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ABSTRACT
This article proposes a new graphical tool, the magnitude-shape (MS) plot, for visualizing both the magni-
tude and shape outlyingness of multivariate functional data. The proposed tool builds on the recent notion
of functional directional outlyingness, which measures the centrality of functional data by simultaneously
considering the level and the direction of their deviation from the central region. The MS-plot intuitively
presents not only levels but also directions of magnitude outlyingness on the horizontal axis or plane, and
demonstrates shape outlyingness on the vertical axis. A dividing curve or surface is provided to separate
nonoutlying data from the outliers. Both the simulated data and the practical examples confirm that the
MS-plot is superior to existing tools for visualizing centrality and detecting outliers for functional data.
Supplementary material for this article is available online.

1. Introduction

Thanks to the rapid evolution of technology, data are frequently
obtained as trajectories or images in many scientific areas,
including but not limited tometeorology, biology,medicine, and
engineering. As a result, functional data analysis has attracted an
increasing number of researchers during the past two decades.
Variousmethods formodeling, clustering, or drawing inferences
about functional data have been proposed (Ramsay and Silver-
man 2005; Ferraty andVieu 2006; Horváth andKokoszka 2012).

Data visualization is an effective way to explicitly illustrate
the characteristics that are not apparent from the mathematical
models or summary statistics. For point-type data, graph-
ical tools such as histograms (Pearson 1895) and boxplots
(Tukey 1975) are widely used to intuitively and informatively
demonstrate important features of a dataset. For functional data,
graphical tools are mainly proposed for univariate cases, includ-
ing functional bagplots and functional highest density region
(HDR) plots (Hyndman and Shang 2010), functional boxplots
(Sun and Genton 2011), surface boxplots (Genton et al. 2014),
outliergrams (Arribas-Gil and Romo 2014), and amplitude
and phase boxplot displays (Xie et al. 2017). But multivariate
functional data are also quite often observed, for example, daily
wind data at different weather stations, measures of several
economic indexes over time (Chowdhury and Chaudhuri
2016), and images from a video file. Hubert, Rousseeuw, and
Segaert (2015) and Rousseeuw, Raymaekers, and Hubert (2017)
proposed the functional outlier map (FOM), which was the first
attempt to provide a graphical tool for multivariate functional
data. In this article, we aim to contribute to the functional
data analysis toolbox by proposing a graphical method, named
magnitude-shape (MS) plot, which applies to multivariate func-
tional data that have one-dimensional or multi-dimensional
support spaces. In designing such a tool, we have followed the
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principles suggested by Robbins (2012) and Wickham (2010).
Comprehensive graphical examples for different types of data
are well studied in Unwin (2015). Also, thanks to the compre-
hensive guidelines on designing interactive graphics (Cook and
Swayne 2007) and the development of graphical tools such as
plotly (Sievert et al. 2017) and shiny (Chang et al. 2017), we
constructed some interactive examples of our MS-plot. Using
the R package ggplot2 (Wickham 2016), we manage to illustrate
examples and numerical results much better.

The MS-plot is built on the framework of functional direc-
tional outlyingness proposed by Dai and Genton (in press) that,
for the first time, measures the centrality of functional data by
simultaneously considering both the level and the direction of
their deviation from the central region. Our proposed tool con-
centrates on visualizing functional datawith regard to bothmag-
nitude and shape centrality. In the case of contaminated datasets,
an adequate criterion is used to flag various types of outliers that
could lead to severe biases in the modeling and forecasting of
functional data.

The remainder of this article is organized as follows. In
Section 2, we briefly review the framework of functional direc-
tional outlyingness. In Section 3, we propose the MS-plot and
some related tools, for example, the MS-plot array and the mul-
tivariate outliergram. In Section 4, we numerically compare the
MS-plot with some existing graphical tools in terms of its capa-
bility to indicate the centrality and detect outliers of functional
data. We demonstrate the performance of the proposed tools
with two practical applications in Section 5. We end the article
with a discussion in Section 6.

2. Functional Directional Outlyingness

Directional outlyingness (Dai and Genton in press) is a frame-
work that adds direction to the conventional concept of
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outlyingness, recognizing that the direction of outlyingness is
crucial to describing the centrality of multivariate functional
data.

Specifically, directional outlyingness for point-type data is
defined as

O(Y, FY) = {1/d(Y, FY) − 1} · v, d(Y, FY) > 0,

where FY denotes the distribution of a random variable Y, d is
a conventional depth notion, and v is the unit vector pointing
from the median of FY to Y. Assuming that Z is the unique
median of FY for the depth notion d, v can be expressed as
v= (Y − Z)/∥Y − Z∥, where ∥ · ∥ denotes the L2 norm.

