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Abstract
We consider a special case of factor copula models with
additive common factors and independent components.
These models are flexible and parsimonious with O(d)
parameters where d is the dimension. The linear structure
allows one to obtain closed form expressions for some cop-
ulas and their extreme-value limits. These copulas can be
used to model data with strong tail dependencies, such as
extreme data. We study the dependence properties of these
linear factor copula models and derive the correspond-
ing limiting extreme-value copulas with a factor structure.
We show how parameter estimates can be obtained for
these copulas and apply one of these copulas to analyse a
financial data set.
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1 INTRODUCTION

Modelling multivariate data with complex dependence structures is a challenging task. Mod-
els based on multivariate normality might not be suitable when tail dependence or asymmetric
dependence is found in the data. Copulas, on the other hand, are capable of modelling multivari-
ate data with tail dependence or asymmetric dependence and have, therefore, gained popularity as
useful tools for constructing flexible multivariate distributions. A copula is a multivariate cumula-
tive distribution function (cdf) with uniform U(0, 1) marginals. Sklar (1959) showed that, for any
continuous multivariate cdf (Fd) with univariate marginal cdfs, F1

1 , … ,Fd
1 , there exists a unique

copula (Cd) such that Fd(z1, … , zd) = Cd{F1
1 (z1), … ,Fd

1 (zd)} for any z1, … , zd. This copula
function allows a multivariate distribution to be constructed from the given marginal cdfs.

Copulas are used in many applications to model non-Gaussian data, such as financial data
(Patton, 2006), hydrology data (Genest & Favre, 2007), spatial data (Bárdossy & Li, 2008), and
others. One special class of copula models is that with a factor structure (factor copula models).
These parsimonious and flexible models can be used for modelling data where there exist one
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or several unobserved (latent) factors that affect the joint dependence among all of the variables.
These factor copula models are used to model financial data (Krupskii & Joe, 2013; 2015a; Oh
& Patton, 2017), item response data (Nikoloulopoulos & Joe, 2015), and spatial data (Krupskii,
Huser, & Genton, 2018). Unlike the vine copula models (Aas, Czado, Frigessi, & Bakken, 2009;
Kurowicka & Cooke, 2006), in which the dependence structure is selected based on the likelihood,
the models with a factor structure can be nicely interpreted. One example is a credit portfolio
when some severe economic shocks can affect all the portfolio components, leading to multiple
defaults. These shocks usually cannot be easily measured, and there might be many different
factors contributing to these shocks, so it is natural to assume that these are unobserved variables.

In this paper, we study the special class of factor copula models with linear structures, as
proposed by Krupskii & Joe (2013). These copulas can handle a wide range of dependencies and
have O(d) parameters. To construct a linear factor copula, we use a linear combination of common
factors and independent factors, each having the same distribution. Similar ideas were used in
the construction of generalized Archimedean copulas (Rogge & Schönbucher, 2003) and models
based on comonotonic factors (Hua & Joe, 2017). Linear factor copula models are a special case of
the latter models with linear loadings. The limiting extreme-value copulas (Gudendorf & Segers,
2010) with factor structures can be derived for this class of models, in closed form in some cases,
and the parameters can be efficiently estimated using a composite maximum likelihood approach
(for continuous copulas) or the method of moments (for copulas with singular components).

The rest of the paper is organized as follows. In Section 2, we introduce the class of one-factor
copula models with linear structures and study their dependence properties. We derive the lim-
iting extreme-value copulas for this class of models and further extend this approach to models
with p ≥ 2 factors in Section 3. As a special case of this class of linear factor copula models, we
introduce an extension of the Marshall–Olkin copula (Marshall & Olkin, 1967) with p ≥ 2 fac-
tors affecting all of the components in a system. In Section 4, we show how the copula parameter
estimates can be obtained for the models introduced in the two previous sections. In Section 5,
we apply one of the proposed linear factor copula models to a financial data set, and Section 6
concludes with a discussion.

2 ONE-FACTOR COPULA MODEL WITH A LINEAR
STRUCTURE

We assume that 0, 1, … , d∼i.i.d.F , where F is a cdf with a positive density on R+. We define
the variables

W𝑗 = 𝛼𝑗0 + 𝑗 , 𝛼𝑗 ≥ 0 and 𝑗 = 1, … , d. (1)

This is a special case of the one-factor copula models (Krupskii & Joe, 2013). Let FW
d and CW

d
be the multivariate cdf and the copula, respectively, corresponding to the joint distribution of the
vector W = (W1, … ,Wd)⊤, and let W

d be the corresponding extreme-value copula. We use small
letters to denote the corresponding probability density functions (pdf). It follows that

CW
d (u1, … ,ud) = FW

d {(FW1
1 )−1(u1), … , (FWd

1 )−1(ud)},

cW
d (u1, … ,ud) =

𝑓W
d {(FW1

1 )−1(u1), … , (FWd
1 )−1(ud)}∏d

𝑗=1
𝑓

W𝑗

1 {(FW𝑗

1 )−1(u𝑗)}
,

(2)

where FW𝑗

1 and 𝑓
W𝑗

1 are the cdf and pdf, respectively, of Wj, j = 1, … , d.
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Here, we focus on the upper tail properties of CW
d ; the lower tail properties can be considered

analogously. We let 𝜆𝑗,kU be the upper tail dependence coefficient for the copula corresponding to
the distribution of (Wj,Wk), 1 ≤ j < k ≤ d. In order to generate upper tail dependence in model
(1), so that 𝜆𝑗,kU > 0 for different pairs (Wj,Wk), one needs to use an F with heavy tails, as the
next proposition shows.

Proposition 1. Let F̄−1(q) be the upper q-quantile of the cdf F. Assume that for any 𝛼j > 0,
j = 1, … , d, there exists some 𝛿 > 1 such that (F̄W𝑗

1 )−1(q) ≥ 𝛿𝛼𝑗 F̄−1 (q), and that for any 𝛿 > 1,
F̄{𝛿F̄−1 (q)} = o(q) as q → 0. It follows that 𝜆𝑗,kU = 0 for any 1 ≤ j < k ≤ d.

The proof is given in Appendix A.1.

Remark 1. In Appendix A.1, we also show that the conditions of Proposition 1 are satisfied
for the Weibull distribution F (x) = 1 − exp(−x−𝛾 ), x > 0, with 𝛾 > 1.

However, not all heavy-tailed distributions F generate flexible dependence structures. If
F is a subexponential distribution with no regularly varying upper tail, then each pair of
variables in (1) either has no tail dependence or has comonotonic tail dependence, with the
upper tail dependence coefficient being equal to one.

Proposition 2. Assume that F belongs to the class of subexponential distributions defined by
Chistyakov (1964), and that for 𝜅 > 1, F̄ (𝜅x) = o{F̄ (x)} as x → ∞. It follows that 𝜆𝑗,kU = 0 for
any 1 ≤ j < k ≤ d, such that min{𝛼𝑗, 𝛼k} ≤ 1; and 𝜆

𝑗,k
U = 1 for any 1 ≤ j < k ≤ d, such that

min{𝛼𝑗, 𝛼k} > 1.

Proposition 2 is a special case of the more general result with p ≥ 1 common factors; see
Proposition 5 in Section 3. Examples of distributions that satisfy the conditions of Proposition 2
include the Weibull distribution with F (x) = 1− exp(𝛾1x−𝛾2 ) where 𝛾1 > 0 and 0 < 𝛾2 < 1, or the
modified exponential distribution F (x) = 1 − exp{−x(ln x)−𝛾0} where 𝛾0 > 0.

