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Functional boxplots for multivariate curves
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A two-stage functional boxplot is introduced for the visualization and exploratory data analysis of multivariate
curves. Specifically, the original functional boxplot is combined with an outlier-detection procedure on the basis of
the functional directional outlyingness, which accounts for both the magnitude and shape outlyingness of functional
data. This combination is robust to various types of outliers and, hence, captures the data structures more accurately
than does the functional boxplot alone. It also allows for both marginal and joint analysis of the multivariate curves.
We apply the proposed tool to Spanish weather data in an illustrative example. © 2018 John Wiley & Sons, Ltd.
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1 Introduction
Data visualization is a necessary complement to statistical analysis that intuitively demonstrates the features of a
data set. One popularly implemented graphical tool is the univariate boxplot proposed by Tukey (1975). Bivariate
extensions of boxplots were investigated by Goldberg & Iglewicz (1992) and Rousseeuw et al. (1999). Catering to the
demand of exploratory analysis for functional data, which are frequently recorded owing to the evolution of technology,
Sun & Genton (2011) proposed the functional boxplot as an analogue.

The functional boxplot of Sun & Genton (2011) is constructed by ordering a group of univariate curves from the centre
outward according to the modified band depth (MBD) (López-Pintado & Romo, 2009) or any other user-provided
functional ranking. Specifically, the envelope of the 50% deepest curves forms the 50% central region; by inflating
this region by 1.5 times its vertical range, one can obtain two fences to detect outliers. Eventually, the envelope of
the central 50% region, the median curve and the maximum non-outlying envelope are demonstrated as descriptive
statistics; detected outlying curves are also visualized. Besides, Sun & Genton (2012) provided an adaptive way
to determine the inflating factor by accounting for the dependence structure of the functional data. Popularly used
functional depths include, for instance, the band depth and the MBD (López-Pintado & Romo, 2009), the spatial
depth (Chakraborty & Chaudhuri, 2014) and the extremal depth (Narisetty & Nair, 2016; Myllymäki et al., 2017).
Functional boxplots constructed with other types of functional depths were investigated by Martin-Barragan et al.
(2016), Narisetty & Nair (2016) and Serfling & Wijesuriya (2017).

The functional boxplot of Sun & Genton (2011) flags the curves that cross its fences as outliers. As a result, it cannot
handle some types of outliers well, for example, isolated outliers, shape outliers and covariance outliers, according
to the taxonomy of functional outliers by Hubert et al. (2015). Hence, the shape of the resultant central region and
fences may be deformed and fail to accurately capture the general structure of the underlying data set.
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To address these drawbacks, we eliminate the negative effects of outliers by combining a functional boxplot with an
outlier-detection procedure based on functional directional outlyingness (Dai & Genton, 2018a,2018b). The func-
tional directional outlyingness effectively measures the centrality of multivariate curves, allowing us to generalize the
functional boxplots to multivariate functional data.

The remainder of this paper is organized as follows. The outlier-detection procedure is described in Section 2. The
two-stage functional boxplot is presented for both univariate and multivariate curves in Section 3. An application to
Spanish weather records is illustrated in Section 4. The paper ends with a discussion in Section 5.

2 Outlier-detection procedure
Functional directional outlyingness (Dai & Genton, 2018a) is a measure that accounts for the direction of an underlying
observation’s point-wise deviation from the bulk of the data, thereby revealing both the magnitude and the shape of
that observation’s outlyingness. More specifically, Dai & Genton (2018a) defined directional outlyingness for point-wise
data as

O.Y, FY/ D ¹1=d.Y, FY/ � 1º � v, d.Y, FY/ > 0,

where FY denotes the distribution of a random variable Y, d is a conventional depth notion and v is the unit vector
pointing from the median of FY to Y. Dai & Genton (2018a) also defined two quantities to measure the magnitude and
shape outlyingness of a curve:

MO.X, FX/ D

Z
I

O.t/ dt and VO.X, FX/ D

Z
I
¹O.t/ �MOºT¹O.t/ �MOº dt,

where X is a p-dimensional functional random vector defined on the interval I and FX denotes the distribution of X.
O.t/ D O.X.t/, FX.t//, X.t/ is a p-dimensional random vector, and FX.t/ denotes its corresponding distribution.

