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Summary. Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling
spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and
it could allow for accurate testing for significance in neural activity. The high dimensionality of this type of data (on the order of
hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake
of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs)—
coarser or larger spatial units—rather than among voxels. However, ignoring spatial dependence at different scales could
drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. We introduce
a multi-resolution spatio-temporal model and a computationally efficient methodology to estimate cognitive control related
activation and whole-brain connectivity. The proposed model allows for testing voxel-specific activation while accounting for
non-stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between-ROIs).
The model is used in a motor-task fMRI study to investigate brain activation and connectivity patterns aimed at identifying
associations between these patterns and regaining motor functionality following a stroke.
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1. Introduction

Detecting and understanding significant patterns of brain
activity is among the most important challenges of contem-
porary science. To this end, functional Magnetic Resonance
Imaging (fMRI) data has been the primary tool of neu-
roscience investigations for the last 20 years. It measures
brain activity by detecting changes in neural activity
associated with blood flow using the contrast between deoxy-
genated hemoglobin (which is paramagnetic) to oxygenated
hemoglobin (which is diamagnetic) in localized spatial vol-
umes called voxels. An fMRI scan produces a highly spatially
resolved brain imaging data set. The challenges for statisti-
cians are to develop a model that is able to detect activated
voxels and regions of interest (ROIs) during a performed task;
to understand how each ROI functions as a unit and how they
all work together to execute tasks (there may be as many as
150,000 voxels over the entire brain volume for each scan); and
to describe potentially complex spatial dependence structures
while still allowing for scalable inference.

In this article, we report the results of a collaboration
with the stroke rehabilitation center at UC Irvine (PI: Dr.
Steven C. Cramer) on a project that aims to identify brain

[Corrections added on August 8, 2018, after first online publica-
tion: Grammar correction within section 1. Introduction, Figure 1
caption updated, equation corrections within sections 3.2. Step 2:
Estimating Local Effects and 4. Simulation Studies, and spelling
correction within section 7. Supplementary Materials]

activation and connectivity patterns during the execution of
a motor task (e.g., hand grasping). Throughout this article,
connectivity will be defined as the conditional dependence
across ROIs. The ultimate goal is to find associations between
these patterns and the ability of an affected stroke patient to
regain motor functionality.

The simplest statistical approach in analyzing fMRI data
is to fit a linear model (often termed general linear model in
brain imaging literature) for voxel-specific (or ROI-specific)
time series. However, this approach does not account for
spatial dependence across voxels or between ROIs, and
hence could potentially result in misleading conclusions. It
is well known that if spatial dependence is ignored, then
the uncertainty of the estimators is assessed incorrectly,
thus inducing inflated Type I error rates (Dubin, 1988)
when testing for significance. While it is possible to par-
tially adjust the analysis for spatial correlation (e.g., by
post-processing the data via spatial smoothing), our goal in
this article is to develop a comprehensive model that defines
the spatio-temporal dependence of a complete fMRI data
set which is necessary to fully and correctly account for
these effects. Although most researchers acknowledge that
taking spatial dependence into account is important, the
key obstacle has been the seemingly insurmountable com-
putational cost. Here, we develop a computationally efficient
algorithm and a step-wise inference approach that overcomes
this major limitation in spatio-temporal models for fMRI
data.
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The earliest approaches to modeling fMRI data (Worsley
and Friston, 1995; Locascio et al., 1997; Bullmore et al., 2001)
focused only on within-voxel temporal correlation, either
ignoring spatial correlation or imposing unrealistic constraints
to reduce the computational burden associated with the high
spatial dimensionality of fMRI data. Seminal works on sta-
tistical methods for fMRI data (the random field theory
developed in Worsley et al. (1992) and Worsley and Friston
(1995)) indirectly accounts for spatial correlation by assum-
ing that the voxel-specific test statistics (e.g., the t-statistic
or F -statistic) are realizations of some random field. This
approach is unrealistic because it does not directly model
spatial covariance via the fMRI time series at different voxels
and is prone to subjective interpretation of the clustering of
activation patterns.

Bowman (2005) proposed a two-stage hierarchical Bayesian
approach to first estimate activation patterns under the
assumption of spatial independence and then to model the
spatial dependence of the mean within regions. Bowman
(2007) and Bowman et al. (2008) extended this work by allow-
ing correlation for each voxel within a region, and Derado
et al. (2010) proposed a model to also account for temporal
correlation between multiple experimental effects. The two-
stage approach was the first rigorous framework to acknowl-
edge spatial correlation and has given rise to a large body of
literature on Bayesian models for fMRI data (see Zhang et al.
(2015) for a comprehensive review). Although this framework
has been demonstrated to be flexible and to produce useful
information for practitioners (e.g., posterior probability maps
for activation), two main factors still present limitations to
the development of spatio-temporal models for fMRI data.
Firstly, dependence of activation patterns (or some differenc-
ing of them) assumes a Gaussian Markov random field, which
is a natural choice for the gridded geometry of fMRI, but
implies stationarity on the local scale, which is overly sim-
plistic, as we show in this article. Secondly, inference is often
limited to subsamples such as two-dimensional slices to reduce
the dimensionality and consequently the computational time.
Zhang et al. (2015) claim that “the large dimensionality of
the data makes it impossible to model the entire 3D maps of
the data at once.” Here, we demonstrate that it is possible to
provide activation maps for the entire brain with nontrivial
spatio-temporal models, provided that appropriate computa-
tional power is available and a suitable inferential scheme that
fully exploits distributed computing is implemented.