One interesting copula family arises in the boundary case, where F is the exponential dis-
tribution: F (w) = 1 − exp(−w) for w > 0. This is not a subexponential distribution; the copula
CW

d allows the generation of flexible dependence structures depending on the choice of parame-
ters 𝛼1, … , 𝛼d; for example, the tail dependence can be obtained for some choice of parameters
𝛼1, … , 𝛼d. For w1, … ,wd > 0,

FW
d (w1, … ,wd) = ∫

min
𝑗
(w𝑗∕𝛼𝑗 )

0

d∏
𝑗=1

{1 − exp(𝛼𝑗w0 − w𝑗)} exp(−w0)dw0,

𝑓W
d (w1, … ,wd) = ∫

min
𝑗
(w𝑗∕𝛼𝑗 )

0
exp

(
w0

d∑
𝑗=1

𝛼𝑗 −
d∑

𝑗=1
w𝑗

)
exp(−w0)dw0

=
exp(−

∑d

𝑗=1
w𝑗)∑d

𝑗=1
𝛼𝑗 − 1

[
exp

{
min
𝑗
(w𝑗∕𝛼𝑗)

( d∑
𝑗=1

𝛼𝑗 − 1

)}
− 1

]
.

(3)

The marginal cdf and pdf, FW𝑗

1 and 𝑓
W𝑗

1 , are

FW𝑗

1 (w𝑗) = 1 −
𝛼𝑗 exp(−w𝑗∕𝛼𝑗) − exp(−w𝑗)

𝛼𝑗 − 1
and 𝑓

W𝑗

1 (w𝑗) =
exp(−w𝑗∕𝛼𝑗) − exp(−w𝑗)

𝛼𝑗 − 1
,
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so the copula density, cW
d , can be obtained in closed form from (2). In the general case,

one-dimensional integration is required to obtain the copula density in one-factor copula mod-
els; see Krupskii & Joe (2013). This copula does not require numerical integration, and therefore,
the parameters of this copula can be estimated very quickly using the maximum likelihood
approach, even if d is very large; more details are given in Section 4.

Also, the limiting extreme-value copula, W
d , can be obtained in a simple form in this case, as

the next proposition shows.

Proposition 3. In model (1), let F (x) = 1− exp(−x) for x > 0. For any 1 ≤ j < k ≤ d such that
min(𝛼𝑗, 𝛼k) ≤ 1, 𝜆𝑗,kU = 0. For 𝛼1, … , 𝛼d > 1, the stable upper tail dependence function (Segers,
2012) for FW

d is

𝓁d(x1, … , xd) = 𝑦(1)

⎡⎢⎢⎣1 −
d∑

m=1
(−1)m

∑
1≤𝑗1<···<𝑗m≤d

1∑m

l=1
𝛼𝑗l − 1

m∏
l=1

{
𝑦𝑗l

𝑦(1)

}𝛼𝑗⎤⎥⎥⎦ ,
where yj = (1 − 1∕𝛼j)xj, j = 1, … , d, and 𝑦(1) = max𝑗𝑦𝑗 .

The proof of this proposition is given in Appendix A.2. Proposition 3 implies that
W

d (u1, … ,ud) = exp{−𝓁d(− ln u1, … ,− ln ud)}. The function 𝓁d(x1, … , xd) requires numerical
integration in the general case of one-factor copula models; see Joe (2014). Therefore, param-
eter estimation can be computationally demanding for a large d. However, because the stable
upper tail dependence function in Proposition 3 is given in closed form, the composite likelihood
approach can be used to efficiently estimate the parameters of W

d for any d; see, for example,
Lindsay (1998) and Cox & Reid (2004). We provide more details in Section 4.

For this extreme-value copula, 𝓁d(x1, … , xd) is a permutation asymmetric function unless
𝛼1 = · · · = 𝛼d; therefore, W

d is permutation asymmetric. Also, with 𝛼j > 1 and 𝛼k > 1,

𝜆
𝑗,k
U = 1 − 1

𝛼𝑗 + 𝛼k − 1

{
𝛼(2) − 1
𝛼(1) − 1

}𝛼(2)−1{
𝛼(1)

𝛼(2)

}𝛼(2)

,

where 𝛼(1) = max(𝛼𝑗, 𝛼k) and 𝛼(2) = min(𝛼𝑗, 𝛼k). 𝜆𝑗,kU → 1 if 𝛼j → ∞ and 𝛼k → ∞.
Now, consider the bivariate marginal copula W

2 . Permutation asymmetry of the copula W
2 is

stronger when the difference |𝛼1 −𝛼2| is larger. Figure 1 shows scatter plots with sample size N =
2000 from this copula with different parameters 𝛼1 and 𝛼2, such that the upper tail dependence
coefficient 𝜆1,2

U = 0.5.
The original copula CW

d can also generate a wide range of dependencies, including tail inde-
pendence, when some or all parameters 𝛼1, … , 𝛼d are less than one. At the same time, the tail
independence for many multivariate tail dependent copulas proposed in the literature can only
be obtained on the boundary of the parameter space; see Joe (2014).

Different dependence structures can be obtained for heavy-tailed distributions F with regu-
larly varying upper tails. The limiting extreme-value copula corresponding to CW

d has a singular
component in this case.

Proposition 4. Assume that F (x) = 1 − x−𝛽 , where x ≥ 1. Let 𝜃𝑗 = 𝛼
𝛽

𝑗
∕(1 + 𝛼

𝛽

𝑗
), j = 1, … , d.

Then the limiting extreme-value copula corresponding to CW
d is the Marshall–Olkin copula

(Marshall & Olkin, 1967) with a one-factor structure,
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FIGURE 1 Scatter plots of data sets generated from the copula W
2 from Proposition 3 with 𝛼1 = 𝛼2 = 1.5 (left),

𝛼1 = 3.5, 𝛼2 = 1.307 (middle) and 𝛼1 = 20, 𝛼2 = 1.294 (right); 𝜆1,2
U = 0.5 in all cases. The sample size is 2,000

W
d (u1, … ,ud) =

( d∏
𝑗=1

u1−𝜃𝑗
𝑗

)
min
𝑗

(
u𝜃𝑗

𝑗

)
.

Proposition 4 is a special case of the more general result with p ≥ 1 common factors; see Propo-
sition 7 in Section 3. This copula has a singular component u1−𝜃1

1 = · · · = u1−𝜃d
d and parsimonious

dependence structure with d parameters 𝜃1, … , 𝜃d. Similar copulas are studied in Mazo, Girard,
and Forbes (2016); see also Cherubini, Durante, and Mulinacci (2015) for the general construc-
tion principle for copulas of this type. This copula can be used in reliability theory when all of the
components in a system can be simultaneously affected by a single shock. In the next section, we
introduce an extension to this copula with a p-factor structure for p ≥ 2.

3 p-FACTOR STRUCTURES WITH p ≥ 2

More general models with p factors can be obtained by using p independent common factors:

W𝑗 =
𝑝∑

s=1
𝛼𝑗s0s + 𝑗 , 𝛼𝑗s ≥ 0, 𝑗 = 1, … , d, s = 1, … , 𝑝, (4)

where 01, … , 0𝑝, 1, … , d∼i.i.d.F , and F is a continuous cdf on R+, as in Section 2. Most of
the results from Section 2 also hold for p ≥ 2, with small modifications.

Proposition 5. Under the assumptions of Proposition 2, if we have 𝛼𝑗s0 = maxs𝛼𝑗s > 1 and
𝛼ks0 = maxs𝛼ks > 1 for some 1 ≤ s0 ≤ p, then 𝜆

𝑗,k
U = 1; otherwise, 𝜆𝑗,kU = 0.

