edge parallel architectures (Intel KNLs, NVIDIA GPUs,

and distributed-memory systems), ExaGeoStat raises the game for statistical applications from climate and environmental science.

ExaGeoStat provides a reference evaluation of statistical parameters, with which to assess the validity of the various approaches

based on approximation. The software takes a first step in the merger of large-scale data analytics and extreme computing for

geospatial statistical applications, to be followed by additional complexity reducing improvements from the solver side that can be

implemented under the same interface. Thus, a single uncompromised statistical model can ultimately be executed in a wide variety of

emerging exascale environments.

Index Terms—Maximum likelihood optimization, Mat�ern covariance function, high performance computing, climate/environment

applications, prediction

Ç

1 INTRODUCTION

BIG data applications and traditional high performance-
oriented computing have followed independent paths to

the present, but important opportunities now arise that can
be addressed by merging the two. As a prominent big data
application, geospatial statistics is increasingly performance-
bound. This paper describes the Exascale GeoStatistics (Exa-
GeoStat) software, a high-performance, unified software for
geostatistics onmanycore systems, which targets climate and
environment prediction applications using techniques from
geospatial statistics. We believe that such a software may
play an important role at the intersection of big data and
extreme computing by allowing applications with prohibi-
tively large memory footprints to be deployed at the desired
scale on modern hardware architectures, exploiting recent
software developments in computational linear algebra.
ExaGeoStat is intended to bridge the aforementioned gap,
attracting the geospatial statistics community to the vast
potential of high-performance computing and providing

fresh inspiration for algorithm and software developments to
the HPC community.

Applications for climate and environmental predictions
are among the principal simulation workloads running on
today’s supercomputer facilities. These applications usually
approximate state variables by relying on numerical models
to solve a complex set of partial differential equations, which
are based on a combination of first-principles and empirical
models tuned by known measurements, on a highly resolved
spatial and temporal grid. Then, the large volume of results
this method produces is post-processed to estimate the quan-
tities of interest. Such an approach translates the original big
data problem into an HPC-oriented problem, by relying on
PDE solvers to extract performance on the targeted architec-
tures. Instead,ExaGeoStat employs a compute-intensive statis-
tical model based on the evaluation of the Gaussian log-
likelihood function, which operates on a large dense covari-
ance matrix. The matrix is generated directly from the appli-
cation datasets, using the parametrizable Mat�ern covariance
function. The resulting covariance matrix is symmetric and
positive-definite. The computational tasks involved during
the evaluation of theGaussian log-likelihood function become
daunting as the number n of geographical locations grows, as
Oðn2Þ storage andOðn3Þ operations are required.

ExaGeoStat’s primary goal is not to resolve this complexity
challenge per se, but to delay its scaling limitation impact, by
maximizing the computational power of emerging architec-
tures. The unified software permits to explore the computa-
tional limits using state-of-the-art high-performance dense
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linear algebra libraries by leveraging a single source code to
run on various cutting-edge parallel architectures, e.g., Intel
Xeon, Intel manycore Xeon Phi Knights Landing chip (KNL),
NVIDIAGPU accelerators, and distributed-memory homoge-
neous systems. To achieve this software productivity, we rely
on the dense linear algebra library Chameleon [13], which
breaks down the tasks of the traditional bulk-synchronous
programmingmodel of LAPACK [4] and renders them for an
asynchronous task-based programming model. Task-based
programming models have received significant attention
in computational science and engineering, since they may
achieve greater concurrency and mitigate communication
overhead, thus presenting a path to the exascale era [1], [8],
[18]. Once a numerical algorithm has been expressed in tasks
linked by input-output data dependencies,Weuse the StarPU
dynamic runtime system [5] to schedule the various tasks on
the underlying hardware resources. The simulation code
need only be written once since StarPU allows porting to its
supported architectures. ExaGeoStat may thus positively
impact the day-to-day simulation work of end users by effi-
ciently implementing the limiting linear algebra operations
on large datasets.

To highlight the software contributions and to verify that
the model can be applied to geostatistical applications, we
design a synthetic dataset generator, which allows us not
only to test the software infrastructure, but also to stress the
statistical model accordingly. In addition, we experiment
using a soil moisture dataset from the Mississippi River
basin. Although we focus only on soil moisture, our soft-
ware is able to analyze other variables that commonly
employ the Gaussian log-likelihood function and its flexible
Mat�ern covariance, such as temperature, wind speed, etc.
The distillate of this work is two packages that are publicly
released as an open-source under BSD 3-Clause license: Exa-
GeoStat C library1 and R-wrapper library.2

The remainder of the paper is organized as follows.
Section 2 states the problem, describes relatedwork, describes
the construction of the climate and environment modeling
simulation, and shows how to predict missingmeasurements
using this constructed model in which we apply a geostatisti-
cal approach to compute large dense covariance matrix.
Section 3 highlights our contributions. Section 4 presents a
case study from a large geographic region, the Mississippi
River basin, and notes the effects of some alternative repre-
sentations of distance in this context. Section 5 reviews the
dense linear algebra libraries. Section 6 outlines the geostatis-
tical algorithm, as implemented in the ExaGeoStat software,
and lays out the overall software stack. Performance results
and analysis are presented in Section 7, using the synthetic
and the real datasets, andwe conclude in Section 8.

2 PROBLEM STATEMENT

Applications in climate and environmental science often
deal with a very large number of measurements regularly
or irregularly located across a geographical region. In geo-
statistics, these data are usually modeled as a realization
from a Gaussian spatial random field. Specifically, let
s1; . . . ; sn denote n spatial locations in Rd, d � 1, and let

Z ¼ fZðs1Þ; . . . ; ZðsnÞg> be a realization of a Gaussian ran-
dom field ZðsÞ at those n locations. For simplicity, assume
the random field ZðsÞ has a mean zero and stationary
parametric covariance function Cðh; uuÞ ¼ covfZðsÞ; Zðsþ
hÞg, where h 2 Rd is a spatial lag vector and uu 2 Rq is an
unknown parameter vector of interest. Denote by SSðuuÞ the
covariance matrix with entries SSij ¼ Cðsi � sj; uuÞ, i; j ¼
1; . . . ; n. The matrix SSðuuÞ is symmetric and positive definite.
Statistical inference about uu is often based on the Gaussian
log-likelihood function

‘ðuuÞ ¼ �n

2
log ð2pÞ � 1

2
log jSSðuuÞj � 1

2
Z>SSðuuÞ�1Z: (1)

The maximum likelihood estimator of uu is the value buu that
maximizes (1). When the sample size of n locations is large
and the locations are irregularly spaced, the evaluation of
(1) becomes challenging because the linear solver and log-
determinant involving the n-by-n dense and unstructured
covariance matrix SSðuuÞ requires Oðn3Þ floating-point opera-
tions on Oðn2Þ memory. For example, assuming a dataset
approximately on a grid with 103 longitude values and 103

latitude values, the total number of locations will be 106.
Using double-precision floating-point arithmetic, the total
required memory footprint is 1012 � 8 bytes � 8 TB. The cor-
responding complexity order is 1018.

