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Abstract Various nonparametric and parametric estima-
tors of extremal dependence have been proposed in the
literature. Nonparametric methods commonly suffer from
the curse of dimensionality and have been mostly imple-
mented in extreme-value studies up to three dimensions,
whereas parametric models can tackle higher-dimensional
settings. In this paper, we assess, through a vast and sys-
tematic simulation study, the performance of classical and
recently proposed estimators in multivariate settings. In par-
ticular, we first investigate the performance of nonparametric
methods and then compare them with classical parametric
approaches under symmetric and asymmetric dependence
structures within the commonly used logistic family.We also
explore two different ways tomake nonparametric estimators
satisfy the necessary dependence function shape constraints,
finding a general improvement in estimator performance
either (i) by substituting the estimatorwith its greatest convex
minorant, developing a computational tool to implement this
method for dimensions D ≥ 2 or (ii) by projecting the esti-
mator onto a subspace of dependence functions satisfying
such constraints and taking advantage of Bernstein–Bézier
polynomials. Implementing the convex minorant method
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leads to better estimator performance as the dimensionality
increases.

Keywords Asymmetric logistic model · Componentwise
maxima · Convexity · Copula · Greatest convex minorant ·
Nonparametric and parametric estimators · Pickands
dependence function

1 Introduction

Classical theory characterising the dependence of multivari-
ate extremes is based on the limiting distribution of com-
ponentwise maxima. Let {Yi = (Yi;1, . . . ,Yi;D)�}ni=1 be a
sequence of independent and identically distributed (i.i.d.)
copies of the D-dimensional random vector Y with distribu-
tion function (d.f.) F , and let Mn = (Mn;1, . . . , Mn;D)� =(
max
1≤i≤n

Yi;1, . . . , max
1≤i≤n

Yi;D
)�

denote the vector of mul-

tivariate componentwise maxima. If for some sequences
of vectors an = (an;1, . . . , an;D)� ∈ R

D+ and bn =
(bn;1, . . . , bn;D)� ∈ R

D , the renormalised vector of com-
ponentwise maxima M∗

n = a−1
n (Mn − bn) converges in

distribution to the random vector Z with limiting joint d.f.
G and non-degenerate margins Gd , d = 1, . . . , D, i.e.

Pr
(
M∗

n ≤ z
) = Pr

(
M∗

n;1 ≤ z1, . . . , M
∗
n;D ≤ zD

)
= Fn(anz + bn) → G(z), n → ∞,

thenG is a D-dimensional extreme-value d.f. and F is said to
belong to themax-domain of attraction (MDA) ofG.Without
loss of generality (Resnick 1987, p. 265), we can assume unit
Fréchet marginal distributions, i.e. Gd(zd) = exp(−1/zd)
for zd > 0. An interesting characteristic of the class of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-017-9745-7&domain=pdf
http://dx.doi.org/10.1007/s11222-017-9745-7


526 Stat Comput (2018) 28:525–538

extreme-value d.f. is that it coincides with the class of max-
stable d.f. (de Haan and Resnick 1977), where we define
a d.f. G to be max-stable if, for every positive integer k,
there exist vectors αk = (αk;1, . . . , αk;D)� ∈ R

D+ and
βk = (βk;1, . . . , βk;D)� ∈ R

D such that

Gk(αk;1z1 + βk;1, . . . , αk;DzD + βk;D)

= G(z1, . . . , zD), (z1, . . . , zD) ∈ R
D .

The d.f. G may be represented as

G(z) = exp {−V (z)} ,

V (z) =
∫
SD

max
1≤d≤D

(
ωd

zd

)
dH(ω), z ∈ R

D+, (1)

where V is a homogeneous function of order −1, i.e.
V (cz) = c−1V (z) , c > 0, called exponent function, and H
is a finite spectral measure on the unit simplex SD = {ω ∈
[0, 1]D : ∑D

d=1 ωd = 1} (de Haan and Resnick 1977; de
Haan 1984). The spectral measure H satisfies the mean con-
straints

∫
SD

ωddH(ω) = 1, d = 1, . . . , D, and it determines
the extremal dependence structure. Another representation
of G is via the Pickands (1981) dependence function A, i.e.

V (z) =
(

D∑
d=1

z−1
d

)

×A

(
z−1
1

z−1
1 + · · · + z−1

D

, . . . ,
z−1
D

z−1
1 + · · · + z−1

D

)
,

z ∈ R
D+, (2)

where A(ω) for ω = (ω1, . . . , ωD)�,ω ∈ SD , is a function
on the unit simplex SD satisfying
A1 A(ω) is convex;
A2 D−1 ≤ max(ω) ≤ A(ω) ≤ 1 for all ω ∈ SD;
A3 A(ed) = 1 for the boundary points of SD, ed =
(0, . . . , 0, 1, 0, . . . , 0)� for d = 1, . . . , D;
A4 A(ω) is fully D-max decreasing; see Ressel (2013).