The proof of this proposition is given in Appendix A.3.
Because subexponential distributions without regularly varying tails are not suitable for the

generation of flexible dependence structures, even when using p ≥ 2 linear factors, we consider
the exponential distribution F (w) = 1− exp(−w), when w > 0. Computations become very com-
plicated in the general case; therefore, here, we focus on p = 2. In fact, even one factor is usually
sufficient to adequately describe the dependence structure; we demonstrate this in Section 5 by
fitting model (4) with p = 1 to simulated data sets with p ≥ 1 common factors. Although it is
difficult to obtain a simple formula for the limiting extreme-value copula in the general case of
d ≥ 2, it is possible to obtain a closed-form formula for the stable upper tail dependence function,
𝓁d(x1, … , xd), for each bivariate margin. Without loss of generality, we consider the copula cor-
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responding to the distribution of the first two variables, W1 and W2. The next proposition gives
the formula for 𝓁2(x1, x2).

Proposition 6. In model (4), let p = 2 and F (x) = 1 − exp(−x) where x > 0. It follows that
𝜆

1,2
U = 0 if min(𝛼11, 𝛼21) < 1 and min(𝛼12, 𝛼22) < 1, or if (𝛼11 − 𝛼12)(𝛼21 − 𝛼22) ≤ 0. Assume here

that 𝛼11 > max(𝛼12, 1) and 𝛼21 > max(𝛼22, 1). Let yj = mjxj where mj = (1 − 1∕𝛼j1)(1 − 𝛼j2∕𝛼j1),
j = 1, 2. Define

𝜑(𝑦1, 𝑦2) = (m−1
2 − m−1

1 + k2 − k1)𝑦
− 1

𝜓

(
1− 𝛼22

𝛼21

)
1 𝑦

1
𝜓

(
1− 𝛼12

𝛼11

)
2 ,

where 𝜓 = a22∕a21 − a12∕a11, k1 = 𝛼2
11[(𝛼11 + 𝛼21 − 1)(𝛼21 − 1){𝛼11(1 − 𝛼22) − 𝛼12(1 − 𝛼21)}]−1

and k2 = 𝛼2
21[(𝛼11 + 𝛼21 − 1)(𝛼11 − 1){𝛼21(1 − 𝛼12) − 𝛼22(1 − 𝛼11)}]−1. The stable upper tail

dependence function for FW
2 is

𝓁2(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩

x1 + k1𝑦
1−𝛼21
1 𝑦

𝛼21
2 + 𝜑(𝑦1, 𝑦2), 𝜓 > 0, 𝑦1 > 𝑦2;

x2 + k2𝑦
𝛼11
1 𝑦

1−𝛼11
2 , 𝜓 > 0, 𝑦1 ≤ 𝑦2;

x1 + k1𝑦
1−𝛼21
1 𝑦

𝛼21
2 , 𝜓 ≤ 0, 𝑦1 > 𝑦2;

x2 + k2𝑦
𝛼11
1 𝑦

1−𝛼11
2 − 𝜑(𝑦1, 𝑦2), 𝜓 ≤ 0, 𝑦1 ≤ 𝑦2.

The proof is given in Appendix A.4. The formula for 𝓁2(x1, x2) can be used to obtain copula
parameter estimates using the pairwise likelihood, similar to the case of p = 1. More details are
given in Section 4.

Remark 2. Model (4) with p = 2 exponential factors is not identifiable in the general case.
Let 𝛼21 − 𝛼22 = 𝛼∗

1 (𝛼11 − 𝛼12). As it follows from Proposition 6, 𝓁2(x1, x2) only depends on
𝛼11, 𝛼21, and 𝛼∗

1 so that four parameters are redundant. With d ≥ 2, the bivariate marginals
depend on d parameters 𝛼j1, j = 1, … , d, and d − 1 parameters 𝛼∗

𝑗
, 1 ≤ j ≤ d − 1, where

𝛼𝑗+1,1 − 𝛼𝑗+1,2 = 𝛼∗
𝑗
(𝛼11 − 𝛼12). To estimate the parameters in this model, one can set 𝛼12 = 1

and estimate the remaining parameters using the pairwise likelihood.

We now introduce one extension of the Marshall–Olkin copula, which is obtained as an
extreme-value limit of CW

d that links W1, … ,Wd, as defined in (4), with F (x) having a regularly
varying upper tail.

Proposition 7. Assume that F̄ (x)∼x→∞x−𝛽 . Let 𝜃𝑗s = 𝛼
𝛽

𝑗s∕(1 +
∑𝑝

s=1 𝛼
𝛽

𝑗s), j = 1, … , d,
s = 1, … , p. The limiting extreme-value copula corresponding to CW

d is the (extended)
Marshall–Olkin copula with a p-factor structure:

W
d (u1, … ,ud) =

( d∏
𝑗=1

u
1−
∑𝑝

s=1
𝜃𝑗s

𝑗

)
𝑝∏

s=1

{
min
𝑗

(
u𝜃𝑗s
𝑗

)}
. (5)

The proof of this proposition is given in Appendix A.5. The copula W
d has a parsimonious

dependence structure with pd parameters and the singular components {(u1, … ,ud)⊤ ∶ u𝜃𝑗s
𝑗

=
u𝜃ks

k , 1 ≤ 𝑗 < k ≤ d, s = 1, … , 𝑝}. It follows that 𝜆𝑗,kU =
∑𝑝

s=1{𝜃𝑗s + 𝜃ks − max(𝜃𝑗s, 𝜃ks)} =∑𝑝

s=1 min(𝜃𝑗s, 𝜃ks). Figure 2 shows the data sets generated from this copula with d = 2 and p =
1, 2, 3, and parameters selected such that 𝜆1,2

U ≈ 0.45 in all cases.

Remark 3. Unlike model (4) with exponential factors and p = 2, the parameters 𝜃js, j =
1, … , d, s = 1, … , p, can all be identified in the general case p ≥ 1.
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FIGURE 2 Scatter plots of data sets generated from copula W
2 from Proposition 7 with p = 1 and 𝛼11 = 0.95,

𝛼21 = 2 (left); p = 2, and 𝛼11 = 1.2, 𝛼12 = 1.2, 𝛼21 = 1.6, 𝛼22 = 0.8 (middle); p = 3 and 𝛼11 = 1.1, 𝛼12 = 0.8, 𝛼13 = 1,
𝛼21 = 0.9, 𝛼22 = 1.2, 𝛼23 = 1 (right); 𝜆1,2

U ≈ 0.45 in all cases. The sample size is 2,000

The first data set has one singular component, u2 = u2.1
1 ; the second data set has two

singular components, u1 = u0.12
2 and u1 = u2.04

2 ; and the third data set has three singular
components, u1 = u0.37

2 , u1 = u0.82
2 , and u1 = u4.15

2 . This extended Marshall–Olkin copula
can be useful for modelling the lifetime of a system whose components can all be affected
simultaneously by p different shocks.

We now give the formula of the Spearman's rho for the (1, 2)th bivariate margin.

Proposition 8. Let (U1,U2) ∼ W
2 whereW

2 is the copula from Proposition 7 with d = 2. Define
𝜁 s = 𝜃2s∕𝜃1s and let 𝜁1 ≥ 𝜁2 ≥ · · · ≥ 𝜁p, with 𝜁0 ∶= ∞ and 𝜁p+1 ∶= 0. The Spearman's rho is
cor(𝑈1, 𝑈2) = 12𝜌12 − 3 where

𝜌12 =
𝑝∑

s=0

𝜁s − 𝜁s+1

(𝜁s+1Θ1s + Θ2s)(𝜁sΘ1s + Θ2s)
, Θ1s = 2 −

s∑
i=1

𝜃1i, Θ2s = 2 −
𝑝∑

i=s+1
𝜃2i.

The proof of this proposition is given in Appendix A.6. This formula can be useful to obtain
the copula parameter estimates; see more details in Section 4.