Suppose X, a p-dimensional function defined on a domain
I , is from a distribution of functional data, FX. At each fixed
design point t in I , we denote the distribution of X(t ) by FX(t )
with a dimension p. Then the three measures of directional
outlyingness for functional data (Dai and Genton in press) are
defined as

1. Mean directional outlyingness (MO),

MO(X, FX) =
∫

I
O(X(t ), FX(t ))w(t )dt;

2. Variation of directional outlyingness (VO),

VO(X, FX) =
∫

I
∥O(X(t ), FX(t )) − MO(X, FX)∥2

×w(t )dt;

3. Functional directional outlyingness (FO),

FO(X, FX) =
∫

I
∥O(X(t ), FX(t ))∥2w(t )dt,

where w(t ) is a weight function defined on I , which
can be constant or proportional to the local variation
at each design point (Claeskens et al. 2014). Through-
out this article, we use a constant weight function,
w(t ) = {λ(I )}−1, where λ(·) represents the Lebesgue
measure.

The three measures of outlyingness can be linked with the
following simple equation,

FO = ∥MO∥2 + VO. (1)

Equation (1) decomposes the total functional outlyingness (FO)
into two terms: the quantity of magnitude outlyingness (∥MO∥)
and the quantity of shape outlyingness (VO). This decompo-
sition provides great flexibility for describing the centrality of
functional data and for diagnosing potentially abnormal curves.

Different types of depth and outlyingness notions can be
used to construct the functional directional outlyingness. We
can divide these depths according to their dependence on
either rank or distance information. The rank-dependent depths
include, among others, half-region depth (Tukey 1975) and sim-
plicial depth (Liu 1990); the distance-dependent depths include
Mahalanobis depth (Mahalanobis 1936), spatial depth (Vardi
and Zhang 2000), and projection depth (Zuo 2003), among oth-
ers. Zuo and Serfling (2000) described more point-type depths
and their detailed classification. Throughout this article, we
mainly use the projection depth to construct functional direc-
tional outlyingness. Specifically, the projection depth is defined

as: PD(X(t ), FX(t )) = {1 + SDO(X(t ), FX(t ))}−1, where

SDO(X(t ), FX(t )) = sup
∥u∥=1

∥uTX(t ) − median(uTX(t ))∥
MAD(uTX(t ))

is the Stahel–Donoho outlyingness (Stahel 1981; Donoho 1982)
and MAD denotes the median absolute deviation.

3. Graphical Tools

This section provides three graphical tools: theMS-plot, theMS-
plot array, and the bivariate outliergram induced by directional
outlyingness.

3.1. TheMagnitude-Shape Plot

TheMS-plot is a scatterplot of points, (MOT,VO)T, for a group
of functional data. This tool can be used to illustrate the central-
ity of curves with a response space up to two dimensions. From
the definitions of MO and VO, we may expect that the central
curves are mapped to the lower central region (small ∥MO∥ and
small VO) of the MS-plot. Shifted outliers are mapped to the
lower-outer region (large ∥MO∥ and small VO) of the MS-plot,
and the different directions of MO indicate the different direc-
tions of their shifts. Isolated outliers, that are outlying in a small
part of the support space, aremapped to the upper central region
(small ∥MO∥ and large VO). Points in the upper-outer region
(large ∥MO∥ and large VO) correspond to the curves that are
substantially outlying in both magnitude and shape.

To illustrate this, we generate the MS-plot for two simulated
datasets, one for univariate and the other for bivariate curves.
Consider a univariate example that consists of 94 nonoutly-
ing (gray) curves and six different types of outliers (color)
in Figure 1(a). We present the MS-plot for these curves in
Figure 1(b). Various types of functional outliers commonly
observed are investigated, including shifted outliers, isolated
outliers, shape outliers, and some combination of these. First
of all, all six outliers are not only clearly isolated from the gray
points, but also differ from each other significantly. Specifically,
the orange point possesses a large MO but a small VO, which is
consistent with the fact that the orange line is a shifted outlier;
in the upper middle region of this plot are the four points
possessing moderate MO but large VO, which corresponds to
their shape outlyingness; the cyan point in the middle left of
the plot possesses a small MO and a relatively large VO, which
coincides with its outlyingness in both magnitude and shape.
Our findings are similar for the bivariate example in the second
row of Figure 1. The above two examples illustrate that the
MS-plot is capable of visualizing the centrality of functional
data and, consequently, can handle various types of outliers
effectively.