The lower and upper bounds of the Pickands function A in
condition A2 correspond to the case of perfect dependence
and independence between the coordinates, respectively, and
the condition A4 ensures that the dependence function A is
self-consistentwith lower dimensions (see also Schlather and
Tawn 2002, 2003;Gudendorf and Segers 2011; Beirlant et al.
2004, p. 257). Although the class of spectral measures or
valid Pickands dependence functions cannot be summarised
by a finite number of parameters, in practice it may be conve-
nient to restrict ourselves to flexible parametric subclasses.
Several models have been proposed in the literature. One
of the mostly used multivariate extreme-value distributions
is the logistic model (Gumbel 1960a, b) or its asymmetric
extension (Tawn 1988, 1990), both described in Appendix

2. For a useful summary of existingmodels, see Beirlant et al.
(2004, p. 304-313).

When inference is performed in a nonparametric fashion,
some of the widely used estimators include the ones intro-
duced by Pickands (1981), Capéràa et al. (1997), Naveau
et al. (2009), Guillotte (2008), Genest and Segers (2009),
Bücher et al. (2011), and Cormier et al. (2014) for the bivari-
ate case and Zhang et al. (2008), Gudendorf and Segers
(2011, 2012), Berghaus et al. (2013) andMarcon et al. (2017)
for dimensions D > 2. Nonparametric estimators of the
spectral measure for threshold exceedances, which can be
transposed into valid estimators of the dependence function,
were introduced, for example, by Einmahl et al. (2001) and
Einmahl and Segers (2009). In this paper we conduct a vast
simulation experiment comparing several of these estima-
tors with the aim of providing a greater understanding of
nonparametric estimators under a unified simulation setting,
focusing on componentwisemaxima.Asmost nonparametric
estimators do not satisfy the necessary dependence function
shape constraints, different modifications have been pro-
posed in the literature. Endpoint corrections were introduced
by Deheuvels (1991), Hall and Tajvidi (2000) and Segers
(2007), while Pickands (1981) proposed a method based on
the greatest convex minorant in order to comply with the
dependence function convexity constraint. Recently, Mar-
con et al. (2017) suggested another modification which uses
Bernstein–Bézier polynomial (Sauer 1991; Lorenz 1986)
representations owing to their excellent shape-preserving
properties (see Camicer and Peña 1993). Other approaches
involve spline smoothing under constraints (Hall and Taj-
vidi 2000; Cormier et al. 2014) and orthogonal projection
(Fils-Villetard et al. 2008; Gudendorf and Segers 2012). In
addition to satisfying the shape constraints, the estimator
obtained by applying the methodology proposed by Guden-
dorf and Segers (2012) admits an integral representation in
terms of the discrete spectral measure and therefore satis-
fies all constraints A1, A2, A3 and A4. However, in practice,
computing the multivariate integrals involved in the projec-
tion methodology of Gudendorf and Segers (2012) might
be very computationally demanding for dimensions D > 3
and the code has not been made available yet. The convex
minorant modification proposed by Pickands (1981) is so
far the most commonly implemented when the dimension is
D = 2. One of the main contributions of this paper is to
develop a computational tool for allowing the implementa-
tion of the convex minorant method in higher dimensions.
In particular, we approximate the value of the dependence
function estimator at each grid point by linear interpolation
of its value at the points forming the convex hull, taking
advantage of the barycentric coordinates system to compute
the weights to be assigned to each of the points in the con-
vex hull. We then compare the finite-sample properties for
dimensions D ≥ 2 of the adjusted nonparametric estimators
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obtained as the convex minorant counterparts or by apply-
ing the Bernstein–Bézier polynomial approach. Generally,
we expect nonparametric estimators to be more flexible than
parametric ones while suffering from the curse of dimension-
ality; however, this has never been quantified in the context
of extremes. Another contribution of this paper is to explore
the performance of nonparametric estimators with respect to
parametric approaches. For a comparison of the main para-
metric methods, see, for example, Huser et al. (2016).

The paper is structured as follows. Nonparametric and
parametric multivariate inference methods are presented in
Sect. 2. The simulation study assessing the performance of
various dependence estimators is described in Sect. 3. The
main findings are summarised in Sect. 4.

2 Dependence function estimation

2.1 Generalities

Inference for observed block maxima
{
mi = (mi;1, . . . ,

mi;D)�
}M
i=1 involves essentially two aspects: (i) estimation

of marginal distributions and standardisation of the margins
to a common (here, unit Fréchet) scale and (ii) estimation of
the dependence structure. Since in this work themain focus is
on the latter, we perform the marginal estimation separately
by using the empirical d.f.

Ĝd (zd) = M−1
M∑
i=1

I
(
mi;d ≤ zd

)
, d = 1, . . . , D, (3)

where I(E) is the indicator function of event E , and then
standardise the margins to the unit Fréchet scale by applying
the transformation

m̃i;d = −1/log
{
Ĝd(mi;d)

}
,

i = 1, . . . , M, d = 1, . . . , D. (4)

In the following sections,wediscuss nonparametric and para-
metric approaches to estimate the extremal dependence via
the dependence function (2).