4 PARAMETER ESTIMATION

In this section, we provide more details about estimating the parameters of factor copula models
(1) and (4), with the exponential and Pareto factors, and of their limiting extreme-value copulas.
Throughout this section, we assume that u = (u⊤

1 , … ,u⊤

d )
⊤ = {(ui1, … ,uid)⊤}N

i=1 is a sample
of size N from the corresponding copula, either CW

d or W
d , and 𝜶 = (𝛼1, … , 𝛼d)⊤ is a vector of

dependence parameters. Nonparametric ranks can be used to transform data with non-uniform
univariate marginals to the (0, 1) scale.

4.1 Likelihood maximization for CW
d with F being the exponential

distribution
From (2) and (3), the log-likelihood for CW

d in the model (1) is
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ld(u;𝜶) =
N∑

i=1
ln

||||||exp

{
min
𝑗
(wi𝑗∕𝛼𝑗)

( d∑
𝑗=1

𝛼𝑗 − 1

)}
− 1

||||||
−

N,d∑
i,𝑗=1

ln ||exp{(1 − 1∕𝛼𝑗)wi𝑗} − 1|| + N
d∑

𝑗=1
ln |𝛼𝑗 − 1| − N ln

||||||
d∑

𝑗=1
𝛼𝑗 − 1

|||||| ,
where wi𝑗 = (FW𝑗

1 )−1(ui𝑗 ; 𝛼𝑗), i = 1, … ,N, j = 1, … , d. We find the gradient of ld(u;𝜶), in order to
use it in an optimization algorithm. Let Mi ∶= min𝑗(wi𝑗∕𝛼𝑗) and �̃� =

∑d
𝑗=1 𝛼𝑗−1. For k = 1, … , d,

𝜕ld(u;𝜶)
𝜕𝛼k

=
N∑

i=1

{Mi + (𝜕Mi∕𝜕𝛼k) · �̃�I(Mi = wik∕𝛼k)} exp (Mi�̃�)
exp (Mi�̃�) − 1

−
N∑

i=1

wik∕𝛼2
k + (𝜕wik∕𝜕𝛼k)(1 − 1∕𝛼k)

exp{(1 − 1∕𝛼k)wik} − 1
+ N

𝛼k − 1
− N

�̃�
,

where 𝜕Mi∕𝜕𝛼k = (𝜕wik∕𝜕𝛼k)∕𝛼k − wik∕𝛼2
k and

𝜕wik∕𝜕𝛼k = −
𝜕FWk

1 (wik; 𝛼k)∕𝜕𝛼k

𝑓
Wk
1 (wik; 𝛼k)

= 1
1 − 𝛼k

+
wik∕𝛼k

1 − exp{(1∕𝛼k − 1)wik}
.

Then the log-likelihood, ld(u;𝜶), and its gradient, 𝜕ld(u;𝜶)∕𝜕𝜶, can be used in the
Newton–Raphson algorithm to obtain the parameter estimates.

4.2 Pairwise likelihood estimation for CW
d with F being

the exponential distribution
With p = 1, the pairwise log-likelihood for W

d in the model (1) can be written as

l2
d(u;𝜶) =

∑
1≤k<𝑗≤d

l𝑗,k(u𝑗 ,uk; 𝛼𝑗, 𝛼k),

where

l𝑗,k(u𝑗 ,uk; 𝛼𝑗, 𝛼k) = −
N∑

i=1
𝓁2(ũi𝑗 , ũik; 𝛼𝑗, 𝛼k) ln 𝜁 (ũi𝑗 , ũik; 𝛼𝑗, 𝛼k),

ũi𝑗 = − ln ui𝑗 , i = 1, … ,N, j = 1, … , d, and

𝜁 (ũi𝑗 , ũik; 𝛼𝑗, 𝛼k) =
𝜕𝓁2(ũi𝑗 , ũik; 𝛼𝑗, 𝛼k)

𝜕ui𝑗
·
𝜕𝓁2(ũi𝑗 , ũik; 𝛼𝑗, 𝛼k)

𝜕uik
−

𝜕2𝓁2(ũi𝑗 , ũik; 𝛼𝑗, 𝛼k)
𝜕ui𝑗𝜕uik

.

Without loss of generality, we assume d = 2. We define

𝜗(𝛼1, 𝛼2) =
1

𝛼1 + 𝛼2 − 1

(
𝛼2 − 1
𝛼1 − 1

)𝛼2−1(
𝛼1

𝛼2

)𝛼2

.



KRUPSKII AND GENTON Scandinavian Journal of Statistics 869

Then

𝓁2(x1, x2; 𝛼1, 𝛼2) =

{
x1 + x1−𝛼2

1 x𝛼2
2 𝜗(𝛼1, 𝛼2), (1 − 1∕𝛼1)x1 > (1 − 1∕𝛼2)x2,

x2 + x𝛼1
1 x1−𝛼1

2 𝜗(𝛼2, 𝛼1), otherwise,

𝜕𝓁2(x1, x2; 𝛼1, 𝛼2)
𝜕x1

=

{
1 + (1 − 𝛼2)x

−𝛼2
1 x𝛼2

2 𝜗(𝛼1, 𝛼2), (1 − 1∕𝛼1)x1 > (1 − 1∕𝛼2)x2

𝛼1x𝛼1−1
1 x1−𝛼1

2 𝜗(𝛼2, 𝛼1), otherwise,

𝜕𝓁2(x1, x2; 𝛼1, 𝛼2)
𝜕x2

=

{
𝛼2x1−𝛼2

1 x𝛼2−1
2 𝜗(𝛼1, 𝛼2), (1 − 1∕𝛼1)x1 > (1 − 1∕𝛼2)x2,

1 + (1 − 𝛼1)x
𝛼1
1 x−𝛼1

2 𝜗(𝛼2, 𝛼1), otherwise,

𝜕2𝓁2(x1, x2; 𝛼1, 𝛼2)
𝜕x1𝜕x2

=

{
𝛼2(1 − 𝛼2)x

−𝛼2
1 x𝛼2−1

2 𝜗(𝛼1, 𝛼2), (1 − 1∕𝛼1)x1 > (1 − 1∕𝛼2)x2,

𝛼1(1 − 𝛼1)x
𝛼1−1
1 x−𝛼1

2 𝜗(𝛼2, 𝛼1), otherwise.

These formulas can be used to compute the pairwise log-likelihood l2
d(u;𝜶). It is easy to confirm

that 𝜕2𝓁2(x1, x2; 𝛼1, 𝛼2)∕𝜕x1𝜕x2 is a continuous function of 𝛼1 and 𝛼2, and hence, the log-likelihood
is also a continuous function with no singular components. Standard optimization methods, such
as the Newton–Raphson algorithm, can therefore be used to obtain the parameter estimates for
the copula W

d .
Similarly, the bivariate copula density can be obtained from the result of Proposition 6 for

the exponential factor model with p = 2 factors. This density is also a continuous function, and
therefore, the pairwise likelihood approach can be used to estimate the copula parameters.

4.3 Parameter estimation for CW
d with F being the Pareto distribution

The limiting extreme-value copula in this case is an extension of the Marshall–Olkin copula (5).
Because this copula has singular components, the parameters of this copula cannot be estimated
using the maximum likelihood approach. Instead, we use the method of moments approach with
the result of Proposition 8. For a given data set, we first compute a d × d matrix of Spearman's
correlations, Σ𝜌. Then we select the number of factors, p, and minimize the objective function

S(𝜽) =
∑
𝑗1>𝑗2

{(Σ𝜌)𝑗1,𝑗2 − 𝜌𝑗1,𝑗2 (𝜽𝑗1 ,𝜽𝑗2 )}
2,

where 𝜽 = (𝜽⊤
1 , … ,𝜽⊤

d )
⊤, 𝜽j = (𝜃j1, … , 𝜃jp)⊤, j = 1, … , d, and the formula for 𝜌𝑗1,𝑗2 is given in

Proposition 8. The number of factors can be determined from the bivariate scatter plots of the
original data; each bivariate margin in this model with p factors has p singular components.