A curve X0 is flagged as an outlier if its corresponding .MOT
0, VO0/T is detected as outlying with respect to the popula-

tion distribution of .MOT, VO/T. Specifically, Dai & Genton (2018a) showed that the empirical version of .MOT, VO/T

can be well approximated by a .pC 1/-dimensional normal distribution. A robust Mahalanobis distance (RMD) is cal-
culated for each pair of .MOT, VO/T, and the covariance matrix is estimated by the minimum covariance determinant
estimator (Rousseeuw, 1985). The right tail distribution of RMD2 is approximated by Fisher’s F distribution, FRMD

(Hardin & Rocke, 2005). Then, .MOT
0, VO0/T is recognized as an outlier when

RMD2
.MOT

0,VO0/T
� CFRMD,˛, (1)

where CFRMD,˛ is the 1 � ˛ quantile of FRMD and ˛ is the significance level.

3 Two-stage functional boxplot
The aforementioned outlier-detection method is effective for various types of functional outliers. Thus, we improve the
robustness of the functional boxplot to abnormal curves by combining it with the outlier-detection criterion (1) in a
two-stage procedure. For a set of univariate curves Xk, k 2 S, the procedure is described as follows:

S1 Obtain indexes of abnormal curves, SO, with the outlier-detection criterion (1).
S2 Apply the functional boxplot to the remaining non-outlying curves, Xk, k 2 SnSO,

and add the detected outlying curves to the functional boxplot.
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Figure 1. (a) Smoothed average annual temperatures curves. (b) Conventional functional boxplot: The red dashed curve
denotes one detected outlier. (c) Two-stage functional boxplot generated by our proposed procedure: The green dashed
curves denote outliers detected by criterion (1) in step S1, and the red dashed curve denotes one outlier detected by the
functional boxplot in step S2.

A typical example is illustrated in Figure 1, which utilizes the averaged annual temperature data recorded at 73
weather stations in Spain during the period 1980–2009, from the R package fda.usc. The raw data were discretely
recorded and preprocessed with the smoothing spline method; see Figure 1(a). The conventional functional boxplot
based on the MBD for this data set is presented in Figure 1(b), and our proposed two-stage functional boxplot is
presented in Figure 1(c). We compare the two types of functional boxplots in terms of both their outlier-detection
and description of the data structure. The conventional functional boxplot diagnoses only one shifted outlier (the red
dashed curve), which is parallel to the median curve but shifted downward. The two-stage functional boxplot detects
not only the shifted outlier but also a group of shape outliers (the dashed green curves). These shape outliers possess
moderate magnitudes on average but shaped differently from the bulk of the data. In visualizing the data structure,
the two plots produce the same lower fence, but the conventional one provides a higher upper fence for all seasons
except summer owing to the undetected shape outliers. The central regions also reveal similar differences between
the two plots.

Inspired by the idea of visuanimation proposed by Genton et al. (2015), we provide in Movie 1 a comparison of
the two-stage functional boxplot with the conventional functional boxplots constructed with rankings from different
functional depth notions, for example, the MBD, the integral depth (FM, Fraiman & Muniz (2001)), the mode depth
(Cuevas et al., 2006), the L1 depth (Long & Huang, 2015), the random projection depth (Cuevas et al., 2007) and
the extremal depth (Narisetty & Nair, 2016; Myllymäki et al., 2017). Six outliers (in colour) of different types are
added to 100 non-outlying curves (grey), with their level of outlyingness increasing from frame 1 to frame 40. None
of the six conventional functional boxplots successfully recognize the pure shape outlier (blue) or the isolated outlier
(green), which are quite well handled by the two-stage functional boxplot. This suggests that the proposed two-stage
functional boxplot is more robust against outliers and, thus, more reliable for describing data structures.