2.2 Nonparametric approach

Table 1 provides a summary of the main characteristics for
a quite exhaustive list of widely used nonparametric estima-
tors proposed in the literature for componentwise maxima.
We also report variants of these estimators, proposed in
order to impose endpoint corrections and extensions to more
general frameworks. The finite-sample performances of non-
parametric estimators are assessed in the simulation study in
Sect. 3. For the sake of clarity and conciseness, we cannot
consider all nonparametric estimators presented in Table 1,
and therefore, we select the estimators that present dissim-
ilar characteristics and are available in an R package. In
particular, we consider the rank-based (Genest and Segers
2009; Gudendorf and Segers 2012) nonparametric estima-
tors of the Pickands (1981) and Capéràa et al. (1997) class,
i.e. ÂRP

n , ÂRHT
n , ÂRCFG

n and ÂRMCFG
n , the estimator ÂMMD

n
based on the idea of the madogram (Matheron 1987; Coo-
ley et al. 2006) and the estimator derived by Cormier et al.

Table 1 List of the most widely
used nonparametric estimators
for multivariate extremes and
their variants

Reference Ân(ω) D > 2 Constraints R package Variant of

Pickands (1981)a P ✓ ✗ evd

Deheuvels (1991)a D ✓ A3 evd P

Hall and Tajvidi (2000)a HT ✓ A2,A3 evd P

Capéràa et al. (1997) CFG ✗ A2 evd

Jiménez et al. (2001) JCFG ✗ ✓ ✗ CFG

Segers (2007) S- ✗ + ✗ P & CFG

Genest and Segers (2009)b R- ✗ + copula P & CFG

Gudendorf and Segers (2011)c MCFG ✓ A2 copula CFG

Naveau et al. (2009) MD ✗ ✗ ✗

Marcon et al. (2017) MMD ✓ A1, A2,A3 ExtremalDep MD

Cormier et al. (2014) COBS ✗ ✓ cobs

Bücher et al. (2011) BDV ✗ ✗ ✗

Berghaus et al. (2013) MBDV ✓ ✗ ✗ BDV

For each estimator, we report whether it: has been defined or implemented in themultivariate case; satisfies the
constraints A1, A2, A3, A4; is contained in an R package; and is a variant or extension of another estimator.
The estimators considered in the simulation study in Sect. 3 are highlighted in bold
a See Zhang et al. (2008) for multivariate version
b See Gudendorf and Segers (2012) for multivariate version
c See also Zhang et al. (2008). “+” the constraints satisfied are the same as for the original estimator
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(2014) using constrained B-spline smoothing, i.e. ÂCOBS
n .

More details on the selected estimators are available in the
original references and in Appendix 1. Most of the afore-
mentioned estimators do not satisfy the dependence function
constraints and in the following section we discuss two pos-
sible modifications to comply at least with the convexity and
boundary constraints A1, A2 and A3.

2.3 Modifications to satisfy the constraints

A first modification was originally proposed by Pickands
(1981) and consists in replacing the nonparametric estimator
Ân(ω) with its greatest convex minorant in order to com-
ply with the convexity constraint A1; see also Pickands
(1989), Deheuvels (1991), Hall and Tajvidi (2000) and
Capéràa and Fougères (2000). So far, this method has only
been used for bivariate data, perhaps due to the computa-
tional difficulties related to its implementation in dimensions
D > 2. In this paper, we overcome these difficulties
and build a methodology to compute the convex mino-
rant of the nonparametric dependence function estimators
in higher dimensions by taking advantage of barycentric
interpolation, a tool commonly used in many computer
graphics applications. The convex hull of a set of (D − 1)-
dimensional input points on the simplex SD is the union
of all the “hyper-triangles” determined by at most D ver-
tices. Let ωd ∈ R

D−1, d = 1, . . . , D, be D vertices of
a “hyper-triangle” Q on the simplex SD . The barycentric
coordinates λd(ω0) ≥ 0, d = 1, . . . , D,

∑D
d=1 λd(ω0) = 1

of an arbitrary point ω0 ∈ R
D−1 inside Q represent fic-

tive masses placed at the vertices of Q such that ω0 is
the centre of mass. Therefore, we can evaluate the value
of the nonparametric estimator Ân(ω) at any grid point
lying inside a (D − 1)-dimensional “hyper-triangle” form-
ing the convex hull by the interpolation of its value at
the vertices using the barycentric coordinates as weights,
i.e.

ÂCONV
n (ω) =

D∑
d=1

λd(ω) Ân(ωd). (5)

To determine whether a (D − 1)-dimensional input point
ω0 lies inside a specific “hyper-triangle” formed by the ver-
tices

ω1 = (ω1;1, . . . , ω1;D−1)
�,

ω2 = (ω2;1, . . . , ω2;D−1)
�,

...
...

. . .
...

ωD = (ωD;1, . . . , ωD;D−1)
�,

or on its edge, we verify whether the determinants

D0 =

∣∣∣∣∣∣∣∣∣

ω1;1 · · · ω1;D−1 1
ω2;1 · · · ω2;D−1 1

.

.

.
. . .

.

.

.
.
.
.

ωD;1 · · · ωD;D−1 1

∣∣∣∣∣∣∣∣∣
,

D1 =

∣∣∣∣∣∣∣∣∣

ω0;1 · · · ω0;D−1 1
ω2;1 · · · ω2;D−1 1

.

.

.
. . .

.

.

.
.
.
.