When the dimension is higher than two, we provide two
alternatives for theMS-plot. One option is to plot (∥MO∥,VO)T

instead of (MOT,VO)T, which presents the overall magnitude
outlyingness and shape outlyingness without direction informa-
tion. To retain the direction information, another option is the
parallel coordinate plots (Cook and Swayne 2007). We provide
two illustrative plots in the supplemental material.
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Figure . Upper panels: A group of univariate curves with various types of outliers (left) and its MS-plot (right). Lower panels: A group of bivariate curves with various types
of outliers (left) and its MS-plot (right). Curves are one-to-one projected as points that reveal the centrality of their corresponding curves.

3.2. TheMagnitude-Shape Plot Array

We provide the MS-plot array to comprehensively illustrate the
centrality of multivariate functional data in a single figure. An
example of the MS-plot array is generated for the bivariate
curves in Figure 1 and demonstrated in Figure 2.

As shown, the MS-plot of the kth component is presented on
the kth diagonal position of the array, and the MS-plot of two
combined components (bivariate curves) is presented in the cor-
responding off-diagonal position. Among the raw curves exist
six outliers, shown in the two joint plots (off-diagonal); how-
ever, only five outliers are presented in the two marginal plots
(diagonal): the cyan and blue points are missing from these two
plots, respectively. It may happen that an outlier is not outlying
for any single component; in this case only a joint analysis of
the multivariate curves will reveal its outlyingness. Hence, treat-
ing multivariate functional data jointly instead of marginally is
necessary to assess their centrality more comprehensively and
accurately.

3.3. The Bivariate Outliergram

Arribas-Gil and Romo (2014) proposed the outliergram to
detect outliers in univariate functional data. Based on the
decomposition (1), we now generalize their outliergram to

bivariate functional data. When a group of curves share a com-
mon shape, the shape outlyingness VO is close to zero by its
definition. Then, a quadratic relationship appears between FO
and ∥MO∥. If we plot the points of (MOT, FO)T, they should
be located on a three-dimensional quadratic surface, {(a, b, c) :
a2 + b2 = c, c > 0}. Two examples of bivariate outliergrams are
presented in Figure 3 using the bivariate curves from Figure 1.
The magnitude outlyingness is well illustrated, but the shape
outlyingness is not as obvious as in the bivariate MS-plot,
because it is measured by the vertical distance between the point
and the quadratic surface. For cases with higher dimensions, a
two-dimensional plot of (∥MO∥, FO)T can be applied, which is
the right half of a quadratic curve, because ∥MO∥ ≥ 0. In such a
plot, one can only read the level of the magnitude outlyingness,
without the direction. With the simulation studies in the next
section, we show that the outliergram is not as efficient as the
MS-plot to visualize the centrality of functional data. Hence, we
recommend using the MS-plot for practical implementations.

4. Simulation Studies

4.1. CompetingMethods

Here, we review three of the graphical tools that have been pro-
posed for illustrating the centrality of functional data: functional
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Figure . MS-plot array for the bivariate curves from Figure . Diagonal: themarginal MS-plots; off-diagonal: the pairwise joint MS-plots. TheMS-plot array is an alternative
to the MS-plot when the dimension of functional data is two or higher.

principal component analysis (FPCA; Hyndman and Shang
2010), the outliergram (Arribas-Gil and Romo 2014), and the
functional outlier map (FOM; Rousseeuw, Raymaekers, and
Hubert 2017). In this section, we compare our MS-plot with the
three tools above, in terms of their capability to visualize cen-
trality and detect outliers in functional data analysis.

FPCA. Robust principal component analysis based on projec-
tion pursuit (Croux and Ruiz-Gazen 2005) is applied to decom-
pose the discretized curves. A plot of the first two principal

component scores is used to illustrate the centrality of func-
tional data by Hyndman and Shang (2010), who also proposed
two graphical tools, the functional bagplot and the functional
HDR plot, to identify outliers. To calculate the scores, we use the
functions in the R package pcaPP (Filzmoser, Fritz, and Kalcher
2016).

Outliergram. A quadratic connection is built between the
modified band depth (MBD; López-Pintado and Romo 2009)
and the modified epigraph index (MEI; López-Pintado and

Figure . Bivariate outliergrams for the bivariate curves from Figure .
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Romo 2011). A plot of the MBD against the MEI is used to
show the centrality of univariate curves. A combination of the
adjusted functional boxplot (Sun and Genton 2012) and the
outliergram is used to detect magnitude and shape outliers
simultaneously. As discussed in Dai and Genton (in press), the
connection between the MBD and the MEI fits exactly into
the decomposition (1) induced by the framework of functional
directional outlyingness. To calculate MBD and MEI, we use
the functions in the R package roahd (Tarabelloni et al. 2017).