2.1 Related Work

In recent years, a large amount of research has been devoted
to addressing the aforementioned challenge through various
approximations; for example, covariance tapering [24], [41],
likelihood approximations in both the spatial [44] and spec-
tral [22] domains, latent processes such asGaussianpredictive
processes and fixed rank kriging [7], [15], and Gaussian Mar-
kov random field approximations [23], [32], [39], [40]; see
Sun [45] for a review. Stein [42] showed that covariance taper-
ing sometimes performs even worse than assuming indepen-
dent blocks in the covariance; Stein [43] discussed the
limitations of low rank approximations; and Markov models
depend on the measurements locations, which must be
aligned on a fine grid with estimations of the missing val-
ues [46]. Very recent methods include the nearest-neighbor
Gaussian process models [17], multiresolution Gaussian pro-
cessmodels [36], equivalent kriging [11],multi-level restricted
Gaussian maximum likelihood estimators [12], and hierarchi-
cal low rank representations [29]. However, all these methods
reduce the computational cost by either approximating the
maximum likelihood estimator, or by using approximate
models that may or may not allow for exact computations. In
this paper, we propose exploring the computational limits of
the exact evaluation of the Gaussian log-likelihood function,
i.e., Equation (1) with high-performance computing and
implementingmodern techniques to solve these fundamental
computational problems in geostatistics.

2.2 Mat�ern Covariance Functions

To construct the covariance matrix SSðuuÞ in Equation (1), a
valid (positive definite) parametric covariance model is
needed. Among the many possible covariance models in the
literature, the Mat�ern family [34] has gained widespread
interest in recent years due to its flexibility. The class of

1. ExaGeoStat is available at https://github.com/ecrc/exageostat
2. ExaGeoStatR is available at https://github.com/ecrc/exageostatr
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Mat�ern covariance functions [28] is widely used in geostatis-
tics and spatial statistics [14], machine learning [10], image
analysis, weather forecasting and climate science. Handcock
and Stein [28] introduced the Mat�ern form of spatial correla-
tions into statistics as a flexible parametric class where one
parameter determines the smoothness of the underlying spa-
tial random field. The history of this family of models can be
found in [27]. The Mat�ern form also naturally describes the
correlation among temperature fields that can be explained
by simple energy balance climate models [35]. The Mat�ern
class of covariance functions is defined as

Cðr; uuÞ ¼ u1

2u3�1Gðu3Þ
r

u2

� �u3

Ku3

r

u2

� �
; (2)

where r ¼ ks� s0k is the distance between two spatial loca-
tions, s and s0, and uu ¼ ðu1; u2; u3Þ>. Here u1 > 0 is the vari-
ance, u2 > 0 is a spatial range parameter that measures how
quickly the correlation of the random field decays with dis-
tance, and u3 > 0 controls the smoothness of the randomfield,
with larger values of u3 corresponding to smoother fields.

The function Ku3 denotes the modified Bessel function of
the second kind of order u3. When u3 ¼ 1=2, the Mat�ern
covariance function reduces to the exponential covariance
model Cðr; uuÞ ¼ u1 expð�r=u2Þ, and describes a rough field,
whereas when u3 ¼ 1, the Mat�ern covariance function
reduces to the Whittle covariance model Cðr; uuÞ ¼ u1ðr=
u2ÞK1ðr=u2Þ, and describes a smooth field. The value u3 ¼ 1
corresponds to a Gaussian covariance model, which des-
cribes a very smooth field infinitely mean-square differen-
tiable. Realizations from a random field with Mat�ern
covariance functions are bu3 � 1c times mean-square differ-
entiable. Thus, the parameter u3 is used to control the degree
of smoothness of the random field.

In theory, the three parameters of the Mat�ern covariance
function need to be positive real numbers, but empirical val-
ues derived from the empirical covariance of the data can
serve as starting values and provide bounds for the optimiza-
tion. Moreover, the parameter u3 is rarely found to be larger
than 1 or 2 in geophysical applications, as those already corre-
spond to very smooth realizations.

2.3 Prediction

The quality of statistical forecasts could be improved by
accurately estimating the unknown parameters of a statisti-
cal model. With the aid of a given geospatial data and meas-
urements, the constructed statistical model is able to predict
missing measurements at new spatial locations.

Assuming unknown measurements vector Z1 with size
m and know measurements vector Z2 with size n, the pre-
diction problem can be represented as a multivariate nor-
mal joint distribution as follows [16], [25]

Z1

Z2

� �
� Nmþn

mm1

mm2

� �
;

S11 S12

S21 S22

� �� �
; (3)

with S11 2 Rm�m, S12 2 Rm�n, S21 2 Rn�m, and S22 2 Rn�n.
The associated conditional distribution can be repre-

sented as

Z1jZ2 � Nmðmm1 þ S12S
�1
22 ðZ2 � mm2Þ;S11 � S12S

�1
22 S21Þ: (4)

Assuming that the known measurements vector Z2 has a
zero-mean function (i.e., mm1 ¼ 0 and mm2 ¼ 0Þ, the unknown
measurements vector Z1 can be predicted using [25]

Z1 ¼ S12S
�1
22 Z2: (5)

3 CONTRIBUTIONS

Our contributions can be summarized as follows:

� We introduce ExaGeoStat, a unified software for
computational geostatistics that exploits recent devel-
opments in dense linear algebra task-based algo-
rithms associatedwith dynamic runtime systems.

� The ExaGeoStat software we propose is able to esti-
mate the statistical model parameters for geostatis-
tics applications and predict missing measurements.

� ExaGeoStat relies on a single source code to target
various hardware resources including shared and
distributed-memory systems composed of contem-
porary devices, such as traditional Intel multicore
processors, Intel manycore processors, and NVIDIA
GPU accelerators. This eases the process of software
deployment and effectively employs the highly con-
current underlying hardware, thanks to the fine-
grained, tile-oriented parallelism and dynamic run-
time scheduling.

� We propose a synthetic dataset generator that can
be used to perform broader scientific experiments
related to computational geostatistics applications.