ωD;1 · · · ωD;D−1 1

∣∣∣∣∣∣∣∣∣
, . . . , DD =

∣∣∣∣∣∣∣∣∣

ω1;1 · · · ω1;D−1 1
ω2;1 · · · ω2;D−1 1

.

.

.
. . .

.

.

.
.
.
.

ω0;1 · · · ω0;D−1 1

∣∣∣∣∣∣∣∣∣

have the same sign. If this is the case, then ω0 can be
expressed as the convex combination of the vertices ωd , d =
1, . . . , D, i.e. ω0 = ∑D

d=1 λd(ω0)ωd , and the barycentric
coordinates can be obtained as λd(ω0) = Dd/D0 > 0. In
principle, this method can be applied to any estimator of the
dependence function and its performance is tested in Sect. 3.4
for dimensions D = 3, 4, 5. The algorithm code (in C++
integrated in R using the package Rcpp) is available in the
Supplementary Material. To compute the convex hull of a
given set of input points, we used the algorithm available in
the R package geometry. However, computing the convex
hull in dimensions D > 7 using the available algorithms
is time consuming and requires significant memory space,
which makes the application of this method too computa-
tionally demanding for themoment.Moreover, the endpoints
correction

min
{
1,max

(
ÂCONV
n (ω), ω1, . . . , ωD

)}
(6)

can be applied to ensure that the boundary constraints A2,
A3 are satisfied.

An alternativemethod, recently proposed byMarcon et al.
(2017), involves the projection of the nonparametric esti-
mator Ân(ω) onto the subspace A of functions satisfying
the constraints A1, A2 and A3 expressible through lin-
ear combinations of kth-order Bernstein–Bézier polynomials
(Sauer 1991; Lorenz 1986). The Bernstein–Bézier polyno-
mial approximation of a function A(ω) is

BA(ω; k) =
∑
l∈Lk

βlbl(ω; k), βl ∈ R,ω ∈ SD, (7)

where the bl(·; k) forms the lth element of the basis of
Bernstein–Bézier polynomials of degree k, which are defined
as continuous functions with values in [0, 1]. The projection
estimator is based on a first guess Â1 and then obtained as
the solution of the optimisation problem

ÂBP
n = arg min

A∈A
‖ Â1 − A‖2, (8)

where the minimum is taken over all possible measurable
functions in A, which is a closed and convex subset of
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L2(SD), the space of square integrable functions over the
unit simplex. Consider a nested sequence of constrainedmul-
tivariate Bernstein–Bézier polynomial families Ak ⊆ A;
restrictions on the βl in (7) can be imposed such that each
member of Ak satisfies the necessary dependence function
conditions; for more details, see Marcon et al. (2017).

2.4 Parametric approach

Parametric estimation of the dependence function can be
performed by maximising the pairwise likelihood under the
working assumption of mutual independence between pairs
of variables (see, for example, Varin and Vidoni 2005; Varin
2008; Padoan et al. 2010 or Davison and Gholamrezaee
2012). In particular, the log-pairwise likelihood function con-
sidered in this paper is of the form

�pair(α) =
M∑
i=1

∑
1≤d1≤d2≤D

log g
{(
m̃i;d1 , m̃i;d2

)� ;α
}

,

whereα is the vector of unknownparameters, (m̃i;d1 , m̃i;d2)�
are standardised sample maxima transformed to the Fréchet
scale, see (4), and g denotes the bivariate density function:

g
{(
m̃i;d1 , m̃i;d2

) ;α
}

=
[
V1
{(
m̃i;d1 , m̃i;d2

)� ;α
}
V2
{(
m̃i;d1 , m̃i;d2

)� ;α
}

−V12
{(
m̃i;d1 , m̃i;d2

)� ;α
}]

× exp
[
−V

{(
m̃i;d1 , m̃i;d2

)� ;α
}]

,

with V1, V2 and V12 denoting the partial and mixed deriva-
tives of the bivariate exponent function V stemming from (1).
The marginal and dependence parameters can be estimated
either separately or jointly, the latter approach allowing a
better estimation of the global uncertainty. An estimate of
the Pickands dependence function may then be obtained
through (2). Under classical regularity conditions, maxi-
mum composite likelihood estimators are strongly consistent
and asymptotically Gaussian but present a loss in effi-
ciency with respect to maximum likelihood estimators. In
the bivariate case, the log-pairwise likelihood function boils
down to the full log-likelihood function, i.e. �pair(α) =∑M

i=1 log g{(m̃i;d1, m̃i;d2)�;α}.

3 Simulation study

3.1 Simulation design

We investigate the finite-sample performance of nonpara-
metric and parametric methods on N = 1000 independent

multivariate datasets of various dimensions (D = 2, 3, 4, 5).
For finite-sample sizes, extremes not yet being in their lim-
iting regime (1), it makes sense to assess the subasymptotic
bias of the different estimators that is due to being in the
MDA. Therefore, in this simulation experiment we comple-
ment previous comparison studies by simulating the data
from distributions in the MDA of the multivariate extreme-
value distributionG characterised by logistic and asymmetric
logistic dependence structures, respectively. A similar setting
was considered in Huser et al. (2016), where the goal was
to compare different parametric methods. In particular, data
are generated from the so-called outer power Clayton copula
(Nelsen 2006), i.e.