An alternative approach to modeling spatial dependence
was proposed by Kang et al. (2012), where a spatio-spectral
mixed-effects model that captures multi-scale spatial correla-
tion (among ROIs and within ROIs) was defined. By defining
the model on the spectral domain (i.e., modeling the Fourier
coefficients rather than the fMRI time series), their approach
holds promise for scalability because the Fourier coefficients
are approximately uncorrelated across different frequencies
under a temporally stationary assumption. By incorporat-
ing voxel-specific and ROI-specific random effects, the model
captures the spatial covariance structure both on a local
level (where the local correlation between voxels depends on
their distance) and on a regional level (where the correlation
between regions is not forced to depend on distance) without
reducing the analysis to 2D slices. However, the activation

was assumed at the regional level, not at the voxel level, and
the assumption of isotropy within a region, as we show in this
article, is not appropriate. With more powerful computing
resources available and a more sophisticated methodology to
handle nonstationary spatial data, this assumption can and
should be relaxed.

Degras and Lindquist (2014) developed a hierarchical
model for voxel-specific and condition-specific activation and
inference in a multi-subject setting. The problem of simul-
taneously estimating the Hemodynamic Response Function
(HRF) and voxel activation was previously discussed in Makni
et al. (2005). The approach in Degras and Lindquist (2014)
uses a set of B-spline basis functions to represent the HRF.
The coefficients of these functions are allowed to vary between
experimental conditions, across voxels in space and over all
subjects. Similarly, Zhang et al. (2012, 2013, 2014) proposed
different estimation strategies of the HRF, both in the para-
metric and semi-parametric setting for multiple subjects. The
proposed models are flexible and the estimation-inference pro-
cedure is rigorously developed; however, all of them still lack
a sound formulation of the spatial covariance.

More recently, Zhu et al. (2014) and Hyun et al. (2014) pro-
posed mixed effect models with spatially varying coefficients
that allow for spatial discontinuities in Blood Oxygenation
Level Dependent (BOLD) activation and spatial dependence.
While these models allow for a rich and flexible structure in
the mean function, they also require an explicit and inter-
pretable definition of a functional structure allowing jumps,
which is difficult to implement with a very large number of
voxels. Also, the covariance structure was assumed to have
either a low rank representation (Cressie and Johannesson,
2008) or to rely on Gaussian predictive processes (Banerjee
et al., 2008) which do not explicitly model nonstationarity
and lead to loss of information when the spatial correlation is
moderate or strong (Stein, 2014).

In this article, we propose a new model that overcomes
the aforementioned limitations by capturing both nonsta-
tionary local and regional dependence. This model is used
to test for significant voxel-specific activation and connectiv-
ity. Inference can be achieved within the context of our data
example, comprising of more than 22 million observations,
via a multi-resolution approach and an intensive use of dis-
tributed computing, without resorting to subsampling either
with 2D slices or by assuming a coarse-level activation struc-
ture. The isotropy assumption for dependence is also relaxed
assuming instead a locally anisotropic model (Fuentes, 2001)
for each ROI. Subsequently, generalized shrinkage (Fiecas and
Ombao, 2011) with the empirical covariance matrix is per-
formed to allow sufficient flexibility in capturing high spatial
frequencies. The regional dependence structure is estimated
with a sparse inverse structure via graphical Least Abso-
lute Shrinkage and Selection Operator (LASSO) (Friedman
et al., 2008) which allows for visualization of connectivity pat-
terns across ROIs, exploiting its interpretability as a graphical
model (Meinshausen and Bühlmann, 2006).

The Gaussian model that we propose allows both a local
and a regional structure so that it is possible to realistically
capture the complex multi-scale spatio-temporal dependence
across voxel-specific fMRI time series. Our model has two
advantages. First, a more realistic description of spatial
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dependence allows for an improved inference when testing
for activation with less false positives than a model that
assumes independence or an overly simplistic dependence.
Thus, our proposed model produces more accurate detection
of activated ROIs when the patient is performing the motor-
task (although this approach can be generalized to other
types of clinical trials). Second, by using a realistic model
for regional dependence with a sparsity structure, one can
deduce an interpretable functional connectivity graph that
provides information on the connectivity structure of these
ROIs during the task.

The remainder of the article is organized as follows:
Section 2 introduces the temporal, local, and regional spatial
structure of the spatio-temporal statistical model; Section 3
gives a multi-resolution inference scheme and discusses how
distributed computing is instrumental in fitting the model to a
data set of such scale; Section 4 presents two simulation stud-
ies to highlight the need for nonstationary models on the local
scale, and Section 5 demonstrates that the proposed spatio-
temporal model has the ability to detect more active voxels
when compared to a model with spatial independence and
how these voxels correspond to interpretable patterns related
to the task performed in the motor experiment. Section 6 con-
cludes with a discussion and future directions of investigation.
In the Supplementary Material, we included a description on
the experimental design and the fMRI data.

2. The Statistical Model for fMRI Data

Throughout this article, Yv(t) denotes the fMRI time series
at voxel v and rv denotes the ROI to which voxel v belongs.
At each time point, the condition is either “rest” (no external
stimulus applied) or “active” (when a stimulus was applied).
Let S1(t) be the indicator function during “task” in the block
design in Figure S1 and S2(t) = 1 − S1(t) the indicator for
“rest,” so that exactly one condition is present for each time t.