� We propose an R-wrapper functions for the pro-
posed software (i.e., ExaGeoStatR) to facilitate the use
of our software in the R environment [31].

� We evaluate the performance of our proposed soft-
ware during applications using both synthetic and
real datasets in terms of elapsed time and number of
floating-point operations (Gflop/s) on several hard-
ware systems.

� We assess the quality of the estimation of the Mat�ern
covariance parameters and prediction operation
achieved by ExaGeoStat through a quantitative per-
formance analysis and using both exact and approxi-
mation techniques.

4 CLIMATE AND ENVIRONMENT DATA

In climate and environment studies, numerical models play
an important role in improving our knowledge of the char-
acteristics of the climate system, and of the causes of climate
variations. These numerical models describe the evolution
of many variables, for example, temperature, wind speed,
precipitation, humidity and pressure, by solving a set of
equations. The process involves physical parameterization,
initial condition configuration, numerical integration, and
data output. In this section, we use the proposed methodol-
ogy to investigate the spatial variability of soil moisture
data generated by numerical models. Soil moisture is a key
factor in evaluating the state of the hydrological process,
and has a wide range of applications in weather forecasting,
crop yield prediction, and early warning of flood and
drought. It has been shown that better characterization
of soil moisture can significantly improve the weather
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forecasting. However, the numerical models often generate
very large datasets due to the high spatial resolutions,
which makes the computation of the widely used Gaussian
process models infeasible. Consequently, practitioners
divide the whole region to smaller size of blocks, and fit
Gaussian process models independently to each block, or
reduce the size of the dataset by averaging to a lower spatial
resolution. However, compared to fitting a consistent
Gaussian process model to the entire region, it is unclear
how much statistical efficiency is lost by such an approxi-
mation. Since our proposed technique can handle large
covariance matrix computations, and the parallel imple-
mentation of the algorithm significantly reduces the compu-
tational time, we propose to use exact maximum likelihood
inference for a set of selected regions in the domain of inter-
est to characterize and compare the spatial variabilities of
the soil moisture.

We consider high-resolution daily soil moisture data at
the top layer of the Mississippi River basin, U.S.A., on
January 1st, 2004. The spatial resolution is of 0.0083 degrees,
and the distance of one-degree difference in this region is
approximately 87.5 km. The grid consists of 1830� 1329 ¼
2;432;070 locations with 2,153,888 measurements and
278,182 missing values. We use the same model for the
mean process as in Huang [29], and fit a zero-mean Gauss-
ian process model with a Mat�ern covariance function to the
residuals; see Huang [29] for more details on data descrip-
tion and exploratory data analysis.

5 STATE-OF-THE-ART DENSE LINEAR ALGEBRA

LIBRARIES

This section recalls the latest developments in dense linear
algebra software libraries and their relevant implications.

5.1 Block Algorithms

The default paradigm behind LAPACK [4], the well-
established open-source dense linear algebra library for
shared-memory systems, is block-column algorithms. These
algorithms decompose the matrix into successive panel and
update computational phases, while the matrix is organized
in a column-major format, see Fig. 1a. The matrix transfor-
mations are blocked within the panel factorization phase,
and applied together at one time during the update phase.
The former is typically memory-bound due to the Level-2
BLAS operations, while the latter is compute-intensive due
to the Level-3 BLAS updates occurring on the trailing

submatrix. LAPACK uses the fork-join paradigm, which has
demonstrated scalability issues on multicore architectures.
Its distributed version, ScaLAPACK [9] follows the same
paradigm and scatters the matrix using a two-dimensional
block-cyclic data distribution across a grid of processors to
reduce load imbalance and communication overheads.

5.2 Tile Algorithms

The tile algorithm methodology [2], [13] splits the matrix
into small tiles instead of tall panels, as seen in Fig. 1b, so
that updates of the trailing submatrix may be triggered
before the current panel factorization is complete. This fine-
grained lookahead method exploits more concurrency and
enables the maximization of hardware resources by remov-
ing synchronization points between the panel and update
computational phases. The numerical algorithm can then be
translated into a Directed Acyclic Graph (DAG), where the
nodes represent tasks and the edges define data dependen-
cies, as highlighted in Fig. 2.

5.3 Dynamic Runtime Systems

Once the tasks are defined with their respective data depen-
dencies, a dynamic runtime system [6], [20], [21] may be
employed directly on the sequential code to schedule the var-
ious tasks across the underlying hardware resources. Its role
is to ensure that the data dependencies are not violated. These
runtimes enhance the software productivity by abstracting
the hardware complexity from the end users. They are also
capable of reducing load imbalance, mitigating data move-
ment overhead, and increasing occupancy on the hardware.

6 THE EXAGEOSTAT SOFTWARE

6.1 General Description

We propose a unified computational software for geostatis-
tical climate and environmental applications based on the
maximum likelihood approach. Since the covariance matrix
is symmetric and positive-definite, the computation of the
maximum likelihood consists of the Cholesky factorization
and its corresponding solver which uses measurements vec-
tor Z as the right-hand side. The log-determinant is

Fig. 1. Data layout format.

Fig. 2. Directed Acyclic Graph (DAG) for a Cholesky factorization: DAG
height corresponds to the length of the critical path and the DAG width to
the degree of concurrency.
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calculated from the Cholesky factor simply by computing
the product of the diagonal entries.

The objective of this software is not only to solve the
maximum likelihood problem for a given set of real meas-
urements, Z, on n geographic locations, but also to predict a
set of unknown measurements at new locations. The pro-
posed software also provides a generic tool for generating a
reference set of synthetic measurements and locations for
statisticians, which generates test cases of prescribed size
for standardizing comparisons with other methods.

Our proposed software has two different execution
modes for dealing with synthetic and real datasets. In testing
mode, ExaGeoStat generates the measurements data based on
a given vector uu = ðu1; u2; u3Þ>, where u1 is the variance
parameter, u2 is the range parameter, and u3 is the smooth-

ness parameter. In this case, the resulting bubu vector, which
maximizes the likelihood function, should contain a set of
values close to the initial uu vector. Moreover, testing the
prediction accuracy can be done by choosing random meas-
urements from the given synthetic dataset and use the gen-
erated model to predict these measurements using the other
known measurements. The accuracy of the predictions can
be verified by comparing random measurements from the
given synthetic dataset to the corresponding generated
measurements from the model.

In application mode, both the measurements and the loca-
tions data are given, so the software is only used to evaluate
the MLE function by estimating the parameter vector, bubu.
The generated model can be used to predict unknownmeas-
urements at a set of new locations.