FOM. Skewness-adjusted outlyingness is defined for point-
type data first; then, the functional skewness-adjusted outlying-
ness (fAO) and the variability of point-wise skewness-adjusted
outlyingness (vAO) are defined for functional data (Rousseeuw,
Raymaekers, and Hubert 2017). A plot of (fAO, vAO)T is pro-
posed to visualize the centrality of the functional data. To calcu-
late fAO and vAO, we use the functions provided by the authors
on the website https://wis.kuleuven.be/stat/robust/software,
which now have been included in the R package mrfDepth
(Segaert et al. 2017). Actually, Rousseeuw, Raymaekers, and
Hubert (2017) also used the term “directional outlyingness.”
Unlike our directional outlyingness, their definition does not
account for the direction, in which a curve deviates from the
central region, and is always a scalar no matter if the curves
are univariate or multivariate. To avoid confusion, we call their
proposed quantities “skewness-adjusted outlyingness,” which is
the essential idea of their definition. Because the direction of
outlyingness is not accounted for, the FOM is not as informative
as the MS-plot.

4.2. Simulation Design

To compare our MS-plot with the three existing tools above
and assess their performance for both centrality visualization
and outlier detection, we consider the following four models for
introducing either magnitude outliers or shape outliers:

Model 1 (shifted outlier)
Main model: X (t ) = 4t + e(t ),
Contamination model: X (t ) = 4t + 8U + e(t ),
for 0 ≤ t ≤ 1, where e(t ) is a Gaussian process with zero
mean and covariance function γ (s, t ) = exp{−|t − s|},
and U takes values −1 and 1 with probability 1/2. The
contaminating curves shift up and down from the main
model.
Model 2 (isolated outlier)
Main model: X (t ) = 4t + e(t ),
Contamination model: X (t ) = 4t + 8UI{T≤t≤T+0.05} +
e(t ),

for 0 ≤ t ≤ 1, where T is generated from a uniform dis-
tribution on [0.1, 0.9] and IA is an indicator function tak-
ing value 1 on the set A and 0 otherwise. The contami-
nating curves add spikes to the main model.
Model 3 (shape outlier I)
Main model: X (t ) = 30t(1 − t )3/2 + ẽ(t ),
Contamination model: X (t ) = 30(1 − t )t3/2 + ẽ(t ),
for 0 ≤ t ≤ 1, where ẽ(t ) is a Gaussian process with zero
mean and covariance function γ̃ (s, t ) = 0.3 exp{−|t −
s|/0.3}. The contaminating curves are defined on the
reversed time interval of the main model.
Model 4 (shape outlier II)
Main model: X (t ) = 4t + ẽ1(t ),
Contamination model: X (t ) = 4t + ẽ2(t ),
for 0 ≤ t ≤ 1, where ẽ1(t ) is a Gaussian process
with zero mean and covariance function γ1(s, t ) =
exp{−|t − s|}, and ẽ2(t ) is a Gaussian process with zero
mean and covariance function γ2(s, t ) = 5 exp{−2|t −
s|0.5}. The contaminating curves share the same trend
as the main model, but have different covariance
functions.

We generate samples from the four models with sample size
n = 100 and contamination level c = 0.1, and illustrate them in
Figure 4.

4.3. Centrality Visualization

We first compare the four graphical tools through visualizing the
centrality of functional data. An excellent graphical tool should
be able to show the centrality of both magnitude and shape,
which are two important features of a curve. Also, we expect
the tool to be applicable to functional data with broader types of
structures, that is, both the support space and the response space
can be either one-dimensional or multi-dimensional. We apply
the four methods to the contaminated samples from Figure 4
and illustrate the results in Figure 5.

For Model 1, which is contaminated by 10 shifted outliers,
the four methods handle the magnitude outlyingness well, and
all but the FOM further demonstrate the direction of magni-
tude outlyingness. Specifically, both the level and the direction of
magnitude outlyingness are indicated by theMO in theMS-plot,
by thefirst PC score in FPCA, and by theMEI in the outliergram,
respectively; however, the fAO in the FOMonly captures the lev-
els ofmagnitude outlyingness. The red and green points are used
to distinguish the upward and downward shifted outliers; they
are located in different directions on the MS-plot, FPCA, and

Figure . Illustrative examples of the four univariate models. Each plot displays a sample of size , with  curves (gray) from the main model and  outliers (red or
green) from the contamination models.
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Figure . Visualization results of the four tools for the centrality of four groups of univariate curves. First row: Model ; second row: Model ; third row: Model ; fourth
row: Model . First column: the MS-plot; second column: FPCA; third column: Outliergram; fourth column: the FOM. Colors follow the settings in Figure . The MS-plot
outperforms the other three tools by visualizing the centrality of curves more efficiently.

the outliergram, but in the same direction on the FOM. A simi-
lar discrepancy appears in the second row of Figure 5 for Model
2, which is contaminated by 10 isolated outliers.