We further assume that the HRF, denoted h(t), is
known and is common across all voxels. Voxel- and ROI-
specific HRFs have been developed (see, e.g., Degras and
Lindquist (2014)) by assuming that the HRF is the difference
between two gamma functions or has a Poisson distribu-
tion (Zhang et al., 2015), and allowing spatially varying
parameters. We use the canonical HRF from the Statis-
tical Parametric Mapping software to produce a BOLD
response associated with each of the two stimuli. The
BOLD response for the active condition, denoted X1(t), is
the convolution of the HRF, h(t), with the active stimu-
lus indicator, S1(t): X1(t) = (h ∗ S1)(t) = ∫ ∞

−∞ h(t)S1(t − τ)dτ.
Similarly, the BOLD response for the rest condition is
X2(t) = (h ∗ S2)(t).

2.1. Voxel-Wise Activation

Let Y(t) = {Y1(t), . . . , YV (t)}� be the fMRI intensity at time
t = 1, . . . , T for all voxels v = 1, . . . , V . We assume the follow-
ing standard model for fMRI:

Y(t) = β0 +
J∑

j=1

βjI(t ∈ Cj) + βJ+1(t mod T/3) + βJ+2X1(t)

+ βJ+3X2(t) + ε(t), (1)

where Cj indicates the jth session; βj = (βj;1, . . . , βj;V )� for
j = 0, . . . , J + 3 are the covariates that are allowed to change
at each voxel. Specifically, β0 is the intercept, β1, . . . ,βJ allow
for a changing mean for the sessions (in our case J = 2,
the third session mean is equal to zero for identifiability)
while βJ+1 accounts for a temporal effect. Here, βJ+2 repre-
sents the linear contribution of the BOLD response, X1(t),
while βJ+3 accounts for X2(t). The proposed model could
also be extended to M stimuli, with terms βJ+m+1Xm(t) for
m = 1, . . . , M and Xm(t) = (h ∗ Sm)(t) with Sm(t) being the
indicator for the mth stimulus.

The noise ε(t) is modeled as a vector autoregressive process
of order 2 (VAR(2)). Note that the most common analy-
ses use the VAR of order 1 or 2, and even such low VAR
orders already have 2V 2 or 3V 2 unknown parameters, respec-
tively. Higher orders may be possible with a small number of
ROIs but could be potentially computationally challenging at
the voxel level (Bowman, 2007; Degras and Lindquist, 2014).
Thus, ε(t) is written as

ε(t)=�1ε(t − 1)+�2ε(t − 2)+S{�H1(t)+(IV − �)H2(t)},
(2)

where IV is the identity matrix of size V × V and �1 =
{φ1;v}, �2 = {φ2;v} are V × V diagonal matrices with coeffi-
cients representing the autoregressive components of ε(t).
Here, S = {σv} is a diagonal matrix with voxel-wise standard
deviations, and �H1(t) + (IV − �)H2(t) is the vector of nor-
malized innovations. We assume that Hu(t) ∼ N(0, �u) for
u = 1, 2 where �u are correlation matrices and that H1(t)
is independent from H2(t). The vector H1(t) controls the
local (voxel-specific) scale dependence: its covariance �1 is
a block diagonal matrix, where each block �1,r corresponds
to the dependence within ROI r. The vector H2(t) con-
trols the regional scale dependence, representing the ROI
specific effect with correlation �2. � is a V × V diagonal
matrix with diagonal elements ωr ∈ [0, 1] for each ROI r,
which represents the relative contribution of the local random
effect H1(t) compared to the regional random effect H2(t).
We denote by H1(v) and by H2(rv) the value of H1 and
H2 at voxel v, respectively (the time index is removed for
simplicity).

2.2. Modeling Intra-ROI Dependence

We assume that cov{H1(v),H1(v
′)} = 0 if rv �= rv′ ; that

is, voxels in different ROIs have no dependence through
H1. If the voxels belong to the same ROI, that is, if
rv = rv′ = r, a model for the spatial dependence must be
defined. Previous works (Kang et al., 2012,2013) have pro-
posed a nonparametric isotropic model based on voxel
distance (within the same ROI). The simulation study
in Section 4, however, shows that such an assump-
tion is overly simplistic and a nonstationary model is
necessary to adequately capture the complex spatial struc-
ture in fMRI data. A wide variety of approaches have
been proposed to construct nonstationary spatial pro-
cesses, see Sampson (2010) for a comprehensive review. In
this article, we adopt the construction of Fuentes (2001),
who proposed that H1(v) is a linear combination of L
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independent locally geometrically anisotropic processes; that
is

H1(v) =
L∑

l=1

Hl
1(v)wl(v), (3)

where Hl
1(v) are independent, mean zero Gaus-

sian processes across l with cov{Hl
1(v),H

l
1(v

′)}
= 1

�(νl,r)2
νl,r−1

[{R(v−v′)}�R(v−v′)
θl,r

]νl,r
Kνl,r

[{R(v−v′)}�R(v−v′)
θl,r

]
, where

Kν is a Bessel function of the third kind, v and v′ are
the coordinates in 3D space of v and v′, respectively. In
other words, Hl

1(v) has a Matérn covariance with scale
θl,r, smoothness νl,r and a distance matrix R such that the
isocovariance curves are ellipsoids with semi-principal axes
of length {
1;l,r, 
2;l,r, 
3;l,r} and with a rotation of angle ξ1;l,r
with respect to the x − y plane and ξ2;l,r with respect to
the x − z plane. The weights wl(v) in (3) are the inverse
distance of v from the centroid of region l, normalized to
yield unit variance. The nonstationary model in (3) allows
for a different spatial dependence over the L subregions
of each ROI and thus accounts for the different local
structure. The added flexibility comes at the price of an
increased computational burden in the inference, as shown in
Section 3.2.