5 EMPIRICAL STUDY
In this section, we assess the performance of the proposed methods for estimating the copula
parameters of some simulated data sets. We then apply the limiting extreme-value copula from
Proposition 2 to a financial data set. For computing the copula estimates, we use the nlm()
function in the R statistical software (R Core Team, 2017).

5.1 Algorithm performance for simulated data sets: Exponential
factor model
We define 𝜶s = (𝛼1,s, 𝛼2,s, … , 𝛼d,s)⊤, s = 1, … , p. We fit the extreme-value copula from Proposi-
tion 2 with p = 1 exponential factor to data sets generated from Models M1, M2, and M3, defined
below, with the copula W

d , which corresponds to the p-factor model (4), for p = 1, 2, and 3
exponential common factors, respectively:
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TABLE 1 The mean (left) and standard deviation (right) of the estimated parameters of the limiting
extreme-value copula in model (4) with p = 1 exponential factors (the original data are from Models 1, 2, and 3).
Sample size is N = 250 (top half) and N = 1, 000 (bottom half)

Model Mean copula estimates Standard deviation

N = 250
M1 1.80 1.80 1.79 1.41 1.41 1.41 1.41 2.36 2.37 2.37 0.11 0.11 0.11 0.06 0.07 0.07 0.07 0.17 0.19 0.19
M2 2.00 2.00 2.00 1.79 1.79 1.79 1.79 2.24 2.24 2.24 0.14 0.14 0.14 0.10 0.10 0.10 0.10 0.15 0.15 0.15
M3 1.95 2.15 2.14 1.47 1.46 1.46 1.47 2.27 2.33 1.72 0.13 0.14 0.15 0.07 0.06 0.07 0.07 0.17 0.17 0.10

N = 1, 000
M1 1.80 1.80 1.80 1.40 1.40 1.41 1.41 2.39 2.39 2.39 0.06 0.06 0.06 0.03 0.03 0.03 0.03 0.10 0.09 0.09
M2 2.01 2.01 2.02 1.78 1.78 1.78 1.78 2.25 2.26 2.25 0.07 0.07 0.08 0.05 0.05 0.05 0.05 0.08 0.08 0.08
M3 1.95 2.15 2.14 1.45 1.45 1.46 1.45 2.30 2.35 1.71 0.06 0.07 0.07 0.03 0.03 0.03 0.03 0.08 0.08 0.04

M1. d = 10, p = 1 and 𝜶1 = (1.8, 1.8, 1.8, 1.4, 1.4, 1.4, 1.4, 2.4, 2.4, 2.4)⊤;
M2. d = 10, p = 2 and 𝜶1 = (2.2, 2.2, 2.2, 1.9, 1.9, 1.9, 1.9, 2.5, 2.5, 2.5)⊤, 𝜶2 = (1.4, 1.4, 1.4,

1.6, 1.6, 1.6, 1.6, 2.0, 2.0, 2.0)⊤;
M3. d = 10, p = 3 and 𝜶1 = (2.4, 2.4, 2.4, 1.8, 1.8, 1.8, 1.8, 2.8, 2.8, 2.8)⊤, 𝜶2 = (1.3, 1.4, 1.5,

1.6, 1.6, 1.6, 1.6, 1.7, 1.8, 1.9)⊤ and 𝜶3 = (2.0, 1.8, 1.6, 1.4, 1.4, 1.4, 1.4, 1.8, 2.2, 2.6)⊤.

For each of the three models, we simulate 1,000 samples of size N = 250 and N = 1, 000.
We then compute the parameter estimates from the data generated from M1, M2, and M3 using
the pairwise likelihood approach explained in Section 4.2. Table 1 shows the mean and standard
deviation of the corresponding estimates.

For Model 1, the estimates are very close to the true values, and the standard deviation is
smaller for the larger sample size. The running time for N = 1000 is about 2 min on an Intel core
i5-2410M CPU at 2.3 GHz. By trying different sets of parameters, we found that the corresponding
copula estimates are close to the true parameters and that the algorithm is quite fast for d ≤ 20.

To assess the goodness of fit for the misspecified model (4) with p = 1 used to fit the data
generated from Models M2 and M3, we simulate N = 10, 000 replicates from each of these two
models. For each pair of variables in the data sets simulated from these models, we compute
empirical estimates of the Spearman's rho, S𝜌, and the tail-weighted measures of dependence, 𝜚L
and 𝜚U (Krupskii & Joe, 2015b). The tail-weighted dependence measures can be used to assess the
strength of dependence between a pair of variables in the lower and upper tails. We also simulate
N = 10, 000 replicates to compute the model-based estimates of these quantities for the estimated
(misspecified) model (4) with p = 1, 𝜶1 = (2.01, 2.01, 2.02, 1.78, 1.78, 1.78, 1.78, 2.25, 2.26, 2.25)⊤
and 𝜶1 = (1.95, 2.15, 2.14, 1.45, 1.45, 1.46, 1.45, 2.30, 2.35, 1.71)⊤ for Models M2 and M3,
respectively (we use the mean copula estimates for M2 and M3 from Table 1). We then
compute the mean (absolute) differences between the empirical estimates and the corresponding
model-based estimates of the three measures, S𝜌, 𝜚L, and 𝜚U, denoted by Δ𝜌,ΔL, and ΔU
(|Δ𝜌|, |ΔL|, and |ΔU|), respectively. Table 2 shows the results.

We can see that the misspecified model (4) with p = 1 factor fits the data generated from
model (4) with p = 2 and p = 3 factors very well, both in the middle of the distribution and in
its tails. If p = 2, this can be explained by the fact that, in order to obtain the tail dependence for
each pair of variables, one of the two factors should dominate the other one so that 𝛼j1 > 𝛼j2 or
𝛼j1 < 𝛼j2 for all j = 1, … , 10; see Proposition 6. This means that the dominating factor alone can
describe dependencies among the variables quite well.
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TABLE 2 Δ𝜌, |Δ𝜌|,ΔL, |ΔL|,ΔU , |ΔU | for the estimated
limiting extreme-value copula in model (4) with p = 1 factor
(the original data are simulated from model (4) with p = 2
[top] and p = 3 [bottom])

p Δ𝝆 |Δ𝜌| ΔL |ΔL| ΔU |ΔU|
2 0.01 0.04 0.02 0.06 −0.02 0.04
3 0.01 0.05 0.00 0.06 −0.02 0.06

Note. Monte Carlo simulations with N = 10, 000 replicates were used
to compute these values.

We obtained similar results using different parameters 𝜶1,𝜶2, and 𝜶3. This implies that model
(4) with one exponential factor can provide a good approximation of the more general p-factor
model with p > 1 factors even though models with p > 1 exponential factors can add more
flexibility when modelling data with permutation asymmetry.

5.2 Algorithm performance for simulated data sets: Pareto factor
model
Using the notation from the previous section, we generate 𝜶1 and 𝜶2 with 𝛼js ∼ U(0.5, 2.5), j =
1, … , 15, s = 1, 2. We then simulate 1,000 samples of size N = 250 and N = 1, 000 from copula (5)
with p = 2 factors, where F (x) = 1−x−4, x > 1 (the Pareto distribution with the shape parameter
equal to 4), and the parameters

𝜽1 = (0.07, 0.88, 0.70, 0.57, 0.04, 0.43, 0.41, 0.01, 0.36, 0.39, 0.73, 0.46, 0.02, 0.71, 0.28)⊤,
𝜽2 = (0.66, 0.02, 0.09, 0.17, 0.54, 0.52, 0.04, 0.84, 0.05, 0.33, 0.03, 0.47, 0.87, 0.02, 0.24)⊤.