6.2 Software Infrastructure

ExaGeoStat internally relies on Chameleon, a high perfor-
mance numerical library [13]. Based on a tile algorithm,
Chameleon is a dense linear algebra library that provides
high-performance solvers. Chameleon handles dense linear
algebra operations through a sequential task-based algo-
rithms. It features a backend with links to several runtime
systems, and in particular, the StarPU dynamic runtime sys-
tem, which is preferred for its wide hardware architecture
support (Intel manycore, NVIDIA GPU, and distributed-
memory systems).

StarPU deals with the execution of generic task graphs,
which are generated by a sequential task flow (STF) pro-
gramming model. The tasks are sequentially given to
StarPU with hints of the data dependencies (e.g., read,
write, and read-write). The StarPU runtime schedules the
given tasks based on these hints. The main advantage of
using a runtime system that relies on task-based implemen-
tations such as StarPU is to become oblivious of the targeted
hardware architecture. This kind of abstraction improves

both the user productivity and creativity. Multiple imple-
mentations of the same StarPU tasks are generated for:
CPU, CUDA, OpenCL, OpenMP, MPI, etc. At runtime,
StarPU decides automatically which implementation will
achieve the highest performance. For the first execution,
StarPU generates a set of cost models that determine best
hardware for optimal performance during the given tasks.
This set of cost models may be saved for future executions.

Fig. 3 shows the structure of the ExaGeoStat software. It
has three main layers: ExaGeoStat, which includes the
upper-level functions of the software; the Chameleon
library, which provides solvers for the linear algebra opera-
tions; and the StarPU runtime, which translates the software
for execution on the appropriate underlying hardware.

6.3 The Optimization Framework

Finding the parameter vector bubu ¼ ðu1; . . . ; uqÞ>, that maxi-
mizes the likelihood function requires several iterations of
the log-likelihood evaluation. In our proposed software, we
rely on an open-source C/C++ nonlinear optimization tool-
box, NLopt [30], to perform the optimization task. The
NLopt package contains 20 global and local optimization
algorithms. NLopt solves nonlinear optimization problems
of the form minx2Rq fðxÞ, where f represents the objective
function and x represents the q optimization parameters,
i.e., the parameter vector. Because we are targeting a nonlin-
ear problem with a global maximum point, we selected
BOBYQA for our proposed platform.

BOBYQA is one of the optimization algorithms available in
the sequential Nlopt package to optimize theMLE function. It
is a numeric, global, derivative-free and bound-constrained
optimization algorithm. It generates a new computed point
on each iteration by solving a trust region subproblem subject
to given constraints [37], in our case, only upper and lower
bound constraints are used. Though BOBYQA does not
require the evaluation of the derivatives of the cost function,
it employs an iteratively updated quadratic model of the
objective, so there is an implicit assumption of smoothness.

The master process feeds the optimization black box
BOBYQA function with the current uu vector, which produ-
ces the resulting likelihood value. This likelihood value gets
broadcasted to all other running processes, which, in return,
carry on with subsequent computations. This optimization
step is then repeated with a new parameter vector uu at each
iteration, until convergence is reached.

As with the linear algebra software, we employ these
optimization frameworks without novel contributions
herein, in order to achieve the practical synthesis of well-
understood components. For now, we merely design the
interfaces of these codes, which, in the case of BOBYQA,
consists mainly of callbacks to the log-likelihood function
with a sequence of Mat�ern triples that must be evaluated
using the measurement vector and the covariance matrix.
The log-likelihood function may need to be evaluated many
times, but after the initial factorization the cost of each esti-
mation step should remain constant.

6.4 Synthetic Data Generator

ExaGeoStat provides an internal data generator that is used
here to demonstrate the accuracy of the software. This data
generator can also be used as a stand-alone tool to generate

Fig. 3. ExaGeoStat software.
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sets of guided synthetic data for experiments with specific
needs or conditions.

Given n locations that are uniformly but randomly dis-
tributed, the covariance matrix S can be built using the
Mat�ern covariance function (i.e., Equation (2)). This covari-
ance matrix can be used to generate a measurement vector Z
from normal variates at the generated n locations, as follows:

SS ¼ L � L> ) Cholesky factorization:

Z ¼ L � e ) where ei � Nð0; 1Þ:

The data generator tool is shown in Algorithm 1. To gen-
erate a synthetic measurement vector Z, the algorithm ran-
domly generates a set of n locations (line 2). Then, the
distance matrix D is generated between these n random
locations (line 3). In line 4, an initial covariance matrix SS is
generated using the D matrix and the initial parameter vec-
tor uu. In line 5, a Cholesky factorization step is performed
on the covariance matrix S by using the Chameleon routine
dpotrf to generate the lower triangular matrix L. After gener-
ating the initial normal random vector, e, a single matrix-
vector multiplication operation is performed using the
lower triangular matrix L and the random vector e to initi-
ate the synthetic measurement vector Z (lines 6-7). Here, the
Chameleon routine dtrmm is used.

Algorithm 1. Synthetic Data Generator Algorithm

1: Input: initial parameter vector uu
2: Uniform random generation of n locations
3: D = genDistanceMatrix (n, n)
4: S = genCovMatrix (D, uu)
5: LL> = dpotrf (S)) Cholesky factorization SS ¼ LL>

6: Normal random generation of a vector e
7: Z = dtrmm (L; e)) Solve Z ¼ L � e

6.5 Likelihood Evaluation

As mentioned, our software has two different running
modes: testing mode to build a statistical model based on a
given set of parameters with the aid of a synthetic set of data
(i.e., measurements and locations) and application mode
where measurements and locations data are given to esti-
mate the statistical model’s parameters for future prediction
of unknown measurements at a new set of locations.

For both modes, with a given measurement vector Z and
distance matrix D, the likelihood function can be evaluated
using a set of routines from the Chameleon library. The
evaluation algorithm based on Equation (1) is presented in
detail in Algorithm 2. The inputs to the evaluation algo-
rithm are the measurement vector Z, distance matrixD, and
parameter vector uu (line 1). The algorithm generates the
covariance matrix SS (line 2) using the Mat�ern function given
by Equation (2). In line 3, a Cholesky factorization step is
performed on the covariance matrix SS by using the dpotrf
routine to generate the lower triangular matrix L. In line 4, a
triangular solver dtrsm is used to solve L� Znew ¼ Zold.
Both the log-determinant and dot product operations are
performed in lines 5-6. In line 7, the likelihood value ‘,
which should be maximized, is calculated based on the
dotscalar and logscalar values.