For Models 2–4 containing shape outliers, both the MS-plot
and the FOM illustrate the shape outlyingness well through VO
and vAO, respectively. However, FPCA and the outliergram fail
to show the shape outlyingness, especially when the shape out-
liers do not deviate from the nonoutlying curves in the same
fashion, for example, Models 2 and 4. Moreover, the MS-plot
separates the shape outliers from the normal curvesmuch better
than the FOM for Model 3 because it accounts for the direction
of outlyingness.

Finally, the conventional outliergram applies only to uni-
variate functional data. The functional PCA is widely applied
to analyze multivariate functional data, but a similar two-
dimensional plot of the PC scores is not available to effectively
describe the centrality of the underlying multivariate curves or
images. In contrast, both the MS-plot and the FOM apply to
multivariate functional data defined in either one-dimensional
or multi-dimensional spaces. For clarity, we summarize the
above comparison results in Table 1.

4.4. Outlier Detection

The above three tools and our MS-plot all map the functional
data to multivariate points. The centrality of these points

corresponds to that of the functional data. After visualizing the
centrality in the first step, the second step is to accurately sepa-
rate the functional outliers from the nonoutlying curves. All four
tools are equipped with their specific outlier detection proce-
dures. Unlike the other three tools that detect outliers using only
their plots, the outliergram is combinedwith the functional box-
plot to find abnormal curves. FPCA poorly visualizes even the
centrality when the outliers are of various types of outlyingness
(Models 2 and 4), and so it is unreasonable to expect a satisfying
performance in outlier detection from this tool. Hence, in this
subsection,we focus on comparing theMS-plotwith the FOMin
outlier detection, for both univariate andmultivariate functional
data. Note that we do not consider other existing outlier detec-
tionmethods that rely on either amodel (Gervini 2009; Yu, Zou,
and Wang 2012) or a cutoff obtained through a bootstrap study
of functional depth (Febrero, Galeano, and González-Manteiga
2008).

Table . Comparison of the four graphical tools: MS-plot, FPCA, outliergram, and
FOM.

MS-Plot FPCA Outliergram FOM

Direction of magnitude
outlyingness

√ √ √ ×

Shape outlyingness
√ × × √

Multivariate functional data
√ × × √
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Under the assumptions that the underlying functional data
follow a normal distribution and that the random projection
point-wise depth is adopted to calculate functional directional
outlyingness, Dai and Genton (in press) proposed an outlier
detectionmethod based on (MOT,VO)T. In particular, they cal-
culated the squared robust Mahalanobis distance (SRMD) for
(MOT,VO)T with the covariance matrix estimated by the min-
imum covariance determinant (MCD) algorithm (Rousseeuw
1985; Rousseeuw and Van Driessen 1999). Then, they approx-
imated the tail distribution of SRMD with a Fisher’s F distri-
bution, according to the procedure suggested by Hardin and
Rocke (2005). Finally, the curves that caused SRMD to exceed a
threshold value obtained from this F distributionwereflagged as
outliers. To better demonstrate this outlier detection procedure,
we add an ellipsoid, determined by both the MCD covariance
matrix and the threshold value, to the MS-plot that separates
nonoutlying curves from outliers.

For the FOM, Rousseeuw, Raymaekers, and Hubert (2017)
defined the following outlier detection criteria. First, they cal-
culated the combined functional outlyingness (CFO) as

CFOi =
√

{fAOi/med(fAO)}2 + {vAOi/med(vAO)}2,

where med(fAO) denotes the median of {fAO1, . . . , fAOn}

and med(vAO) denotes the median of {vAO1, . . . , vAOn}.
Then, they transformed the CFO to LCFO = log(0.1 + CFO),
and eventually flagged a function as an outlier if {LCFOi −
med(LCFO)}/MAD(LCFO) > #−1(0.995), where # is the
standard normal cumulative distribution function.