For each of the simulated samples, we estimate the copula parameters, 𝜽1 and 𝜽2, as explained in
Section 4.3. Table 3 shows the bias and standard deviation of the estimates.

The bias is small, even with N = 250, and the standard deviation is smaller for the larger
sample size N = 1, 000, as expected. We found that the proposed estimation method works well
for different sets of parameters and numbers of factors.

TABLE 3 The mean (left) and standard deviation (right) of the estimated parameters of the limiting
extreme-value copula in model (4) with p = 2 Pareto factors

N (Parameter) Bias

250 (𝜽1) 0.04 −0.07 −0.05 −0.04 0.03 0.01 −0.02 0.05 −0.01 −0.01 −0.06 0.00 0.05 −0.06 0.00
250 (𝜽2) −0.05 0.05 0.04 0.02 −0.04 −0.03 0.02 −0.07 0.02 −0.01 0.04 −0.02 −0.06 0.04 0.00
1000 (𝜽1) 0.00 −0.02 −0.02 −0.02 0.00 −0.01 0.00 0.00 0.00 −0.01 −0.02 −0.01 0.00 −0.02 0.00
1000 (𝜽2) −0.02 0.00 0.00 0.00 −0.01 −0.01 0.00 −0.02 0.00 −0.01 0.00 −0.01 −0.02 0.00 0.00
N (Parameter) Standard deviation
250 (𝜽1) 0.15 0.20 0.14 0.09 0.13 0.05 0.10 0.20 0.08 0.04 0.17 0.05 0.20 0.17 0.04
250 (𝜽2) 0.15 0.20 0.13 0.08 0.13 0.06 0.08 0.20 0.07 0.04 0.16 0.05 0.20 0.15 0.04
1000 (𝜽1) 0.02 0.03 0.03 0.03 0.01 0.03 0.03 0.01 0.02 0.03 0.03 0.03 0.01 0.03 0.02
1000 (𝜽2) 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.01 0.02

Note. Sample size is N = 250 (top half) and N = 1, 000 (bottom half).
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5.3 Application to financial data
In this section, we apply the limiting extreme-value copula corresponding to the one-factor model
(1) with the exponential factors to financial data. We select nine stocks from the S&P 500 index
with tickers AIV, AVB, BXP, EQR, HCN, HCP, HST, PSA, SPG. Because these stocks
are all from the same financial sector (real estate), it is reasonable to assume that there exists some
factor that could affect all of them simultaneously. We consider monthly log-returns' maxima for
the years 2000–2006, and 2011–2016; 156 months in total. We exclude the years of the subprime
mortgage crisis, 2007–2010, to remove nonstationarity from the data: all of the stocks on the mar-
ket exhibit much stronger dependencies during this period. The remaining observations show no
significant serial correlations or nonstationarity, and so they can be treated as replicates.

We fit the generalized extreme-value distribution for each of the nine marginals and use the
probability integral transform to convert the data to uniform scores. We use normal scores to better
visualize the data, which are obtained by applying the inverse normal cdf to the uniform scores.
Figure 3 shows the normal score scatter plots for three pairs of variables.

We see a stronger dependence in the upper tail than in the lower tail, because the scatter plots
have sharper upper tails. We fit the copula W

d from Proposition 3 to the uniform scores data
(denoted as Model A1). For comparison, we also fit the Archimedean Gumbel copula (denoted
as Model A2) and the one-factor Gumbel copula (Krupskii & Joe 2013; denoted as Model A3) to
these data. To assess the goodness of fit of the estimated models, we compute Δ𝜌,ΔL, and ΔU and|Δ𝜌|, |ΔL|, and |ΔU|, as shown in Section 4.2; Table 4 shows the results.

Model A1 fits the data very well and has a better fit in the middle of the distribution than A2,
as indicated by the smaller values of Δ𝜌 and |Δ𝜌|. Also, A1 has a better fit in the lower tail than A3.
Model A2 is an extreme-value copula with a stronger dependence in the upper tail, but it is also
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FIGURE 3 Normal scores scatter plots of log-returns' monthly maxima; pairs (left to right): (AIV, AVB), (BXP,
HCN), and (HST, PSA)

TABLE 4 Δ𝜌, |Δ𝜌|,ΔL, |ΔL|,ΔU , |ΔU | for the estimated three
models of the financial data

Model Δ𝜌 |Δ𝜌| ΔL |ΔL| ΔU |ΔU|
A1 −0.01 0.05 0.04 0.11 0.01 0.07
A2 −0.07 0.11 0.02 0.13 −0.03 0.08
A3 −0.01 0.04 0.08 0.13 0.01 0.07

Note. Monte Carlo simulations with N = 10, 000 replicates were used to
compute these values.
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an exchangeable copula; so it assumes the same dependence structure for each pair of variables,
which is too restrictive. Model A3 is a parsimonious model with a factor structure and Gumbel
linking copulas, but the joint copula cdf in this model is not an extreme-value copula, meaning
that this copula can underestimate probabilities of extreme events.

To illustrate these ideas, we define

𝑝1|2∶𝑗(q) = Pr{rm
1 > rm

1 (q)|rm
2 > rm

2 (q), … , rm
𝑗 > rm

𝑗 (q)},

where rm
𝑗

is a monthly maximum of the jth log-return, and rm
𝑗
(q) is the qth quantile of rm

𝑗
, j =

1, … , 9. The conditional tail probabilities, p1|2:j(q), is an important risk measure widely used in
financial applications. The predicted value of this measure is much smaller for A3 (p1|2:5(0.9) =
0.71) than for A1 (p1|2:5(0.9) = 0.91). On the other hand, the limiting extreme-value copula in
model (1) with exponential factors inherits all of the appealing properties of factor copula models,
including their tractability and interpretability.

6 DISCUSSION
In this paper, we studied the tail properties of factor copula models with a linear structure.
We derived limiting extreme-value copulas from these models and showed how parameter esti-
mates can be obtained for these copulas. These extreme-value copulas can be used for modelling
extremes data when there exists one or several factors that affect all of the variables simultane-
ously. We applied one of these extreme-value copulas to a financial data set, and the model showed
a good fit to the data.

Possible extensions to the linear factor copula include hierarchical linear models and models
with different distributions for different factors. The corresponding extreme-value copulas can
handle extreme data with complex structures, and their properties are a topic for future research.
Another research direction is the more general class of models in which the observed variables
are nonlinear functions of latent (unobserved) common factors.
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APPENDIX

A.1 Proof of Proposition 1

Without loss of generality, we consider the pair (W1,W2)⊤. We designate c0(q) = F̄−1 (q) and
c𝑗(q) = (F̄W𝑗

1 )−1(q), j = 1, 2. For 𝛿 > 1, we have cj(q) > 𝛿𝛼jc0(q). For any 𝜖 > 0 such that 𝛿 − 𝜖 > 1,

Pr{W1 > c1(q),W2 > c2(q)} ≤ Pr{W1 > 𝛿𝛼1c0(q),W2 > c2(q)}
≤ Pr{0 > (𝛿 − 𝜖)c0(q)} + Pr{1 > 𝜖𝛼1c0(q),W2 > c2(q)}
= F̄{(𝛿 − 𝜖)c0(q)} + qF̄{𝛼1c0(q)} = o(q).

http://www.nccr-finrisk.uzh.ch/media/pdf/wp/WP112_5.pdf
https://doi.org/10.1111/sjos.12325
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We now show that conditions of this assumption are satisfied for the Weibull distribution
F (x) = 1 − exp(−x𝛾 ) with 𝛾 > 1. When w = 𝛿F̄−1 (q) = 𝛿(− ln q)1∕𝛾 , we have

Pr{W0 ∶= 𝛼0 + 1 > w} = 𝛾𝛿(− ln q)∫
1∕𝛼

0
𝑦𝛾−1q𝛿𝛾{(1−𝛼𝑦)𝛾+𝑦𝛾}d𝑦.