To find the maximum likelihood value, this algorithm is
called several times with different parameter vectors uu with
the help of the used optimization function.

Algorithm 2. Log-Likelihood Evaluation Algorithm

1: Input: measurement vector Z, distance matrix D, and initial
parameter vector uu

2: S = genCovMatrix (Z,D, uu)
3: LL> = dpotrf (SS)) Cholesky factorization SS ¼ L� L>

4: Znew = dtrsm (L;Zold)) Triangular solve SS � Znew ¼ Zold

5: logscalar = computeLogDet (SS)) The log determinant
log jSSj

6: dotscalar = computeDotProduct (Z, Z)) The dot product of
Z� Z

7: ‘= �0:5� dotscalar� 0:5� logscalar� ðn2Þlog ð2pÞ

The main goal of Algorithm 2 is to calculate the likelihood
function using a certain uu vector. However, our statistical
model relies on finding the parameter vector bubu, which maxi-
mizes the value of the likelihood function ‘. Thus, BOBYQA
optimization algorithm is used with the uu vector and the ‘
value to find the optimized vectorbubu for the given problem (Z,
S). It is difficult to determine in advance the average number
of iterations needed to maximize the likelihood function
because it depends on several factors, such as the optimiza-
tion algorithm, the initial parameters uu, and the maximum
acceptable relative tolerance (i.e., the measure of error
between the current solution and the previous solution).

6.6 Prediction

In the likelihood estimation step, we aim to construct a sta-
tistical model based on estimated parameters (i.e., bubu vector).
This model can be used for predicting m unknown mea-
surement in the vector Z1 with the aid of n known measure-
ment in the vector Z2 (see Equation (5)). The prediction
operation can also be implemented using a set of routines
from the Chameleon library.

Algorithm 3. Prediction Algorithm

1: Input: parameter vector bubu, known measurements vector Z2,
observed n locations, and newm locations.

2: Output: unknown measurements vector Z1

3: D22= genDistanceMatrix (n, n)
4: D12= genDistanceMatrix (m, n)
5: S22= genCovMatrix (D22, bubu)
6: S12= genCovMatrix (D12, bubu)
7: X = dposv (S22, Z2) ) Compute the solution to a system of

linear equation Z� X ¼ S22

8: Z1 = dgemm (S12,XX)) Performs the matrix-matrix
operation Z1 ¼ S12 � X

Algorithm 3 shows the prediction algorithm in details.
The algorithm has a set of inputs: the parameter vector bu,
the measurement vector Z2, a vector of the known n loca-
tions, and a vector of the new m locations with unknown
measurement vector Z1 (line 1). The algorithm aims to pre-
dict the measurement vector Z1 at the given m locations
(line 2). In lines 3 and 4, two distance matrices are gener-
ated: D22 between two sets of the observed n locations, and
D12 between the given unobserved m locations and the
observed n locations. These distance matrices are used to
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construct two covariance matrices, S22 and S12 (lines 5-6). In
line 7, the dposv routine is used to solve the system of linear
equation Z� X ¼ S22. In line 8, the unknown measurement
vector, Z1, can be calculated using the dgemm routine (i.e.,
matrix-matrix multiplication), Z1 ¼ S12 � X.

6.7 Facilitating ExaGeoStat Adoption for
Statisticians

Statisticians rely heavily on R, a high productivity simula-
tion environment, to rapidly deploy and assess their algo-
rithms, especially when applied to big data problems, as in
climate and environmental research studies. Therefore, we
provide R-wrappers to our main computational functions
through a separate package called ExaGeoStatR. These R
functions should help in disseminating our software toward
a large computational statistician community. To the best of
our knowledge, most of existing R solutions for the MLE
problem are sequential and restricted to limited data sizes
such as fields package provided by the University Corpora-
tion for Atmospheric Research (UCAR) [19].

6.8 Independent Blocks (IND) Approximation

Approximation means exist to reduce the algorithmic com-
plexity when dealing with very large and irregularly spaced
geospatial data. Several previous studies show how the
likelihood estimation problem can be adapted to provide
different methods of hierarchical low-rank approximations.
These methods have shown their effectiveness in both com-
putation and accuracy [17], [29], [33], [36], [42], [46].

As mentioned in the introduction section, this paper is
mostly focusing on the exact computation of large geospa-
tial data. The quality of exact computation may be demon-
strated by comparing it with traditional approximation
approaches on the same problem. Thus, in this section, we
highlight one of commonly used approximation strategies,
i.e., Independent blocks. Such a strategy has been used in
different studies and turns out to be a suitable way to
reduce the complexity of evaluating the likelihood function
on large-scale datasets [29], [42].

The IND approximation technique proceeds by annihi-
lating off-diagonal tiles, since their contributions as well as
their qualitative impact on the overall statistical problem
may be limited. The implementation of this approximation
technique maps well with the inherent tile algorithms of
ExaGeoStat and enables to expose tuning parameters, which
trades off performance and statistical efficiency. One of
these tunable parameters is the size of the diagonal super
tile, which determines how many tiles, around the diagonal,

need to be aggregated together. A large diagonal super tile
basically integrates more statistical contributions from the
original problem at the expense of performing more opera-
tions. Fig. 4 shows an example of the IND approximation
technique using a diagonal 2-by-2 super tile matrix.

The IND approximation technique generates a matrix
where elements from off-diagonal tiles are set to zero. In
this case, applying Cholesky factorization to the whole
matrix is unnecessary and time-consuming. Thus, we pro-
pose a modified version of the well-known tile Cholesky
factorization algorithm presented in [2]. The modified ver-
sion is aware of the new sparse structure of the matrix and
avoids zeros-tiles during the computation, which speeds-up
the Cholesky factorization operation for the whole matrix.

7 EXPERIMENTAL RESULTS

7.1 Environment Settings

We evaluate the performance of the proposed software on
a wide range of manycore-based systems: a dual-socket
28-core Intel Skylake Intel Xeon Platinum 8,176 CPU running
at 2.10 GHz, a dual-socket 18-core Intel Haswell Intel Xeon
CPU E5-2698 v3 running at 2.30 GHz and equipped with 8
NVIDIAK80s (2 GPUs per board), a dual-socket 14-core Intel
Broadwell Intel Xeon E5-2680 V4 running at 2.4 GHz, Intel
manycore Knights Landing (KNL) 7,210 chips with 64 cores,
a dual-socket 8-core Intel Sandy Bridge Intel Xeon CPU E5-
2650 running at 2.00 GHz, and a dual-socket Intel IvyBridge
Intel Xeon CPUE5-2680 running at 2.80 GHz.