Using the four previous examples from Figure 4, we illustrate
the outlier detection procedures of the MS-plot and the FOM
in the second and third columns of Figure 6, respectively. For
Model 1, both methods identify all the shifted outliers accu-
rately. For Models 2–4, the MS-plot performs much better than
the FOM, although they both visualize the outlyingness of out-
liers quite well. To numerically evaluate the performance of the
two tools, we obtained 1000 replications of the above simula-
tion. For comparison, we calculated two quantities for each run:
the correct detection rate pc and the false detection rate p f . We
present the numerical results using boxplots in the fourth col-
umn of Figure 6. As shown, both methods detect all the shifted
outliers, but the p f of the MS-plot is a little bit higher. For the
shape outliers, the pc of the FOM is much smaller than that of
theMS-plot, and the p f of the FOM is lower than that of theMS-
plot, which are consistent with the graphical examples in the sec-
ond and third columns of Figure 6. Hence, we conclude that the
FOM ismore sensitive tomagnitude outlyingness, that is, purely
shifted outliers; however, the MS-plot is more sensitive to shape

Figure . First column: Univariate curves generated fromModels – (from top to bottom). Second and third columns: The outlier detection procedures of theMS-plot and
the FOM, where four colors are used to denote different types of points: correctly detected outliers (red); falsely detected outliers (blue); undetected outliers (cyan); true
nonoutlying curves (gray). Fourth column: Numerical results of theMS-plot and the FOM for four contaminated datasets: MS-plot (green) and FOM (yellow). Although FOM
reveals clearly the outlyingness of the abnormal curves, it fails to detect them accurately.
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Figure . First column: Bivariate curves generated from Model  (top), univariate curves of the first component (middle), and univariate curves of the second component
(bottom). Second and third columns: The outlier detection procedures of theMS-plot and the FOM, where four colors are used to denote different types of points: correctly
detected outliers (red); falsely detected outliers (blue); undetected outliers (cyan); true nonoutlying curves (gray). Fourth column: Numerical results of the MS-plot and
the FOM for the bivariate curves and the univariate marginal curves: MS-plot (green) and FOM (yellow). Unlike the MS-plot, FOM fails to visualize the outlyingness of the
abnormal curves for these examples.

outlyingness, which is harder to handle and of more interest to
functional data analysis. Also, the outlier detection criterion of
the MS-plot is more efficient than that of the FOM.

Both investigated methods also apply to multivariate as well
as univariate functional data. Here, we consider one bivariate
setting to show the necessity of considering the direction of out-
lyingness when describing the centrality of multivariate func-
tional data:

Model 5 (bivariate shape outlier)
Main model: X(t ) = e(t ) + U,
Contamination model:
X(t ) = e(t ) + (sin(4πt ), cos(8πt ))T,
where U = (U1,U2)

T and U1, U2 are randomly gen-
erated from the uniform distribution on the interval
[−1.1, 1.1]; e(t ) = {e1(t ), e2(t )}T is a bivariateGaussian
process with zero mean and a cross-covariance function
(Gneiting, Kleiber, and Schlather 2010):

Ci j(s, t ) = ρi jσiσ jM(|s − t|; νi j,αi j), i, j = 1, 2,

for 0 ≤ t, s ≤ 1, where ρ12 is the correlation between
X1(t ) and X2(t ), ρ11 = ρ22 = 1, σ 2

i is the marginal vari-
ance, and M(h; ν,α) = 21−ν)(ν)−1(α|h|)νKν (α|h|)
with |h| = |s − t|, is the Matérn class (Matérn 1960),
where Kν is a modified Bessel function of the second
kind, ν > 0 is a smoothness parameter, and α > 0 is a
range parameter. Here, we set the following parameter
values: σ1 = σ2 = 0.1, α11 = 0.2, α22 = 0.1, α12 = 0.16,
ν11 = 1.2, ν22 = 0.6, ν12 = 1, and ρ12 = 0.1.

A realization of the above model with sample size n = 100
and contamination level c = 0.1 is illustrated in the first column

of Figure 7. Both the MS-plot and the FOM are used to assess
the centrality of the curves in this example, and the results are
shown in the second and third columns of Figure 7. Unlike the
performance for the previous four univariate settings, the FOM
ultimately fails to visualize the shape outlyingness of the intro-
duced outliers in Model 5. The outliers in Model 5 keep a stable
level of outlyingness at each time point, so they are outlying only
because their directions of outlyingness change across the whole
design domain. However, the FOM (i.e., the skewness-adjusted-
outlyingness) does not account for this type of information at
all when measuring the centrality of multivariate functional
data. Therefore, in the fourth column of Figure 7, we are not
surprised to see poor performance of the FOM in detecting
outliers from Model 5. For the marginal curves, we obtained
similar simulation results, which are again due to the FOM’s lack
of information about the direction (positive or negative signs
for univariate curves) of outlyingness. Comparing the joint
and marginal outlier detection results provided by the MS-plot
shows that the joint method performs even better than the two
marginal methods for both correct and false detection rates. Of
course, choosing either the marginal or joint MS-plots depends
on the purpose of the data analysis. If the users are interested in
finding the anomalies in a single component, then the marginal
MS-plot of the corresponding component should be used; if the
users are interested in detecting the anomalies in the interac-
tion of several components, then the joint MS-plot should be
employed.
After obtaining (MOT,VO)