C1(u) = ϕ

{
D∑

d=1

ϕ−1(ud)

}
, (9)

whereu = (u1, . . . , uD)�,with generatorϕ(t) = (tα+1)−1.
Indeed, it can be shown (Fougères 2004, p. 376) that if U =
(U1, . . . ,UD)� ∼ C1(u), then the distribution of the random
vectorX = {−1/log(U1), . . . ,−1/log(UD)}� is in theMDA
of the logistic distribution characterised by the dependence
function in (24). Moreover, we introduce asymmetry in the
dependence structure by generating the data from the copula

C2(u) = C1

(
uφ1
1 , . . . , uφD

D

) D∏
d=1

u1−φd
d (10)

instead of C1(u). The construction of such copula is based
on Khoudraji’s device proposed by Khoudraji (1995) in a
bivariate setting and used by Liebscher (2008) afterwards
in higher dimensions; see also Genest et al. (2011) and Li
and Genton (2013). Note that if U∗ = (U∗

1 , . . . ,U∗
D)� ∼

C2(u∗), then the distribution of the random vector X∗ ={−1/log(U∗
1 ), . . . ,−1/log(U∗

D)
}� is in the MDA of a sim-

plified version of the asymmetric logistic distribution char-
acterised by the dependence function in (25), i.e.

A(ω) =
{

D∑
d=1

(ωdφd)
1/α

}α

+
D∑

d=1

ωd(1 − φd), (11)

with dependence parameters 0 < α ≤ 1 and asymmetry
parameters 0 ≤ φd ≤ 1, d = 1, . . . , D. The proof is given
inAppendix 3.Moreover, we further specifyφd to be equal to
φd−1 so as to have only one asymmetry parameter to estimate
and meaning that the extent of asymmetry augments as the
“distance” between vector components increases. The simu-
lations from the copula (9) and its asymmetric extension (10)
were performed using the R package copula (Hofert et al.
2014), considering awide range of dependence scenarios and
sample size n = 10000 and extracting M = 100 multivari-
ate componentwise maxima from each dataset. The extremal
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coefficient, used in the simulation study as a summary of
extremal dependence (Smith 1990), is defined as

θ = V (1) = DA(D−11) ∈ [1, D], (12)

where 1 is a D-dimensional vector of ones. The value of θ

decreases as the dependence strength between the margins
increases. In particular, independence and perfect depen-
dence occur if and only if θ = D or θ = 1, respectively.
Under each dependence scenario, we estimate the depen-
dence function using the differentmethods outlined in Sect. 2
and compute a Monte Carlo approximation of the root mean
integrated squared error (RMISE) from N replicates. The
RMISE of a given estimator Ân(ω), defined as

RMISE =
(
E

[∫
SD

{
Ân(ω) − A(ω)

}2
dω

])1/2

, (13)

can be shown to be equal to

RMISE =
{∫

SD

[
E
{
Ân(ω)

}
− A(ω)

]2
dω

︸ ︷︷ ︸
RI SB2

+
∫
SD

E

([
Ân(ω) − E

{
Ân(ω)

}]2)
dω

︸ ︷︷ ︸
RIV 2

}1/2
,(14)

where RISB and RIV denote the root integrated squared bias
and the root integrated variance, respectively (Gentle 2002, p.
145). The integrands in (13) and (14) are evaluated on a fine
partition of SD sampled on a regular grid and a sum of these

values is used to approximate the integrals. Computational
time for the implementation of both the convex minorant (5)
and the projection (8) methods is highly influenced by the
number of grid points chosen to discretise SD , which grows
with the dimension D, but it is generally fast up to D =
4. In the following sections, we present the results of the
simulation study focusing first on the bivariate case and then
on higher dimensions.

3.2 Bivariate case: nonparametric estimators
comparison

Considering dependence scenarios ranging from strong
dependence to independence, for data with distribution in
the MDA of the logistic distribution (24) with D = 2, we
display in Fig. 1 the RMISE, RISB and RIV computed for
the convex minorant (5) counterparts of the nonparametric
estimators ÂRP

n (17), ÂRHT
n (18), ÂRCFG

n (20) and ÂMMD
n (22),

denoted as Â-CONV
n and the constrained B-spline smoothing

estimator ÂCOBS
n (23). The RISB is generally quite small;

indeed all the estimators considered are asymptotically unbi-
ased. In particular, the RISB of the ÂRHT-CONV

n , ÂRCFG-CONV
n

and ÂMMD-CONV
n estimators is close to 0 for strong depen-

dence and increases as the dependence strength decreases,
i.e. as the bivariate extremal coefficient θ approaches 2. This
is consistent with results obtained by Huser et al. (2016)
in the parametric framework. By contrast, the RISB of the
ÂRP-CONV
n estimator is only close to 0 when the dependence

is rather weak, showing higher RISB for mild dependence
and close to independence. This non-monotonic behaviour
can be attributed to a change of sign in the bias as we move