For the distributed memory experiments, we use
KAUST’s Cray XC40 system, Shaheen, with 6,174 dual-
socket compute nodes based on 16-core Intel Haswell pro-
cessors running at 2.3 GHz, where each node has 128 GB of
DDR4 memory. The Shaheen system has a total of 197,568
processor cores and 790 TB of aggregate memory.

Our software is compiled with gcc v4.8 and linked
against the Chameleon library v0.9.1 with HWLOC v1.11.5,
StarPU v1.2.1, Intel MKL v11.3.1, and NLopt v2.4.2 optimi-
zation libraries. The LAPACK implementation is the multi-
threaded version from the vendor optimized Intel MKL
v11.3.1 numerical library, available on each platform.

In this study, the synthetic datasets are generated at
irregular locations in a two-dimensional space with an
unstructured covariance matrix [29], [46]. To ensure that no
two locations are too close, the data locations are generated
using n1=2ðr� 0:5þXrl; l� 0:5þ YrlÞ for r; l 2 f1; . . . ; n1=2g,
where n represents the number of locations, and Xrl and Yrl

are generated using uniform distribution on (�0.4, 0.4).
Fig. 5 shows a drawable example of 400 irregularly spaced
grid locations in a square region. We only use such a small
example to highlight our methodology to generate geospa-
tial data, however, this work uses synthetic datasets up to
49� 1010 locations (i.e., 700 K � 700 K).

7.2 Quantitative Results Assessment

7.2.1 Likelihood Estimation Performance

The first set of experiments highlights the execution time for
a single iteration of the MLE algorithm on different target
systems. We compare our software with the numerical
library LAPACK [4]. LAPACK is considered the main back-
bone of existing MLE implementations for geostatistical
applications [26].

Fig. 4. An example of Independent Blocks (IND) approximation tech-
nique on a diagonal 2-by-2 super tile matrix.
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We report the results of several experiments on different
hardware architectures: shared-memory, GPUs, and
distributed-memory. As the maximum likelihood estimation
problem includes an optimization operationwith several like-
lihood estimation iterations, we report only the time to finish
one iteration of the likelihood estimation. The LAPACK
curves represent the performance of the LAPACK-based
ExaGeoStat using all threads. The figures show that the
Chameleon-basedExaGeoStat outperforms the LAPACK vari-
ant on different platforms when using the same number of
threads. The figures also display the scalability of ExaGeoStat
when using different numbers of threads.

Fig. 6a shows the execution time for a single iteration of
MLE with 7, 18, and 36 threads compared to the LAPACK
implementation on a Haswell processor. As shown, our
implementation achieved a 1.14� speedup compared with
the LAPACK implementation by exploiting up to 70 percent
of the peak performance of the Haswell processor.

Fig. 6b shows the execution time with 7, 14, and 28
threads compared to the LAPACK implementation on a
Broadwell processor. Our chameleon-based platform
speeds up the execution time by 1.25� with 28 threads
compared to the LAPACK implementation. Moreover, our
implementation with 28 threads is able to reach over
53 percent of the total peak performance of the Broadwell
processor, while the LAPACK implementation can only
reach 47 percent of the peak performance. The figure also
shows scalability using different numbers of threads.

The performance of our proposed platform running on
an Intel Knights Landing (KNL) processor is reported in
Fig. 6c. The platform is easily scaled to accommodate differ-
ent numbers of threads (i.e., 4, 8, 16, 32, and 64). Using the
entire capability of KNL – 64 threads – we achieve an over-
all speedup of 1.20� compared to the LAPACK implemen-
tation. The achieved flop rate is more than 52 percent of the
peak performance of the KNL, while the LAPACK imple-
mentation achieves only 40 percent of the peak.

For the performance analysis using GPUs, a Haswell sys-
tem with 8 NVIDIA K80s is tested. Fig. 6d shows the scal-
ability with different numbers of GPUs units. Using 1, 2, 4,
8, and 16 GPUs, we achieve an average of 1.1, 1.9, 3.1, 5.2,
and 6.6 Tflop/s, respectively. With this high flop rate, one
iteration of a 100 K problem can be solved using 16 GPUs in
less than 52 seconds.

Fig. 7 shows the speedup gained from using ExaGeoStat
based on Chameleon compared to LAPACK across a range of

matrix sizes. The figure shows the speedup based on the
aforementioned Intel architectures, i.e., Haswell, Broadwell,
and KNL. The speedup can reach up to 1.4�, 1.25�, and 1.2�
on these systems, respectively. Theminimumgained speedup
using the Haswell, Broadwell, and KNL processors are
1.025�, 1.06�, and 1.15�, respectively. There is a performance
trend. For small matrix sizes, the asynchronous Chameleon-
based ExaGeoStat performs better than the traditional bulk
synchronous LAPACK-based ExaGeoStat since itmitigates the
idle time between panel factorization and update of the trail-
ing submatrix. For asymptotic matrix sizes, the performance
gap shrinks between both ExaGeoStat variants since the work-
load is large enough tomaintain hardware resources busy.

Fig. 8 summarizes the performance of ExaGeoStat on dif-
ferent shared-memory Intel processors. Skylake processor

Fig. 5. An example of 400 points irregularly distributed in space, with 362
points (	) for maximum likelihood estimation and 38 points (�) for predic-
tion validation.

Fig. 6. Time for one iteration of the likelihood estimation.

2778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018



represents the latest available generation of Intel processors.
Skylake shows the highest gained in terms of performance
on x86 systems, where 100 K� 100 K problems can be solved
in about 4.5 minutes on 56 cores. This experiment does not
aim at comparing performance across Intel processor genera-
tions, since each system has a different total number of cores,
i.e., Sandy Bridge (32 cores total), IvyBridge (40 cores total),
Broadwell (28 cores total), KNL (64 cores), Haswell (36 cores
total), Skylake (56 cores total), and eight NVIDIA K80 GPU
server. However, this experiment aims at showing how our
proposed unified software is hardware-agnostic and can
deploy on Intel x86 architectures as well as NVIDIA GPU-
based servers, using a single source code, which is further
leveraged to distributed-memory environment systems.

Fig. 9 shows the performance impact when applying the
IND approximation technique on synthetic datasets. We
only report the performance on Intel Haswell processor,
since similar performance trend may be obtained on the
other hardware systems. As expected, the IND approxima-
tion method is able to estimate the likelihood function faster
than the exact method. The figure also shows that with
larger diagonal super tiles, the likelihood estimation time
increases, as expected. These performance numbers have to
be cautiously put in the context of the qualitative study, pre-
sented later in Section 7.5.