We let f𝛼(y; 𝛾) = (1− 𝛼y)𝛾 + y𝛾 . If 𝛾 > 1, then min𝑦∈(0,1∕𝛼)𝑓𝛼(𝑦; 𝛾) = 𝛼∗ = {1 + 𝛼𝛾∕(𝛾−1)}1−𝛾 < 1, and
the derivative 𝜕f𝛼(y; 𝛾)∕𝜕y is bounded for 0 ≤ y ≤ 1∕𝛼. If 𝛿𝛾𝛼∗ < 1, then

Pr{W0 > w} = 𝛾𝛿(− ln q)q𝛿𝛾𝛼∗ ∫
1∕𝛼

0
𝑦𝛾−1q𝛿𝛾{𝑓𝛼 (𝑦;𝛾)−𝛼∗}d𝑦 ∼ q𝛿𝛾𝛼∗

and therefore Pr{W0 > w}∕q → ∞ as q → 0. This implies that (F̄W0
1 )−1(q) ≥ 𝛿c0(q) for 𝛿 > 1 such

that 𝛿𝛾𝛼∗ < 1. □

A.2 Proof of Proposition 3

We assume that 𝛼j > 1, j = 1, … , d. When c𝑗 = 𝛼𝑗(ln n − ln 𝑦𝑗), j = 1, … , d, then FW𝑗

1 (c𝑗) =
1 − x𝑗∕n + o(1∕n). We have

FW
d (c1, … , cd) = ∫

ln n−ln 𝑦(1)

0

d∏
𝑗=1

[1 − exp{𝛼𝑗(w0 − ln n + ln 𝑦𝑗)}] exp(−w0)dw0

= 1
n ∫

− ln 𝑦(1)

− ln n

d∏
𝑗=1

[1 − exp{𝛼𝑗(w0 + ln 𝑦𝑗)}] exp(−w0)dw0

= 1 −
𝑦(1)

n
+ 1

n

d∑
m=1

(−1)m
∑

1≤𝑗1<…<𝑗m≤d
h𝑗1,… ,𝑗m (𝑦𝑗1 , … , 𝑦𝑗m , 𝑦(1)),

where

h𝑗1,… ,𝑗m (𝑦𝑗1 , … , 𝑦𝑗m , 𝑦(1)) = ∫
− ln 𝑦(1)

− ln n
exp

{ m∑
l=1

𝛼𝑗l (w0 + ln 𝑦𝑗l)

}
exp(−w0)dw0

=
𝑦(1)∑m

l=1
𝛼𝑗l − 1

m∏
l=1

{
𝑦𝑗l

𝑦(1)

}𝛼𝑗l

+ o(1).

Therefore,

𝓁d(x1, … , xd) = lim
n→∞

n
{

1 − FW
d (c1, … , cd)

}
= 𝑦(1)

⎡⎢⎢⎣1 −
d∑

m=1
(−1)m

∑
1≤𝑗1<…<𝑗m≤d

1∑m

l=1
𝛼𝑗l − 1

m∏
l=1

{
𝑦𝑗l

𝑦(1)

}𝛼𝑗⎤⎥⎥⎦ .
Now, we assume without loss of generality that 𝛼1 > 1 and 𝛼2 < 1 (other cases are considered

analogously). If c1 ∶= 𝛼1(ln n− ln 𝑦1) and c2 ∶= ln n− ln(1−𝛼2) − ln x2, then FW𝑗

1 (c𝑗) = 1− x𝑗∕n+
o(1∕n), j = 1, 2. This implies that c2∕𝛼2 > c1∕𝛼1 as n → ∞, and
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Pr(W1 < c1,W2 < c2) = ∫
c1∕𝛼1

0
[1 − exp{𝛼1(w0 − ln n + ln 𝑦1)}]

× [1 − exp{𝛼2w0 − ln n + ln(1 − 𝛼2) + ln x2}] exp(−w0)dw0

= 1 − x1

n
− x2

n
+ o

( 1
n

)
.

Therefore,𝜆1,2
U = 0. □

A.3 Proof of Proposition 5

Without loss of generality, we let j = 1 and k = 2. We assume that for some 1 ≤ s0 ≤ p, we have
𝛼𝑗s0 = maxs𝛼𝑗s > 1, j = 1, 2. Let c𝑗 = 𝛼𝑗s0 F̄−1 (1∕n), then FW𝑗

1 (c𝑗) = 1 − 1∕n + o(1∕n). This implies
that

Pr(W1 > c1, W2 > c2) ≤ Pr(W1 > c1) = 1∕n + o(1∕n),
Pr(W1 > c1, W2 > c2) ≥ Pr{s0 > F̄−1 (1∕n)} = 1∕n + o(1∕n),

so that 𝜆U = 1.
Now, we assume that 𝛼1s1 = maxs𝛼1s > 1 and 𝛼2s2 = maxs𝛼2s > 1, where s1 ≠ s2 (other cases

are considered analogously). If c𝑗 = 𝛼𝑗s𝑗 F̄
−1 (1∕n), then FW𝑗

1 (c𝑗) = 1 − 1∕n + o(1∕n), j = 1, 2, and

Pr(W1 > c1, W2 > c2) ≤ Pr(W1 + W2 > c1 + c2)

=
𝑝∑

s=1
Pr{(𝛼1s + 𝛼2s)0s + 1 + 2 > (𝛼1s1 + 𝛼2s2)F̄

−1 (1∕n)}

= o(1∕n),

because max{maxs(𝛼1s + 𝛼2s), 1} < 𝛼1s1 + 𝛼2s2 . It follows that 𝜆1,2
U = 0.

□

A.4 Proof of Proposition 6

We have

FW𝑗

1 (w𝑗) = 1 +
𝛼2
𝑗2 exp(−w𝑗∕𝛼𝑗2)

(𝛼𝑗2 − 1)(𝛼𝑗1 − 𝛼𝑗2)
−

𝛼2
𝑗1 exp(−w𝑗∕𝛼𝑗1)

(𝛼𝑗1 − 1)(𝛼𝑗1 − 𝛼𝑗2)
+

exp(−w𝑗)
(𝛼𝑗1 − 1)(𝛼𝑗2 − 1)

.

We assume that 𝛼𝑗1 > max(1, 𝛼𝑗2), and c𝑗 = 𝛼𝑗1(ln n − ln 𝑦𝑗), j = 1, 2. It follows that FW𝑗

1 (c𝑗) =
1 − x𝑗∕n + o(1∕n). We define Z𝑗 = 𝛼𝑗101 + 1, 𝛼∗ = 𝛼11 + 𝛼21 − 1 and w∗ = min(c1∕𝛼12, c2∕𝛼22).
Thus, we find that

FW
2 (c1, c2) = ∫

w∗

0
Pr(Z1 < c1 − 𝛼12w,Z2 < c2 − 𝛼22w) exp(−w)dw,

where Pr(Z1 < z1,Z2 < z2) = g(z1, z2) − g∗(z1, z2) and

g(z1, z2) = 1 +
exp(−z1)
𝛼11 − 1

+
exp(−z2)
𝛼21 − 1

−
exp(−z1 − z2)

𝛼∗ ,

g∗(z1, z2) =
⎧⎪⎨⎪⎩

g∗1(z1, z2) ∶=
𝛼11 exp(−z1∕𝛼11)

𝛼11−1
+ 𝛼11 exp{−z2+z1(𝛼21−1)∕𝛼11}

𝛼∗(𝛼21−1)
, z1∕𝛼11 < z2∕𝛼21,

g∗2(z1, z2) ∶=
𝛼21 exp(−z2∕𝛼21)