2.3. Modeling Inter-ROI Dependence

From this part, for simplicity, H2(t) denotes the R × 1 vec-
tor of the region-specific effect instead of the V × 1 vector as
described in Section 2.

H2 is then a ROI-specific random effect with correlation
matrix �2, such that

cov{H2(r),H2(r
′)} =

⎧⎨
⎩

(�2)r,r′ = ρ(r, r′) if r �= r′,

(�2)r,r = 1 if r = r′,
(4)

which does not depend on the Euclidean distance between
ROIs. Here, ρ(r, r′) is a symmetric function such that the
resulting covariance is positive definite.

3. Inference on fMRI Activation and
Connectivity

Inference for the model defined in Section 2 needs to be per-
formed for a data set with more than 22 million data points.
Due to the extremely high dimensionality of the data, it
is necessary to develop some approximations to the likeli-
hood in order to perform inference. We propose a three-step
likelihood approximation, where the second and third steps
are performed conditional on the first, and assume indepen-
dence across subsets of data. In the first step, we fit a profile
likelihood for each individual voxel to extract temporal depen-
dence. The second step estimates H1(t) separately for each
ROI. The last step estimates the regional effect H2(t) with
the entire data set. The diagram in Figure 1 shows the last
two inference steps. While this approach does not yield a
global maximum likelihood (which is practically impossible to
achieve), it has shown near-optimal results in terms of both
bias and error propagation over a wide range of applications
in environmental statistics; see, for example, Castruccio and
Stein (2013).

3.1. Step 1: Voxel-Specific Profile Likelihood

We initially consider models (1) and (2), assuming that
there is no spatial dependence. Thus, the fit of Yv =
{Y�

v (1), . . . ,Y�
v (T )}� can be performed independently for

each voxel via profile likelihood. If we denote the T × 6 design
matrix induced by (1) for every voxel as X̃, the vector of
parameters for voxel v as θv = (φ1;v, φ2;v, σ

2
v )�, and the tem-

poral covariance matrix induced by the AR(2) structure in (2)
as K(θv), then the profile likelihood can be written as (Stein,
1999)


(θv;Yv) = −T

2
− 1

2
log |K(θv)| − 1

2
Y�

v {K(θv)
−1

−K(θv)
−1X̃W(θv)

−1X̃�K(θv)
−1}Yv,

where W(θv) = X̃�K(θv)
−1X̃, and the mean vector βv can be

obtained via generalized least squares:

β̂v(θv) = W(θv)
−1X̃�K(θv)

−1Yv.

Figure 2 shows the results of the fit for four randomly cho-
sen voxels. It is apparent how the linear model (1) is able to
adequately capture both the mean and the uncertainty for all
voxels, including the ones that show a discontinuous change
in the mean for different sessions in the experiment.

3.2. Step 2: Estimating Local Effects

We now consider (1) and (2) assuming that H1(t) has the
spatial structure defined in Subsection 2.2, while for H2, we
assume ρ(r, r′) = 0 for every r �= r′ in (4) so that �2 = IR. In
other words, the process assumes that the voxels within the
same ROI are correlated but voxels from different ROIs are
not correlated.

Denote by

e(t) = Ŝ−1{Ŷ(t) − �̂1Ŷ(t − 1) − �̂2Ŷ(t − 2)},

where (�̂1, �̂2, Ŝ) and Ŷ(t) = Y(t) − (IV ⊗ X̃)β̂ are estimated
from the previous step. These residuals can then be used
to estimate cov{�H1(t) + (IV − �)H2(t)} = ��1�

� + (IV −
�)(IV − �)�, and since this matrix has a block diagonal struc-
ture, the fit for each ROI can be performed independently.
We thus focus on er(t), the collection of all values of e(t)
in ROI r, and fit a zero mean Gaussian process with locally
anisotropic covariance function (3) to estimate �1 (a plot of
the entries of �, that is, the relative contributions of the local
versus regional covariance, can be found in the Supplementary
Material).

The choice of the number L and shape of the regions
in (3) is different for every ROI and is performed accord-
ing to a model selection procedure. Each ROI is divided
into L = Lx × Ly × Lz sub-regions, where the x (y, z) axis is
divided into Lx (Ly, Lz) equally spaced intervals with regions
with less than 36 points merged with the largest neighbor-
ing region (Fuentes, 2001). For each parallelepiped i, the
Maximum Likelihood Estimator is computed for a geomet-
rically anisotropic Matérn model assuming ξ1;l,r = ξ2;l,r = 0
(a model selection with further estimation of the angles was
computationally infeasible). The global covariance function is
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Figure 1. Concept figure of the last two inference steps. The leftmost figure represents the spatial dependence within each
ROI assuming independence across them, and the rightmost considers the connectivity across ROIs. The middle picture
represents possible activation patterns across ROIs. Figure 1 was produced by Heno Hwang, scientific illustrator at King
Abdullah University of Science and Technology (KAUST). This figure appears in color in the electronic version of this article.
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Figure 2. Examples of fMRI intensity fit for four randomly selected voxels. The fitted value according to (1) (solid) with
its associated 95% prediction intervals (dashed) follow the data (solid). The four voxels belong to (a) middle frontal gyrus,
right orbital lobe, (b) left precuneus, (c) right inferior temporal gyrus, and (d) right fusiform gyrus. This figure appears in
color in the electronic version of this article.
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estimated as a weighted sum of the local covariance functions
and the Bayesian Information Criterion (Schwarz, 1978) is
computed. The optimal L is chosen according to the following
steps:

1. Start with a single region, that is with a geometrically
anisotropic model with Lx = Ly = Lz = 1.

2. Evaluate the BIC on all the neighboring configurations of
(Lx, Ly, Lz), that is (Lx + 1, Ly, Lz), (Lx − 1, Ly, Lz), . . ..
Also, evaluate the BIC at 25 randomly drawn locations
(to avoid local minima).

3. If there is a configuration with smaller BIC, redo point 2,
otherwise stop.

4. Once the optimal configuration is obtained, re-estimate R
with the rotation angles.

A comparison of all ROIs in terms of BIC for the isotropic
and locally geometrically anisotropic model, as shown in
Figure 3, demonstrated that the proposed model is substan-
tially more suitable for fMRI data within the same ROI: the
locally anisotropic model is on average approximately 28,000
BIC unit better than the isotropic one.

Despite its flexibility, a preliminary analysis has shown
that an estimated covariance function with (3), even after
model selection, still leaves a considerable margin for improve-
ment. We thus compute a new estimate of the covariance
via generalized shrinkage (Friedman et al., 2008), which is
a linear combination of the empirical covariance and an esti-
mate from a parametric model (Fiecas and von Sachs, 2014).
We denote the estimated covariance resulting from the Maxi-
mum Likelihood Estimate of the rth block of �̂1 according

to (3) as �̂
MLE

1,r , and �̂1,r = 1
T

∑T

t=1
er(t)er(t)

� is the sam-
ple covariance matrix of er(t) computed from the temporal
replicates. The shrunk covariance is defined as: �̂1,r(δr) =
(1 − δr)�̂1,r + δr�̂

MLE

1,r , where δr ∈ (0, 1) is a suitable constant,
chosen so that dependence at high spatial frequencies (rep-
resented by the contrasts) matches that of �1,r within some
tolerance (see Figure S3). This is obtained with the following
steps:

0 10 20 30 40 50 60 70 80 90
ROI number

-6

-5

-4

-3

-2

-1

0

1

B
IC

10 5

loc anisotropic
isotropic

Figure 3. BIC for all 90 ROIs for the isotropic model and
the locally anisotropic model; the y-axis is on the 105 scale.
This figure appears in color in the electronic version of this
article.

� The contrast

cx = 1

|Nx|
∑

(y,z)∈Sx

{(�̂1,r)(x,y,z),(x,y,z) + (�̂1,r)(x+1,y,z),(x+1,y,z)

−2(�̂1,r)(x+1,y,z),(x,y,z)}

is computed, where Nx is the set of all pairs (y, z) such
that the points (x, y, z) and (x + 1, y, z) belong to the grid.
Similarly, we define cy and cz.

� A smoothing spline with penalization parameter p is fit to
cx, cy, and cz, which we call cp

x , cp
y , and cp

z , respectively.
� The parameter δr generates �1,r(δr) such that

cx(δr) = 1

|Sx|
∑

(y,z)∈Sx

{(�̂1,r(δr))(x,y,z),(x,y,z)

+ (�̂1,r(δr))(x+1,y,z),(x+1,y,z)−2(�̂1,r(δr))(x+1,y,z),(x,y,z)}.

Similarly, we define cy(δr) and cz(δr). We choose δr, such
that ‖cp

x − cx(δr)‖2
2 + ‖cp

y − cy(δr)‖2
2 + ‖cp

z − cz(δr)‖2
2 is mini-

mized.

Thus, it is possible to control the spatial structure via the
penalization parameter p. Figure S3 shows an example of the
shrinkage to the empirical covariance for a fixed ROI and
different values of δr in terms of their spatial contrasts. For
our analysis, we choose a penalty term of p = 0.3, because
it allows for some flexibility in the pattern structure, and
because values of p in this neighborhood have yielded quali-
tatively indistinguishable results.

3.3. Step 3: Estimating the Regional Effects

Conditional on the estimated covariance structure in the
previous steps, we estimate the covariance structure of
H2(t), that is, the entries of �2. If we denote as ē(t) =
{ē�

1 (t), . . . , ē�
R(t)}�, and ēr(t) the average of e(t) for ROI r,

A = 1
T

∑T

t=1
ē(t)ē(t)� provides a nonparametric estimation of

�2, the correlation matrix for the ROI specific effects. How-
ever, this would require estimating R(R − 1)/2 entries, with
no insight on the connectivity patterns induced by the exper-
iment, that is, on which ROIs are significantly connected. We
choose to estimate the R × R inverse covariance Wbrain of
H2(t), by imposing an 
1 constraint on the number of nonzero
entries of the inverse correlation matrix. This penalized like-
lihood approach on the inverse covariance was proposed
by Yuan and Lin (2007) as an application of the maxdet
problem (Vandenberghe et al., 1998); a faster approach
for high-dimensional covariance estimation, the graphical
LASSO (Friedman et al., 2008), has become widely popu-
lar in recent years, also in the context of neurological data
(Varoquaux et al., 2010; Cribben et al., 2012). The main idea
is to rewrite the loglikelihood for ē(t), that is − T