We also test our proposed software on the distributed-
memory Cray XC40, Shaheen, with different numbers of
nodes. Fig. 10a reports the total execution time in terms of
cores (with 32 cores per node). With small matrix sizes, the
benefits are modest. However, as the matrix size grows,
speedup saturates at higher and higher values. ExaGeoStat

is able to solve one maximum likelihood problem of dimen-
sion 700 K in about 800 seconds.

Fig. 10b shows the performance using the distributed-
memory by reporting the flop rate against the varying core
count. Using 8192 cores, 140 Tflop/s is achieved on a prob-
lem of dimension 700 K. These experiments not only vali-
date the good performance of our unified platform on
different hardware architectures, but also, to the best of our
knowledge, extend the exact solution of the MLE problem
to such unprecedented large sizes. In Figs. 10a and 10b,
some lines do not extend very far because of memory limits
for smaller numbers of cores.

7.2.2 Prediction Evaluation Performance

Here, we investigate the performance of the prediction
operation (i.e., 100 unknown measurements) using the Exa-
GeoStat software on a distributed system (i.e., Cray XC40).

Fig. 10c shows the execution time for the prediction from
different sizes synthetic datasets up to 700 K using 4, 16, 64,
and 256 Shaheen’s nodes, each has 32 cores. The scalability
can seen in the figure. The prediction operation for a 700 K
problem size can be evaluated in about 880 seconds.

Fig. 10d shows the performance in Tflop/s with different
numbers of cores. On Shaheen, the prediction operation
achieve a 130 Tflop/s performance for 700 K problem size
using 8,192 cores.

7.3 Qualitative Analysis (Monte Carlo Simulations)

The overall goal of the maximum likelihood model is to esti-
mate the unknown parameters of the statistical model (u1,
u2, and u3) of the Mat�ern covariance function, then to use
this model for future predictions of unknown measure-
ments. In this experiment, we use the Monte Carlo simula-
tion to estimate the parameters of an exponential covariance
model, where u1 ¼ 1, u2 ¼ 0:1, u3 ¼ 0:5.

Using our data generator tool and the initial parameter
vector (u1 ¼ 1, u2 ¼ 0:1, u3 ¼ 0:5), four different synthetic
datasets are generated (i.e., 20 K, 40 K, 60 K, and 80 K)
besides 100 measurement vectors Z for each dataset. This
experiment is repeated 100 times with different measure-
ment vectors.

Figs. 11a, 11b, and 11c show three boxplots representing
the estimated parameters with 100 measurement vectors Z.
The true value is denoted by a dotted red line. As shown,
all of the results are close to the correct uu vector.

To evaluate the accuracy of our predictions, we ran-
domly choose a set of locations and mark the measurements
on those locations as unknown. Then, using the estimated bubu

Fig. 7. ExaGeoStat/Chameleon speedup compared to ExaGeoStat/
LAPACK on Haswell, Broadwell, and KNL.

Fig. 8. Hardware-agnostic ExaGeoStat software.

Fig. 9. Time for one iteration of the likelihood estimation using exact and
IND computation on Haswell processor.
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vector, ExaGeoStat predicts the unknown measurements at
those locations with the aid of the known measurements.
The accuracy of the prediction operation can be estimated
using the Mean Square Error (MSE) between the actual
measurements and the predicted ones as MSE ¼ 1

n

Pn
i¼1

ðbyi � yiÞ2, where byi represents the predicted value and yi
represents the actual value at the same location.

Fig. 12 shows the boxplot of the predictions MSE using a
k-fold cross-validation technique, where k=10, to validate
the prediction accuracy using different synthetic dataset
sizes. The total number of missing values equals to n=k (i.e.,
subsample size). With larger matrix sizes, our prediction
implementation has a smaller MSE compared to the smaller
matrix sizes. The average execution time per single predic-
tion using four nodes on Shaheen Cray XC40 is shown
under each boxplot.

7.4 Real Dataset Application

In environmental applications, the number of measure-
ments is usually very large. These measurements are often
distributed irregularly across a given geographical region,
and can be modeled as a realization from a Gaussian spatial
random field. In this study, we have evaluated our unified
software using a soil moisture data coming fromMississippi
River basin region, USA (more details are given in Section 4).
Because locations in the soil moisture dataset are given by
longitude and latitude pairs, the location space is non-
euclidean. Therefore, we use the Great-Circle Distance
(GCD) metric to compute the distance between any given
two locations with their original longitude and latitude val-
ues. The best representation of the GCD is the haversine for-

mula [38] hav
d

r

� �
¼ havð’2 � ’1Þ þ cos ð’1Þ cos ð’2Þhavð�2�

�1Þ, where hav is the haversine function, havðuÞ ¼
sin 2 u

2

� � ¼ 1� cos ðuÞ
2 ; d is the distance between two locations, r

is the radius of the sphere, ’1 and ’2 are the latitudes in
radians of locations 1 and 2, respectively, and �1 and �2 are
longitudes.

For the soil moisturemeasurements from such a large spa-
tial region, it is very likely that the process exhibits non-
stationarity, i.e., the soil moisture covariance parametersmay
vary in space. Therefore, it is necessary to understand the fea-
tures of the dataset before choosing the appropriate statistical
model for fitting the data. To examine whether it is reason-
able to fit a stationary model to the whole spatial region, we
propose dividing the entire region into disjointed subregions
and applying our computationally efficient methods to fit

Fig. 11. Boxplots of parameter estimates.

Fig. 10. Distributed-memory performance scalability on Cray XC40.
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stationary Gaussian process models with a Mat�ern covari-
ance function to each subregion. Then we can compare the
spatial variability across regions using the parameter estima-
tions. The division is only applied in order to study the
behavior of the soil moisture dataset, and does not mean that
our method is limited to stationary models. Our method can
be used directly on non-stationary covariance models with-
out modification. However, the stationary covariancemodels
are essential in any geospatial analysis and serve as the cor-
nerstones ofmore complex, non-stationarymodels.

We consider two different strategies for dividing this data-
set, as shown in Fig. 13, where the locations are divided into
16 subregions (i.e., 1A, 1B,...etc.) or 8 subregions (i.e., 1, 2, ...
etc.) The parameter estimation of the Mat�ern covariance is
summarized in Tables 1 and 2 using theGreat-Circle Distance.