T, besides the squared robust
Mahalanobis distance method, other multivariate data outlier
detection methods can also be used to find the anomalies. For
instance, we may calculate a second-step depth to measure the
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centrality of eachmultivariate point on the plot anduse the boot-
strap to find a proper cut-off value to detect outliers. Alterna-
tively, one may simply apply the boxplot to each dimension of
MO and VO separately to detect the different types of outliers.
Moreover, the cutoff value can be adaptively chosen by changing
the inflating factor of the boxplot.

5. Applications

Besides simulations, we test our proposed method on two
datasets. One dataset involves univariate curves and the other
one includes bivariate curves. Applications to functional data
with more general structures, such as multivariate curves with
more than two dimensions or image data from a video record-
ing, are presented in the supplemental material.

5.1. Tecator Data

The first dataset is the Tecator data: 215 near-infrared
absorbance spectra of meat samples recorded on a Tecator
Infratec Food Analyzer with a wavelength range of 850–1050
nm, which is loaded from the R package fda.usc. Each observa-
tion consists of a 100-channel absorbance spectrum within this
range. The percentages of water, fat, and protein content are also
available for each sample. We first divide the samples into two
parts according to their fat content: higher than 20% (77 sam-
ples, blue) and lower than 20% (138 samples, red).

We illustrate the mean curves and the first-order derivatives
of the two groups (first column, Figure 8), and apply the MS-
plot and the FOM to assess their centrality (second and third
columns, Figure 8). For the mean curves, we observe that the
blue curves are on average higher than the red curves. Then,
we check the corresponding MS-plot and FOM in the first
row of Figure 8 for this particular feature. We find that the red
and blue points tend to be located to the left and right of the
MS-plot, respectively, whereas the two groups of points are well
mixed in the FOM. As an example, we provide the boxplots
of MO and fAO for the two groups in the fourth column of
Figure 8. Apparently, the MO in the MS-plot describes the

magnitude outlyingness of curves more accurately than the
fAO in the FOM. For the first-order derivatives in the second
row of Figure 8, we reach a similar conclusion: the VO in the
MS-plot describes the shape outlyingness of the curves more
efficiently than the vAO in the FOM. Overall, the above findings
are consistent with our conclusions in Section 4.3.

We also conduct outlier detection using the Tecator data.
Specifically, we treat the 112 samples with fat rates lower than
15% as nonoutlying curves, and randomly selected 12 curves
with fat content higher than 20% to treat as contaminated
curves. Thus, the contamination level is about 0.1. Then, we
detect outliers using both theMS-plot and the FOM by combin-
ing the mean curves, the first-order derivatives, and the bivari-
ate curves. Following the simulation studies, we calculate pc and
p f for each randomly chosen dataset. We repeat this procedure
1000 times and report the results in Figure 9. As illustrated, the
pc of the MS-plot are always significantly higher than the pc of
the FOM for all three types of data sources; the p f of the MS-
plot are equal or a little larger than the p f of the FOM, due to
the FOM’s conservative outlier detection rule. Thesefindings are
again consistentwith our conclusions in Section 4.4; theMS-plot
not only better describes the centrality of univariate functional
data but also more efficiently detects various types of outliers.

5.2. SpanishWeather Data

The second dataset includes averaged daily records from 73
weather stations in Spain during 1980–2009. We obtain this
dataset from the R package fda.usc. At each station, daily tem-
perature and daily log precipitation were recorded. We smooth
the data for analysis, and plot the curves both marginally and
jointly in the first column of Figure 10. The MS-plot and the
FOM are used to show centrality and to detect outliers from
the curves in the second and third columns of Figure 10. The
detection results are also illustrated, using the geographical
information of each station, in the fourth column of Figure 10.
In addition, we provide two interactive MS-plot examples
developed with the R package plotly; see the two links in Section
7. The first one is the MS-plot of smoothed temperature curves

Figure . Upper row: The spectrum curves and their MS-plot and FOM; lower row: The first-order derivatives of the spectrum curves and their MS-plot and FOM. The curves
are divided into two groups according to fat-content percentage: greater than 20% (blue) and less than 20% (red). The MS-plot better visualizes the differences of curves
for both magnitude and shape. The last column presents boxplots of MO, fAO, VO, vAO for each of the two groups (Low/High) of curves.
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Figure . Outlier detection results of the MS-plot (green) and FOM (yellow) for the Tecator dataset. Left plot: pc ; right plot: pf . First pair of boxplots: results from themean
curves; second pairs: results from the first-order derivatives; third pair: results from the combination of mean curves and first-order derivatives.

and the second one is the MS-plot of the bivariate curves of
temperature and log precipitation.