2
log(2π) +

1
2

log |Wbrain| − 1
T

∑T

t=1
ē(t)�Wbrainē(t) as a disciplined con-

vex problem, and to further impose an 
1 penalty on the
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number of nonzero entries of Wbrain:

−T

2
log(2π) + 1

2
log |Wbrain| + tr(WbrainA)

+ λ
∑
r �=r′

|(Wbrain)r,r′ |. (5)

This allows us to obtain an estimate of the inverse correla-
tion that is sparse, and consequently interpretable results for
ROI connectivity. The optimal λ̂ is chosen by cross-validation
(Friedman et al., 2008): the inverse correlation is evaluated
with (5) for 90% of the data. Then, each ROI is predicted
on the remaining 10% of the data by leave-one-out cross-
validation. Figure 4a shows a plot of the error sum of squares
against λ. A small penalty results in severe overparametriza-
tion and as the penalty increases, the estimated Wbrain is
closer to the diagonal matrix and results in a suboptimal fit.
In the supplement, the file movie glasso.avi shows how the
sparsity increases and where it occurs as λ increases. Figure
4b shows all the nonzero elements (53% of the total number
of entries) of Wbrain for the optimal λ̂ = 8 × 10−4.

Once the optimal sparse inverse correlation is computed,
it is possible to infer the structure of brain connectivity
from the structure of the graph, as will be discussed in
Section 5.

3.4. Computational Considerations

Besides providing a flexible framework to allow for inference
from a complex model with more than 22 million data points,
this multi-resolution scheme also allows for an extensive use
of distributed computing to achieve a scalable inference. In
step 1, the code is parallelized so that inference is performed
independently for every voxel time series. In step 2, model
(3) (and similarly the simpler models in the simulation stud-
ies) can be estimated independently for each core in a cluster,

allowing as many as R independent simultaneous estimations.
It is also possible to focus on a single ROI and parallelize
the model selection algorithm detailed in Subsection 3.2, but
this approach yielded a suboptimal performance, as the com-
munication overhead across processors generated significant
latency especially with small-sized ROIs.

3.5. Testing for Voxel-Specific Activation

Activation for each voxel can be tested by combining a
fine-scale estimation of the dependence structure with the def-
inition of a voxel-specific mean structure. We assume that
β0, . . . , βJ+1 are fixed and equal to the estimated values
obtained from the fit of the temporal and mean parameter in
(1) assuming spatial independence, while we re-estimate βJ+2

and βJ+3, for which we want to test H0: βJ+2 − βJ+3 = 0 versus
H1 : βJ+2 − βJ+3 �= 0. We allow βJ+2 to be smoothly varying
in space, thus allowing to borrow strength across neighboring
locations and yielding a more accurate test for activation. We
assume that the spatial variation is parametrized by Fourier
coefficients: for each ROI r, we have

βr
J+2(x, y, z)=

N∑
n=1

∑
b∈{x,y,z}

ar
b,n,1 cos(2πbn/dr

b)+ar
b,n,2 sin(2πbn/dr

b),

(6)

where x, y, and z are the (normalized) coordinates over the
three axes, and dr

x, d
r
y, and dr

z are the maximum lengths
across the three axes. To avoid identification issues, we set
βJ+3 constant across the ROI. We thus need to estimate
{ar

b,n,1, a
r
b,n,2} for each harmonic n = 1, . . . , N, for each coor-

dinate b ∈ {x, y, z} and for each ROI r = 1, . . . , R. As in the
previous sections, parameters in each ROI can be estimated
independently and the code can be easily parallelized, but
the computational and memory demand for each likelihood
evaluation allowed only to fit the model for N = 1. Figure S4
shows the activated voxels for each ROI with False Discovery

Figure 4. Graphical LASSO for brain connectivity. (a) Sum of squares cross-validation error versus different choices of
penalty in (5), (b) plot of all nonzero elements in Wbrain for the optimal λ̂. This figure appears in color in the electronic
version of this article.
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Rate (Benjamini and Hochberg, 1995) at 5% assuming inde-
pendence and spatial dependence. The results for particular
areas will be discussed in Section 5.

Alternatively, the spatial variation could be also modeled
hierarchically, that is, by assuming βJ+2 ∼ N(m, (λQ)−1) as a
latent process with mean m, precision matrix λQ with (fixed
or random) parameter λ. However, the computational burden
of evaluating the likelihood for the entire ROI would make
the inference considerably more challenging.

4. Simulation Studies

To further support our choice of a locally anisotropic model
over the simpler existing alternatives described in Subsection
3.2, we performed two simulation studies: one focused on an
activation test and another on spatial interpolation.

In the first study, we focused on the improved performance
of a locally anisotropic model (l-aniso) against a general lin-
ear model (denoted glm), an isotropic model (iso) and an
anisotropic model (aniso) for a single ROI. For each ROI,
we performed 100 simulations, where the true spatial covari-
ance is the sample covariance obtained from the fMRI data of
the subject in the case study after detrending with Ordinary
Least Squares in time. This approach ensures that the perfor-
mance of each method is compared against a true model that
is as close as possible to the original data set. For computa-
tional reasons, whenever an ROI has more than 1000 voxels,
a random sample of this size (the same for every simulation)
is considered for the analysis. We assume a common mean
across the ROI with no time or session effect and only the
hemodynamic response terms in the mean structure, which
we denote as β1 and β2. The common mean does not allow for
a straightforward comparison with the results in Subsection
3.5, but it does significantly reduce the considerable compu-
tational burden and allows for a closer comparison with the
similar simulation studies in Kang et al. (2012). For each sim-
ulation, β̂1 − β̂2 and v̂ar(β̂1 − β̂2) are computed according to
the four models and a test is performed to determine the pres-
ence of activation, that is, if β1 �= β2. Model selection for the
locally anisotropic model is avoided because it would require
several days per simulation on a large computational facil-
ity; the geometry of the anisotropic subsets of the brain is
obtained from the model selection step in Subsection 3.2.