From both tables, we see that the marginal variance u1
and the spatial range parameter u2 change across regions,
suggesting that the local variability shows obvious non-
stationarity. However, the smoothness parameter u3 hardly
changes at all across different regions. In the future studies,
we may merge the subregions with similar parameter esti-
mates and fit one stationary model to that combined region,
while investigating the covariances of those subregions
with very different parameter estimates more carefully.

We also estimate the accuracy by validating the esti-
mated model parameters using a prediction evaluation

process. A k-fold cross-validation technique has been used,
where k ¼ 10. In this case, the number of missing values
that have been chosen from large regions, i.e., 250 K, is
25,000, and from small regions, i.e., 125 K, is 12,500. We
applied the k-fold cross-validation technique and reported
the average MSE.

Although GCD may be one of the best representations of
the distance between two points on the surface of a sphere
such as the earth, we have also tried the euclidean Distance
(ED) metric for the soil moisture data, after transforming soil
moisture dataset to the euclidean space. We have found that
none of GCD and ED are uniformly better than the other
and, therefore, have decided to only report GCDmetric.

7.5 Qualitative Analysis Using Real Application

Evaluating the accuracy of exact computation compared to
approximation techniques is necessary to highlight the
advantage of using such a computational-intensive software
to solve the likelihood estimation problem. As mentioned
earlier, one of the main goals of this study is to build a
benchmark software to validate existing or future approxi-
mation techniques with large-scale data.

Fig. 12. Predictions MSE of n=k missing values of different synthetic
dataset sizes using a k-fold cross-validation technique (k=10). Execution
time per single prediction is shown under each boxplot using four nodes
on Shaheen.

Fig. 13. Soil moisture data divided into 16 geographical regions.

TABLE 1
Estimation of the Mat�ern Covariance Parameters for

8 Geographical Regions and the Average Prediction MSE
Using a k-Fold Cross-Validation Technique (k ¼ 10)

Mat�ern Covariance Avg.

Regions Variance
(u1)

Spatial
Range (u2)

Smoothness
(u3)

prediction
MSE

R 1 0.823 7.215 0.529 0.0643
R 2 0.481 10.434 0.500 0.0315
R 3 0.328 10.434 0.534 0.0175
R 4 0.697 16.761 0.483 0.0298
R 5 1.152 13.431 0.482 0.0612
R 6 0.697 16.095 0.512 0.0263
R 7 0.520 16.872 0.487 0.0213
R 8 0.390 12.321 0.447 0.0287

TABLE 2
Estimation of the Mat�ern Covariance Parameters for

16 Geographical Regions and the Average Prediction MSE
Using a k-Fold Cross-Validation Technique (k ¼ 10)

Mat�ern Covariance Avg.

Regions Variance
(u1)

Spatial
Range (u2)

Smoothness
(u3)

prediction.
MSE

R 1A 0.852 5.994 0.559 0.0711
R 1B 0.380 10.434 0.490 0.0527
R 2A 0.277 10.878 0.507 0.0202
R 2B 0.410 7.77 0.527 0.0303
R 3A 0.836 9.213 0.496 0.0619
R 3B 0.619 10.323 0.523 0.0355
R 4A 0.553 19.203 0.508 0.0186
R 4B 0.906 27.861 0.461 0.0298
R 5A 1.619 17.205 0.466 0.0775
R 5B 1.028 24.531 0.498 0.0296
R 6A 0.599 25.197 0.457 0.0219
R 6B 0.332 12.432 0.418 0.0294
R 7A 0.625 7.659 0.523 0.0463
R 7B 0.467 9.324 0.549 0.0244
R 8A 0.485 12.654 0.464 0.0313
R 8B 0.383 13.875 0.477 0.0211
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In this experiment, we compare exact computation with
IND approximation, i.e., both are provided by the ExaGeoStat
software. The experiment is performed on one region of soil
moisture dataset (1A). The selected region has 125 K meas-
urements with a location matrix of size 125 K � 125 K ele-
ments. To gain the best performance of ExaGeoStat, we tune
the tile size to be 560, with Cray XC40 cluster to optimize the
performance. In this case, the whole location matrix is
divided to 224 tiles in each dimension , i.e., total number of
tiles = 224 � 224 = 50176 tiles. In the case of IND approxima-
tion, a different size of diagonal super tiles is used, i.e.,
20� 20, 40� 40, 60� 60, and 80� 80. Of course, large diago-
nal super tiles show more accuracy improvements because
more locations are taken into account. The experiment has
been repeated for 100 times, each aims at predicting different
100missing values randomly selected from the same region.

Fig. 14 shows the predictions MSE for various sizes of
diagonal super tiles using IND approximation technique
compared to the exact solution on region 1A. A k-fold cross-
validation technique, where k=10, is used to validate the
prediction accuracy, where the total number of missing val-
ues equals to 12,500 (i.e., n=k subsample). As shown, exact
computation satisfies the lowest MSE prediction compared
to IND approximation technique. The figure also illustrates
that lower MSE prediction values can be obtained by
increasing the size of diagonal super tiles in the case of IND
approximation. In this case, more computation power is
required to complete the whole estimation operation. More-
over, the average execution time per single prediction on
four Shaheen nodes is shown under each boxplot.

8 CONCLUSION AND FUTURE WORK

This paper highlights the ability of the new ExaGeoStat soft-
ware to estimate themaximum likelihood function in the con-
text of climate and environmental applications and to predict
missing measurements across geographical locations. This
software provides a full machine learning pipeline (i.e., esti-
mation, model fitting, and prediction) for geostatistics data.
ExaGeoStat is able to runwith a decent performance on awide
range of hardware architectures, thanks to the high-
performance, dense linear algebra library Chameleon, associ-
ated with the StarPU runtime system. We have successfully

applied the software to synthetic and real datasets. Since cal-
culations are performed without any approximations, the
estimated parameters can be used as a references for assessing
different approaches, with the end goal of generating online
database containing an ensemble of parameter estimates.

We also provide the implementation of an R wrapper
API, i.e., ExaGeoStatR, to ease the process of integrating Exa-
GeoStat with the computational statistician community. The
R package includes the main functions that can be used by
statisticians to evaluate the MLE operation on variant hard-
ware architectures.

In the future work, we plan to investigate hierarchical
matrix approximations based on H-matrices, which will
allow us to replace dense subblocks of the exact matrix with
low-rank approximations in an accuracy-tunable manner,
significantly reducing the memory footprint and operation
count without compromising the accuracy of the applica-
tions [3]. We also plan to support our package with NetCDF
support to deal with a wide range of existing climate and
environment data.
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