0

10

20

30

40

50

1.2 1.4 1.6 1.8 2.0

RMISEx1000

1.2 1.4 1.6 1.8 2.0

RISBx1000

1.2 1.4 1.6 1.8 2.0

RIVx1000

Â
COBS

Â
RP CONV

Â
RHT CONV

Â
RCFG CONV

Â
MMD CONV

Fig. 1 Root mean integrated squared error (RMISE × 1000), root
integrated squared bias (RISB × 1000) and root integrated variance
(RIV × 1000) computed for data with distribution in the MDA of the
logistic distribution (24) with D = 2 are plotted against the extremal

coefficient θ . The estimators ÂRP-CONV
n , ÂRHT-CONV

n , ÂRCFG-CONV
n and

ÂMMD-CONV
n based on (17), (18), (20) and (22) modified using the con-

vex minorant method (5) and the estimator ÂCOBS
n based on (23)

123



Stat Comput (2018) 28:525–538 531

from complete dependence to independence. In other words,
the estimated dependence function tends to lie above the true
one for roughly 1 ≤ θ ≤ 1.7 and below it for 1.7 ≤ θ ≤ 2.
In the case of independence, however, the true curve is
situated on the upper edge of the triangle defined by the ver-
tices {(0, 1); (1/2, 1/2); (1, 0)} and all estimated curves are
located below. The RISB of the estimator ÂCOBS

n instead is
almost constant for strong to mild dependence situations and
increases in case of weaker dependence strengths. Gener-
ally, the estimators ÂRCFG-CONV

n and ÂRHT-CONV
n are the least

biasedwhen thedependence is rather strong,whereas the esti-
mator ÂMMD

n is the least biased formild to weak dependence,
together with the estimator ÂRP

n for weak dependence and
with the estimator ÂCOBS

n only very close to independence. In
terms of variability, all estimators show a similar behaviour,
although the estimator ÂRCFG-CONV

n is slightly more effi-
cient. As a result, in terms of RMISE, in cases of strong
to mild dependence the estimators ÂRCFG-CONV

n , ÂRHT-CONV
n

and ÂMMD-CONV
n present very similar performances, though

the estimator ÂRCFG-CONV
n slightly outperforms the others

for 1 ≤ θ ≤ 1.6, whereas the estimator ÂMMD-CONV
n shows

the best performance for 1.6 ≤ θ ≤ 2.
Considering the same setting, in Fig. 2 we compare the

convexminorant (5) ( Â-CONV
n ) andBernstein–Bézier polyno-

mial projection (8) ( Â-BP
n ) counterparts of the nonparametric

estimators ÂRP
n (17), ÂRHT

n (18), ÂRCFG
n (20) and ÂMMD

n (22).

For comparison purposes, we also report the RMISE of the
nonparametric estimators to which we imposed only the end-
point corrections in (6).

The issue of choosing an optimal polynomial degree k
for the implementation of the Bernstein–Bézier polynomial
method was addressed by calculating the value k that min-
imises theRMISE for each dependence scenario froma range
of values from 1 to 24. The optimal k values resulted to be
the same for all the estimators considered in this simulation
study and are reported in Table 2. As expected, a large k is
needed for very strong dependence scenarios, whereas lower
values of k yield good approximations when the dependence
strength is mild to weak. In practice, the true value of θ

is unknown and therefore also the optimal k. However, we
found that fixing the Bernstein–Bézier polynomial degree
k = 6 is generally sufficiently large to obtain a reasonable
approximation for a wide range of dependence situations but
not too large so as to avoid excessive overfitting. A remedy
to the fact that k is unknown has been provided by Marcon
et al. (2016) in a Bayesian context, favouring low values in
the case of weak dependence and high values in the case of
strong dependence in accordance with our findings.

From Fig. 2, we observe that the estimators satisfying the
convexity constraint generally show the best performances.
Moreover, when the Bernstein–Bézier polynomial method
is applied instead of the convex minorant modification, the
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Â
RCFG CONV

Â
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Fig. 2 Root mean integrated squared error (RMISE×1000) computed
for data with distribution in the MDA of the logistic distribution (24)
with D = 2 is plotted against the extremal coefficient θ . The estimators
ÂRP
n , ÂRHT

n , ÂRCFG
n and ÂMMD

n are based on (17), (18), (20) and (22)

to which we imposed only the endpoint corrections (6). Their con-
vexminorant ( Â-CONV

n ) and projection ( Â-BP
n ) counterparts are obtained

applying the modifications (5) or (8) with k reported in Table 2, respec-
tively

Table 2 Bernstein–Bézier polynomial degree k (8) that minimises the RMISE considering a range of values from 1 to 24 reported for different
values of the extremal coefficient θ

θ 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.90 1.95 2.00

k 24 24 18 12 6 6 6 3 3 3 3 3 3 3 3 3 3 3
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Fig. 3 Root mean integrated squared error (RMISE × 1000), root
integrated squared bias (RISB × 1000) and root integrated variance
(RIV × 1000) computed for data with distribution in the MDA of the
asymmetric logistic distribution (25) with D = 2 are plotted against
the asymmetry parameter φ2, φ1 = 1. The columns represent different
values of the extremal coefficient θ (12) reflecting the cases of strong
(θ = 1.3),mild (θ = 1.5) andweak (θ = 1.7) dependence, respectively.