In the first study, we assumed that the ROI is not active,
that is, β1 = β2, and we compared the false positives at a 5%
confidence level out of the 100 simulations. Table 1 shows the
results, where the first three rows represent the number of
false positives for three randomly drawn ROIs and the last
row computes an average across all ROIs. The assumption

of no spatial dependence in glm implies a very high number
of false positives, as was previously reported by Kang et al.
(2012). Even with the simple isotropic model iso, the assump-
tion of spatial dependence brings dramatic improvements in
the accuracy of the test. The models aniso and l-aniso bring
a further improvement, although it comes at the expense of
a longer computational time. It is also remarkable how these
results are markedly larger than the nominal 5% rate of false
positive, thus indicating how the nonstationarity dependence
within ROI is very complex and more sophisticated mod-
els could further improve the results. A fully nonparametric
approach of estimating the empirical covariance (results not
shown) proved considerably worse, yielding nearly 100% false
positives, indicating that some parametric description of the
nonstationarity is needed. In the Supplementary Material, we
show the power curves for this study.

In the second study, we compared the effect of the four
models on interpolation. In the setting of the previous stud-
ies, for each simulation, we remove 50 random voxels (the
same across all simulations for the same ROI), we interpolate
their values with kriging and compute the Root Mean Squared
Error (RMSE) with the true value. The results in parenthesis
of Table 1 show how the independence assumption is largely
inadequate, and how iso, aniso and l-aniso perform incre-
mentally better as they yield interpolated values closer to the
true simulated data. As in the first simulation study, a smaller
RMSE for aniso and l-aniso comes at the cost of a much more
computationally challenging estimation. Although the differ-
ence in performance between aniso and l-aniso seems small,
note that the model selection was not performed for every
simulation because it would have been too computationally
demanding. Thus, further improvements could be expected if
the regions of anisotropy were not predefined from the real
data set.

5. Discussion of the Results

The model selection procedure suggests that a locally
anisotropic model outperforms the isotropic model uniformly
across ROIs in terms of lower false positive rates and lower
root mean squared error (see Figure 3 and Table 1). Due to the
computational complexity, previous models (e.g., Kang et al.,
2012, 2013) have simply assumed an isotropic structure within
each ROI. However, our method suggests non-stationary
behavior—even within an ROI—which means complexity of
the spatial covariance structure that requires more sophis-
ticated modeling. In particular, the degree of correlation
between voxels may vary as a function of their Euclidean dis-
tance, although this correlation may differ depending on the

Table 1
Percentage of false positives assuming no activation for three randomly chosen ROIs (first three rows, see Table S1 for the

abbreviation) and the mean across ROIs for the four models (last row). In parenthesis, RMSE×103 for 50 randomly removed
points.

ROI General linear model Isotropic Anisotropic Locally anisotropic

Superior occipital gyrus, right 80 (6.97) 26 (1.09) 28 (1.05) 13 (1.04)
Parahippocampal gyrus, right 72 (6.89) 14 (1.05) 12 (0.94) 11 (0.91)
Orbital superior frontal gyrus, left 64 (6.93) 35 (0.99) 31 (0.99) 27 (0.95)
Mean 78.7 (6.66) 31.9 (1.10) 28.3 (1.01) 26.3 (0.99)
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exact location of these voxels in an ROI. This difference could
have a significant impact on inference (e.g., testing for activa-
tion) and hence must be properly specified when computing
the test statistic.

One of the aims of our analysis is to identify the voxels that
are activated during the hand-grasping task. In Figure S4,
we show the contrasts for the analysis that ignores spatial
correlation (in black) and the analysis that incorporates local
anisotropy (in blue) for the left supplementary motor area
(SMA-L), while in the Supplementary Material, we report
(Table S2) the percentage of all activated voxels according to
the two models for all ROIs.

We note that the activation patterns differ in many
respects. First, estimation of contrasts for the spatio-temporal
model is considerably more conservative (as shown in Figure
S4), and on average there is a smaller number of voxels with
significantly different BOLD activation between the hand-
grasping and rest conditions (92.8% for the general linear
model and 84.8% for the spatio-temporal model, from Table
S2). Here, it is very likely that the independence model flagged
a number of voxels as significant that in fact do not display a
differential BOLD response level. Secondly, among all ROIs,
SMA-L had the highest percentage of voxels with significantly
greater amplitude of the BOLD response during the hand-
grasping task compared to the resting state (see Table S2)
under the spatio-temporal model. This result was expected,
since the subject was performing a motor task using his right
(dominant) hand. Besides, the corresponding ROI in the right
hemisphere, the right supplementary motor area (SMA-R) has
the third largest proportion of activated voxels at 96%. Under

the independence model, SMA-L and SMA-R ranked 10th and
6th, respectively.