4 Simulations
4.1 Univariate curves
We comprehensively demonstrate the advantages of the two-stage functional boxplot in Movie 2, which visualizes the
behaviour of conventional and two-stage functional boxplots contaminated by different types of outliers. Specifically,
we consider the following settings:
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Movie 1. First plot: 100 non-outlying curves (grey) and six different types of outliers (in colour). Second to seventh plots:
functional boxplots based on MBD, FM depth, mode depth, L1 depth, RP depth and extremal depth, respectively. Last plot:
two-stage functional boxplot [To ensure that the visuanimation will play properly, use Adobe Acrobat Reader to view the
pdf file.]

� Model 0 (main model). X.t/ D 4t C e.t/, where e.t/ is a Gaussian process with zero mean and the covariance
function .s, t/ D exp¹�jt � sjº. We generated 100 samples from the main model as the bulk of the data; the
contaminated models are described subsequently in Models 1–3.

� Model 1 (rotation outlier; first row of Movie 2). Three rotation outliers are introduced for each frame, and there
are 40 frames in total. The outliers are generated by rotating the non-outlying curves around a fixed point.

� Model 2 (isolated outlier; second row of Movie 2). One isolated outlier is introduced for each frame, and there
are 80 frames in total. The outlier is generated by partially shifting one non-outlying curve with different outlying
intervals and outlying levels.

� Model 3 (covariance outlier; third row of Movie 2). Two covariance outliers are introduced for each frame, and
there are 40 frames in total. The outliers are generated by increasing the oscillation level of the covariance
function: Q.s, t/ D C� exp¹�jt � sjº, with C� ranging from 0 to 5.

Movie 2 visualizes only the central region and fences of functional boxplots without detected outliers. Additionally,
the manually introduced outliers are plotted as well. The purpose is to illustrate the robustness of the two methods
to various types of outliers. Apparently, the two-stage functional boxplots eliminate the influence of outliers more
effectively; hence, the resulting data structure is more accurate.

4.2 Multivariate curves
Besides univariate curves, the two-stage functional boxplot is also applicable to multivariate curves. In the first step
(S1) of a multivariate case, we provide two options for detecting outliers: Treat each dimension either separately

© 2018 John Wiley & Sons, Ltd 4 of 10 Stat 2018; 7: e190
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Movie 2. First column: 100 non-outlying curves (grey) and outliers (green). Second column: functional boxplots based on
MBD. Third column: two-stage functional boxplots. First row: rotated outliers. Second row: isolated outliers. Third row:
outliers generated by different covariance functions [To ensure that the visuanimation will play properly, use Adobe Acrobat
Reader to view the pdf file.]
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Movie 3. First column: 100 non-outlying curves (grey) and outliers (green). Second column: functional boxplots based on
MBD. Third column: marginal two-stage functional boxplots based on one variable. Fourth column: joint two-stage functional
boxplots based on two variables [To ensure that the visuanimation will play properly, use Adobe Acrobat Reader to view the
pdf file.]

or jointly. The corresponding tools are the marginal two-stage functional boxplot and the joint two-stage functional
boxplot.

We consider an example of bivariate curves contaminated by outliers. Following the setting in López-Pintado et al.
(2014), we have a bivariate random Gaussian process X.t/ D e.t/, where e.t/ D ¹e1.t/, e2.t/ºT, with zero mean and
the following cross-covariance function (Gneiting et al., 2010; Apanasovich et al., 2012):

Cij.s, t/ D �ij�i�jM.js � tj; �ij,˛ij/, i, j D 1, 2,

where �12 is the correlation between X1.t/ and X2.t/, �11 D �22 D 1; �2i is the marginal variance; and M.h; �,˛/ D
21��� .�/�1 .˛jhj/� K�.˛jhj/, jhj D js � tj, is the Matérn (1960) class where K� is a modified Bessel function of the
second kind, � > 0 is a smoothness parameter and ˛ > 0 is a range parameter. Throughout the simulation, we choose
the following parameters for the bivariate Matérn cross-covariance function: �1 D �2 D 0.1, ˛11 D 0.2, ˛22 D 0.1,
˛12 D 0.16, �11 D 2, �22 D 1.6, �12 D 1.8 and �12 D 0.6. Then, the bivariate model is designed as follows:

� Model 4 (joint outlier; Movie 3). The non-outlying curves are defined by X1.t/ D U1 sin.2�t/ C e1.t/ and
X2.t/ D U1 cos.2�t/ C e2.t/, where U1 is generated from a uniform distribution on the interval [ 2, 8]. Two
outliers are introduced for each frame, and there are 40 frames in total. The outliers are generated from
XOut,1.t/ D U2 sin.2�t/C e1.t/ and XOut,2.t/ D .10 � U2/ cos.2�t/C e2.t/, with U2 ranging from 1 to 10.

© 2018 John Wiley & Sons, Ltd 6 of 10 Stat 2018; 7: e190



Stat Multivariate curves

The ISI’s Journal for the Rapid (wileyonlinelibrary.com) https://doi.org/10.1002/sta4.190
Dissemination of Statistics Research

Movie 4. First row: smoothed average annual temperature, log precipitation and wind speed curves (from left to right). Second
row: functional boxplots based on MBD. Third to fifth rows: two-stage functional boxplots based on pairwise combinations
of variables. Sixth row: two-stage functional boxplots based on the combination of all three variables [To ensure that the
visuanimation will play properly, use Adobe Acrobat Reader to view the pdf file.]
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In Model 4, most of the joint outliers are not marginally outlying, so it is impossible to detect them marginally. However,
by handling the curves jointly, we may identify such outliers from the differences between the correlation structures
of their two components. In Movie 3, we see that both the marginal and joint two-stage functional boxplots perform
better than do the conventional ones. Furthermore, the joint two-stage functional boxplots are more robust than the
marginal ones because the moving outliers do not deform the fences or the central regions.

5 Application to Spanish weather data
We apply our two-stage functional boxplot to the Spanish weather data mentioned in Section 3. In addition to the daily
temperature records, we include the daily log precipitation and wind speed data in our illustration to create a three-
dimensional functional data set. We present the performances of the original functional boxplot and the two-stage
functional boxplot based on different combinations of the Spanish weather data in Movie 4. We randomly selected 40
of the 73 stations to generate the first frame of the movie, and then we added one more station per frame to visualize
the performance of different types of boxplots in constructing the central regions and fences.

Compared with the conventional functional boxplot (the second row of Movie 4), the two-stage functional boxplots
(both marginal and joint) can capture the structure of the data set more accurately, indicating more robustness when
constructing the central regions and fences. For different research interests, various combinations of variables can be
used to construct the two-stage functional boxplots. For example, the marginal temperature plot (the third plot in the
first column of Movie 4) can be used to explore the pattern of annual temperature. To study the interaction between
temperature and precipitation, the joint plots of these two variables (the fourth plots in the first and second columns of
Movie 4, respectively) should be considered. In the final frame of both the marginal and joint temperature plots (third
and fourth plots in the first column of Movie 4), different sets of curves are flagged as outliers. In the marginal plot,
the outlying curves illustrate a smaller temperature variation than do the non-outlying curves across different seasons,
whereas in the joint plot, several other curves are identified as outliers owing to their overall outlyingness in terms of
the combination of temperature and log precipitation curves, although they appear similar to the median temperature
curve. Thus, even the reason why a specific station is flagged as an outlier can be assessed.

6 Discussion
Our proposed two-stage functional boxplot, a tool for the visualization and exploratory data analysis of multivariate
curves that combines outlier detection based on the functional directional outlyingness (Dai & Genton, 2018a) with
the original functional boxplot (Sun & Genton, 2011), is more robust to outliers, especially to marginal shape outliers
and joint outliers than is the functional boxplot used alone. Thus, the constructed central regions and fences are
more accurate.

The two-stage functional boxplot can be analogously generalized to multivariate images by combining the outlier
detection with surface boxplots (Genton et al., 2014). Moreover, similar to the generalization of boxplots to bagplots
(Rousseeuw et al., 1999), the pairwise interactions can be intuitively demonstrated by developing a three-dimensional
tool to visualize the structure of a group of bivariate curves.
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