The estimators ÂLOG
n and ÂASY LOG

n are based on the logistic (24) and
asymmetric logistic (25) model with D = 2, respectively. The esti-
mators ÂMMD-CONV

n and ÂMMD-BP
n are based on (22) modified using

the convex minorant (5) and the Bernstein–Bézier polynomial projec-
tion (8), with k = 6, modification, respectively. Notice that there is a
lower bound on the value of φ2 for fixed θ

RMISE of the resulting estimator appears noticeably lower.
The small jumps present in the curves of the estimators
Â-BP
n correspond to a change in the degree of Bernstein–

Bézier polynomials in case of mild dependence or suggest
that k is insufficiently large in case of very strong depen-
dence (since the Pickands dependence function is nearly
non-differentiable atω = 1/2). Similar results (partly shown
in Sect. 3.4 and in the Supplementary Material) are obtained
for datawith distribution in theMDA of the asymmetric logis-
tic distribution.

In conclusion, we established that the estimator
ÂMMD-CONV
n generally performs better than all the other

nonparametric estimators, especially in low-dependence sce-
narios, and its performance slightly improves imposing
the convexity constraints by applying the Bernstein–Bézier

polynomial projection method instead of the convex mino-
rant modification. As such, the estimators ÂMMD-CONV

n and
ÂMMD-BP
n are used as representative nonparametric estima-

tors for the following comparison with parametric methods.

3.3 Bivariate case: parametric versus nonparametric
estimators

In order to assess the performance of nonparametric and
parametric methods, while avoiding favouring the para-
metric approach, we compare the nonparametric estimators
ÂMMD-CONV
n and ÂMMD-BP

n with respect to the paramet-
ric estimator based on the logistic model (24) with D =
2, ÂLOG

n , for data with distribution in theMDA of the asym-
metric logistic distribution (25) with D = 2. Considering
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cases of strong, mild and weak dependence and different lev-
els of asymmetry, in Fig. 3,we display the calculatedRMISE,
RISB and RIV for the aforementioned estimators and for the
estimator based on the asymmetric logistic (25) model with
D = 2, ÂASY LOG

n . To compute the estimators ÂMMD-BP
n , we

fixed the Bernstein–Bézier polynomial degree k = 6 for the
reasons discussed in Sect. 3.2. Owing to the constraints A1,
A2 and A3, the dependence function cannot be highly asym-
metric when the dependence between the margins is strong.
Thus, for a fixed value of the extremal coefficient, the asym-
metry parameters φ2 represented in the abscissa are bounded
from below: if θ = 1.3 or θ = 1.5 then φ2 cannot be lower
than ≈ 0.75 or ≈ 0.55, respectively, with φ1 = 1.

In accordance with the results detailed in Sect. 3.2,
the RMISE generally increases when approaching indepen-
dence. Although the logistic model becomes increasingly
misspecified as φ2 departs from φ1 = φ2 = 1, in terms
of RMISE the logistic model estimator slightly outperforms
the nonparametric estimators in the cases of mild and weak
dependence for mild levels of asymmetry. As expected, the
nonparametric estimators are more flexible and show the
best performance for highly asymmetric data. Looking at the
computed standard deviations, it is clear that the paramet-
ric methods are always the most efficient, but nonparametric
methods show comparable performances, which is not the

case for higher dimensions (see Sect. 3.4). The logisticmodel
estimator is overall more efficient than its asymmetric exten-
sion, especially when the data are close to be symmetric.
This can be explained by the reduced number of parame-
ters that need to be estimated when the logistic model is
assumed. Consequently, in terms of RMISE, the parametric
and nonparametric estimators seem to perform very similarly
in the bivariate case, even in the presence of mild asymmetry,
whereas, as predicted, the logistic model estimator is insuffi-
ciently flexible for describing situations of strong asymmetry.

3.4 Performance of estimators in higher dimensions

We now consider the case of mild dependence strength
and asymmetry for data with distribution in the MDA of
the asymmetric logistic distribution (11) with dimensions
D = 2, 3, 4, 5. The RMISE computed for the nonparametric
and parametric estimators which can be computed for data
dimensions D > 2 are reported in Table 3. The Bernstein–
Bézier polynomial estimations are obtained fixing the degree
to k = 6, as k = 3, 9 (not shown) do not lead to significant
differences in terms ofRMISE, suggesting that the dimension
does not have significant repercussions on the choice of k.
Similarly to Sect. 3.3, the parameter φ has a lower bound for
fixed θ which depends on the dependence strength and varies

Table 3 Root mean integrated
squared error (RMISE × 1000)
computed for data with
distribution in the MDA of the
asymmetric logistic
distribution (11) is reported for
different values of the
asymmetry parameter φ