We also identified an unexpected result using the indepen-
dence model that carries no neurophysiological justification:
right pre-central area was flagged as the most significant
region. This result was quite unexpected since the right
area is indicated as more active, as it should be in a left-
handed subject, and the SMA-L is only ranked 10th in
terms of active voxels. Also, the cuneus left (CUN-L) had
the second largest percentage of voxels with higher BOLD
amplitude during the motor task, and this region is not
located in the primary motor cortex. This underscores the
fact that ignoring spatial covariance in the analysis could
produce unexpected results that are likely incorrect since the
task is purely motor and would not require higher cognitive
processing.

In addition to examining activation, the proposed pro-
cedure can also be used to study potentially complex
dependence between voxels in an ROI through the localized
spatial covariance. As noted, the BIC model selection metric
chose the locally anisotropic model over the isotropic model.
This concept of local anisotropy is not just a theoretical con-
struct. First, we need the spatial covariance to be properly
specified to give us confidence about the level and power of
our testing procedure. Next, the model provides us with infor-
mation on the strength of correlation between pairs of voxels
and how this could vary depending on whether the pair is
located on the anterior or posterior neighborhood of the ROI.
For example, in Figure 5c, the anterior part of SMA-L, has
a correlation structure that is more circular than ellipsoidal
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Figure 5. Activation contrasts against the y (a) and z-axis (b) for SMA-L. The dots represent the contrast according to
the model with spatial independence, while the circles represent the spatio-temporal model. (c) The contour of the estimated
covariance function for two points in the anterior (top) and posterior (bottom) part of the ROI. This figure appears in color
in the electronic version of this article.
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(meaning there is no preferred direction in the dependence
structure), while the opposite is true of the anterior right part
of SMA-L. This finding is very interesting for our stroke col-
laborators who will look into confirming these findings using
other types of data modalities and modeling techniques (e.g.,
probabilistic tractography and fractional anistropy/mean
diffusivity in diffusion tensor imaging). However, this is
beyond the current scope of this article.

The task of modeling and understanding connectivity is
intertwined with activation and there is particular interest
in stroke patients because neurons from other regions acti-
vate at a higher than normal level to compensate for reduced
activation in regions with injury (Tombari et al., 2004). The
estimated inverse covariance matrix revealed a number of
interesting connections between a few pairs of ROIs. Using
a high threshold at λ = 0.01, the pair of regions that survived
the stringent threshold, indicating the strongest pairwise
direct dependence, is left frontal operculum and left rolandic
operculum. The left frontal operculum refers to the small
region in the frontal lobe that overlies the rostrodorsal portion
of the insula in primates. Alexander et al. (1990) found nine
cases of aphasia (broadly defined as a difficulty with speech
and writing) following lesions in the region of the left frontal
operculum. Moreover, in Tonkonogy and Goodglass (1981),
two cases of articulatory difficulty were associated with lesions
in the rolandic operculum. It is interesting that these two
ROIs are almost adjacent, which partly explains how dam-
ages to these regions result in similar symptoms of aphasia.
This suggests that the strongest direct link between ROIs may
not be due to these regions having shared functional depen-
dence because these ROIs are not shown to be implicated in
motor task activity, however, this can be explained by the
actual anatomical proximity.

6. Conclusions

This article addressed the issue of enhancing the detection of
activation and connectivity in fMRI data by explicitly mod-
eling spatial dependence. Motivated by the need to develop
flexible models for enhancing detection of neurological pat-
terns in the recovery of a patient suffering stroke, this article
provides a general framework for whole-brain modeling.

The multi-resolution model introduced allows for spatially
varying coefficients and local nonstationarity within ROIs in
the error structure. We have demonstrated with numerical
studies how isotropy within an ROI, a widespread simplify-
ing assumption, is largely inappropriate for fMRI data even
for small ROIs, as it leads to suboptimal tests for activa-
tion. Compared to the current methodology, our proposed
model showed clear improvements. In particular, numerical
studies suggest the nonstationarity is complex and a locally
anisotropic model is not fully adequate. Future work will
investigate the use of other constructions for nonstationary
processes such as the one proposed in Paciorek and Schervish
(2006), multiresolution models with random coefficients with
sparse dependence (Nychka et al., 2015) and continuous
time/discrete space models (Quick et al., 2013) that would
allow inference on a temporal scale smaller than the measure-
ment frequency, while still borrowing strength across locations
with a sparse precision matrix.

This model shares common features from the two-stage
Bayesian hierarchical approach introduced in Bowman (2007)
and the spatio-spectral mixed model in Kang et al. (2012) in
that it aims at modeling spatial dependence directly instead of
mitigating its effect via spatial smoothing. However, it pro-
vides a finer spatial scale information on activation, which
is attained at the price of a substantially increased compu-
tational burden, requiring a tailored inference scheme that
fully exploits parallelization. In addition to the advantage of
describing finer scale information, voxel-specific (rather than
an ROI-specific) activation bypasses the problem of determin-
ing how many active voxels comprise an active ROI (Kang
et al., 2012). The connectivity is captured via the ROI-specific
random effect as in Kang et al. (2012), but our proposed
model is more appealing, as graphical LASSO yields undi-
rected graphs that are interpretable and partially avoids the
overparametrization of the empirical covariance.

7. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections
1, 3, 4, and 5, as well as the code for the fit of the steps 1
and 2, and of the model are available with this article at the
Biometrics website on Wiley Online Library.
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