𝛼21−1
+ 𝛼21 exp{−z1+z2(𝛼11−1)∕𝛼21}

𝛼∗(𝛼11−1)
, z1∕𝛼11 ≥ z2∕𝛼21.
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We see that ∫ w∗

0 g(c1−𝛼12w, c2−𝛼22w) exp(−w)dw = 1+o(1∕n). We assume that 𝜓 = 𝛼22∕𝛼21−
𝛼12∕𝛼11 > 0 (the other case is considered analogously). It follows that w∗ = (𝛼21∕𝛼22)(ln n− ln 𝑦2)
as n → ∞ and if y1 > y2, then

FW
2 (c1, c2) = 1 − ∫

ln(𝑦1∕𝑦2 )
𝜓

0
g∗1(c1 − 𝛼12w, c2 − 𝛼22w) exp(−w)dw

− ∫
w∗

ln(𝑦1∕𝑦2)
𝜓

g∗2(c1 − 𝛼12w, c2 − 𝛼22w) exp(−w)dw + o
( 1

n

)
= 1 − x1

n
− k1

n
𝑦

1−𝛼21
1 𝑦

𝛼21
2 − 1

n
𝜑(𝑦1, 𝑦2) + o

( 1
n

)
.

If y1 ≤ y2, then

FW
2 (c1, c2) = 1 − ∫

w∗

0
g∗2(c1 − 𝛼12w, c2 − 𝛼22w) exp(−w)dw + o

( 1
n

)
= 1 − x2

n
− k2

n
𝑦
𝛼11
1 𝑦

1−𝛼11
2 + o

( 1
n

)
.

We assume now that 𝛼11 > max(𝛼12, 1), but 1 < 𝛼21 < 𝛼22. Then c1 = 𝛼11(ln n − ln 𝑦1) and
c2 = 𝛼22(ln n − ln 𝑦∗2), where 𝑦∗2 = x2(1 − 1∕𝛼22)(1 − 𝛼21∕𝛼22). This implies that w∗ = ln n − ln 𝑦∗2,
as n → ∞, and

FW
2 (c1, c2) = ∫

w∗

0

{
1 +

exp(−c2 + 𝛼22w)
𝛼21 − 1

}
exp(−w)dw

− ∫
𝑦∗

0
g∗1(c1 − 𝛼12w, c2 − 𝛼22w) exp(−w)dw

− ∫
w∗

𝑦∗
g∗2(c1 − 𝛼12w, c2 − 𝛼22w) exp(−w)dw + o

( 1
n

)
= 1 −

𝑦∗2

n
+

𝑦∗2

n(𝛼21 − 1)(𝛼22 − 1)
− 𝑦1

nm1
−

𝑦∗2

nm2
+ o

( 1
n

)
= 1 − x1 + x2

n
+ o

( 1
n

)
,

where

𝑦∗ =
𝛼22∕𝛼21 − 1

𝜓
ln n +

ln 𝑦1 − (𝛼22∕𝛼21) ln 𝑦∗2

𝜓
.

Other cases are considered analogously. The result of this proposition can be obtained by
taking the limit 𝓁2(x1, x2) = limn→∞n{1 − FW

2 (c1, c2)}.
□

A.5 Proof of Proposition 7

As cj → ∞, we use the asymptotic property of the sum of independent Pareto variables with
regularly varying tails (Feller, 1970) to obtain FW𝑗

1 (c𝑗) = 1 − x𝑗∕n + o(1∕n), j = 1, … , d, with
c𝑗 ∶= (n∕x𝑗)1∕𝛽 · {

∑𝑝

s=1 (𝛼𝑗s)𝛽 + 1}1∕𝛽 . We have
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FW
d (c1, … , cd) = 1 +

d∑
m=1

(−1)m
∑

1≤𝑗1<…<𝑗m≤d
Pr(W𝑗1 > c𝑗1 , … ,W𝑗m > c𝑗m )

= 1 −
d∑

𝑗=1

x𝑗
n

+
d∑

m=2
(−1)m

∑
1≤𝑗1<…<𝑗m≤d

Pr(W𝑗1 > c𝑗1 , … ,W𝑗m > c𝑗m ).

Let W∗
𝑗
= W𝑗 − 𝑗 = ∑𝑝

s=1 𝛼𝑗s0s. For m ≥ 2 and 1 ≤ j1 < … < jm ≤ d,

Pr(W𝑗1 > c𝑗1 , … ,W𝑗m > c𝑗m ) ≥ Pr(W∗
𝑗1
> c𝑗1 , … ,W∗

𝑗m
> c𝑗m ),

Pr(W𝑗1 > c𝑗1 , … ,W𝑗m > c𝑗m ) = Pr(W𝑗1 > c𝑗1 , … ,W𝑗m > c𝑗m ,

𝑗1 ≤ n0.5∕𝛽 , … 𝑗m ≤ n0.5∕𝛽) + o(1∕n)
≤ Pr(W∗

𝑗1
> c𝑗1 − n0.5∕𝛽 , … ,W∗

𝑗m
> c𝑗m − n0.5∕𝛽) + o(1∕n)

= Pr(W∗
𝑗1
> c𝑗1 , … ,W∗

𝑗m
> c𝑗m ) + o(1∕n).

Also, Pr(W∗
𝑗
≥ c𝑗) = (x𝑗∕n)

∑𝑝

s=1 𝜃𝑗s, 𝑗 = 1, … , d. Therefore,

FW
d (c1, … , cd) = Pr(W∗

1 ≤ c1, … ,W∗
d ≤ cd) −

d∑
𝑗=1

x𝑗
n

(
1 −

𝑝∑
s=1

𝜃𝑗s

)
+ o(1∕n).

One can see that

Pr(W∗
𝑗 ≤ c𝑗) = Pr

(
01 ≤ c𝑗

𝛼𝑗1
, … , 0𝑝 ≤ c𝑗

𝛼𝑗𝑝

)
+ o(1∕n) = 1 −

𝑝∑
s=1

x𝑗
n
𝜃𝑗s + o(1∕n),

and, therefore,

Pr(W∗
1 ≤ c1, … ,W∗

d ≤ cd) = Pr
(
01 ≤ min

𝑗

c𝑗
𝛼𝑗1

, … , 0𝑝 ≤ min
𝑗

c𝑗
𝛼𝑗𝑝

)
+ o(1∕n)

= 1 −
𝑝∑

s=1

max𝑗(𝜃𝑗sx𝑗)
n

+ o(1∕n).

This implies that 𝓁d(x1, … , xd) =
∑d

𝑗=1 x𝑗
(
1 −

∑𝑝

s=1 𝜃𝑗s
)
+
∑𝑝

s=1 max𝑗(𝜃𝑗sx𝑗) and W
d (u1, … ,ud) =∏d

𝑗=1 u1−
∑𝑝

s=1 𝜃𝑗s
𝑗

∏𝑝

s=1

{
min𝑗

(
u𝜃𝑗s
𝑗

)}
. □

A.6 Proof of Proposition 8

We have cor(U1,U2) = 12𝜌12 − 3, where

𝜌12 = ∫
1

0 ∫
1

0
W

2 (u1,u2)du1du2 =
𝑝∑

s=0 ∫
1

0 ∫
u𝜁s+1

2

u𝜁s
2

u1−
∑s

i=1𝜃1i
1 u1−

∑𝑝

i=s+1𝜃2i

2 du1du2

=
𝑝∑

s=0 ∫
1

0

u1−
∑𝑝

i=s+1𝜃2i

2

Θ1s
(u𝜁s+1Θ1s

2 − u𝜁sΘ1s
2 )du2 = 𝜁s − 𝜁s+1

(𝜁s+1Θ1s + Θ2s)(𝜁sΘ1s + Θ2s)
.

□
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