No temperature curves are simultaneously detected as out-
liers by both methods: the MS-plot detects curves that can be
regarded as shape outliers and the FOM identifies one curve
that can be explained as a shifted outlier. As shown in the
fourth column of Figure 10, the curves flagged as outliers by
the MS-plot were all recorded at stations where the temperature
changes more gradually compared with other stations, either
on the islands far away to the southwest of mainland Spain or
on the Atlantic coast. The curve flagged as an outlier by the
FOM was observed at a station in the Madrid province at an
altitude of 1894 meters; its average temperature is therefore the
coldest, but its variation is similar to that of nearby stations.

These findings again confirm that the MS-plot is more sensitive
to the shape outlyingness, which is harder to handle and of
more interest in functional data analysis, rather than magnitude
outlyingness.

For the log precipitation curves in the second row of
Figure 10, two groups can be clearly identified by either the
curve patterns or the locations. The first group contains four
curves which are significantly higher than the others in the first
plot; the second group includes the eight islandweather stations,
seen in the lower left corner of the fourth plot. Both theMS-plot
and the FOM clearly identify both groups, and the MS-plot
further presents the different directions of deviation of the two
groups, telling us whether the corresponding region is on aver-
age wetter or dryer than the rest of Spain.Moreover, theMS-plot

Figure . First column: The smoothed temperature curves (top); the smoothed log precipitation curves (middle); the bivariate curves of temperature and log precipitation
(bottom). Curves flagged as outliers by the MS-plot (red); curves flagged as outliers by the FOM (blue); curves flagged as outliers by both tools (green). Second and third
columns: Outlier detection results of the MS-plot and the FOM, respectively. Fourth column: The locations of the weather stations shown on a map of Spain.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 933

detected all the outlying elements in the two groups, but the
FOM only detects some of them, which is a less desirable result.

For the bivariate curves in the third row of Figure 10, the
FOM detects the shifted outlier and identifies all of the first sub-
group from the log precipitation data, but only part of the second
subgroup; theMS-plot recognizes the two subgroups completely
as well as the stations of different temperature variations on the
Atlantic coast. Hence, the joint detection results are a combina-
tion of the results from the two marginal cases.

6. Discussion

In this article, we proposed the MS-plot for visualizing the
centrality of functional data, recognizing the influence of func-
tional directional outlyingness on the outlyingness decomposi-
tion (Dai and Genton in press). The MS-plot maps functional
observations to multivariate points and can be applied to
functional data with very general structures: both the response
and support domains can be either one-dimensional or multi-
dimensional. Using both simulated data and practical examples,
the MS-plot was shown to be superior to the existing tools
for visualizing both the level and the direction of magni-
tude outlyingness, for representing the various types of shape
outlyingness, and for accurately detecting potential outliers.
For the convenience of implementation, we have developed
a shinyapp; see the link in the next section. Users can either
assess the performance of the MS-plot for simulated data under
various settings or analyze datasets uploaded from their local
computers.

For spatio-temporal data, such as the Spanish weather data,
we ignored the correlations between different locations and
treated them independently. Further improvements could be
made by accounting for such correlations (Sun and Genton
2012) when detecting outliers from the MS-plot, or even at the
stage of defining functional directional outlyingness. Also, we
found that the distribution of (MOT,VO)T is sometimes skewed
in practical implementation becauseVO > 0, so a detection rule
for skewed data (Sun, Hering, and Browning 2017) may further
improve performance.

SupplementaryMaterials

Plotly: Two interactive figures constructed with the R package
plotly are provided at https://plot.ly/ langzi/117 and https://plot.
ly/ langzi/119.
ShinyApp: The link for the shinyapp: https://langzizhiwen.
shinyapps.io/msplot/
R-code: R-code (R Core Team 2017) for constructing the MS-
plot, the MS-plot array, and all the figures in this article are pro-
vided. (codes.rar, GNU zipped tar file)
Additional Applications: Two applications on more generally
structured functional data are demonstrated: the Cigarette data
(Chowdhury and Chaudhuri 2016) are four-dimensional func-
tional data recorded on a one-dimensional time interval; image
data from a video (Rousseeuw, Raymaekers, and Hubert 2017)
filmed by a static camera are three-dimensional functional data
recorded on a two-dimensional space.
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