Estimators D = 2 D = 3 D = 4 D = 5

φ = 0.7 φ = 1 φ = 0.7 φ = 1 φ = 0.7 φ = 1 φ = 1

ÂRP
n 28.0 28.4 36.5 32.9 40.9 37.5 40.2

ÂRHT
n 24.7 25.1 35.9 32.2 41.1 37.7 41.7

ÂRMCFG
n 21.6 23.0 33.7 29.7 41.2 36.5 42.6

ÂMMD
n 22.3 23.0 34.5 31.4 41.6 38.0 42.8

ÂRP-CONV
n 24.9 25.2 30.7 29.7 34.0 33.5 35.5

ÂHT−CONV 24.6 23.3 34.3 31.1 41.4 36.3 40.2

ÂRMCFG-CONV
n 22.7 20.9 33.0 29.4 40.7 36.1 41.6

ÂMMD-CONV
n 23.2 22.4 32.0 30.5 37.5 36.6 40.4

ÂP-BP
n 23.3 22.4 32.8 30.0 40.5 36.8 38.6

ÂRHT-BP
n 24.1 23.1 32.5 29.9 40.3 37.0 40.2

ÂRMCFG-BP
n 22.6 20.7 32.5 29.0 41.9 36.2 42.3

ÂMMD-BP
n 23.3 22.4 33.0 30.3 41.8 37.5 42.3

ÂLOG
n 25.8 19.9 39.7 24.6 59.6 29.0 32.8

ÂASY LOG
n 21.4 19.3 25.5 24.7 29.6 29.6 32.5

The different columns represent dimensions D = 2, 3, 4, 5 and the corresponding extremal coefficient
θ is fixed to θ = 1.5, 2, 2.5, 3, respectively, reflecting the case of mild dependence. The estimators
ÂRP
n , ÂRHT

n , ÂRMCFG
n and ÂMMD

n are based on (17), (18), (20) and (22) to which we imposed only the endpoint
correction (6). Their convex minorant ( Â-CONV

n ) and projection ( Â-BP
n ) counterparts are obtained applying the

modifications (5) and (8) with k = 6, respectively. The parametric estimators ÂLOG
n and ÂASY LOG

n are based
on the logistic (24) and asymmetric logistic (25) models, respectively. The lower values are represented in
bold. Notice that there is a lower bound on the value of φ for fixed θ (which depends on dimension). The
standard errors of the estimated RMISEs are of the order 10−4
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Fig. 4 Dependence functions estimated using the estimator ÂRP
n based

on (17) towhichwe imposed only the endpoint corrections (6) (top row),
its convexminorant ÂRP-CONV

n (middle row) andBernstein–Bézier poly-
nomial projection ÂP-BP

n (bottom row) counterparts obtained applying

themodifications (5) and (8)with k = 6, respectively, computed for data
with distribution in theMDA of the logistic distribution for D = 3. The
different columns display the cases of strong (θ = 1.6), mild (θ = 2)
and weak (θ = 2.4) dependence strength, respectively

across dimensions. By comparing Table 3 with Tables 4 and
5 in the SupplementaryMaterial, the RMISE increases as the
dependence strength decreases for all dimensions, which is
consistent with the findings for bivariate data in Sects. 3.2
and 3.3. The influence of the dependence strength can be
explained by the fact that the dependence function has more
degrees of freedom for weak dependence, and therefore, it is
more difficult to estimate. Generally, estimator performance
decays systematically as the dimension increases. Indeed, for
large dimensions D the estimation problem becomes more
difficult because the volume of the simplex SD is larger. The
integrals in (13) are also computed on larger domains. Similar
results are obtained for the cases of strong and weak depen-
dence strengths; see the Supplementary Material. Overall,
in cases of strong dependence we identified the adjusted
estimators ÂRMCFG

n as the best across all dimensions (see
Table 5 in the Supplementary Material). As we can see from
Table 3 and Table 4 in the Supplementary Material, when

the dependence strength is mild or weak, the best perfor-
mances are provided by the adjusted estimators ÂRMCFG

n
and ÂMMD

n , respectively, only for bivariate data, whereas
the estimator ÂRP-CONV

n outperforms all the others in higher
dimensions. Imposing the convexity constraint using either
the projection or the convexminorantmethod overall reduces
the nonparametric estimators’ RMISE. In the bivariate case,
smaller RMISE are achieved by applying the Bernstein–
Bézier polynomial method. However, when D > 2, the
two modifications are generally comparable and the esti-
mators ÂRP-CONV

n and ÂMMD-CONV
n particularly benefit from

the convex minorant modification often outperforming their
Bernstein–Bézier polynomial counterparts.

Nonparametric and parametric methods perform very
similarly for bivariate data, at least when the assumed para-
metric model is not strongly misspecified. By contrast, for
dimension D > 2, the variability of nonparametric estima-
tors increases significantly and parametric methods largely
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outperform nonparametric estimators when the parametric
model is correctly specified. However, the RISB of the logis-
tic model estimator in dimensions D > 2 is very large for
slightly asymmetric data causing a significant increase of
its RMISE. Nonparametric estimators instead maintain low
bias as the dimensions and the extent of asymmetry increase,
confirming their greater flexibility with respect to parametric
methods.

In Fig. 4, it is possible to visualise how the dependence
function estimator ÂRP

n , for dimension D = 3, adjusts after
the application of the convex minorant or the Bernstein–
Bézier polynomial modification. Both methods significantly
change the shape of the estimator, making it satisfy the con-
vexity constraint. However, the estimator resulting from the
application of the convexminorant method is a piecewise lin-
ear function and not smooth on the unit simplex SD , unlike
its Bernstein–Bézier polynomial projection counterpart.

4 Discussion

We investigated the finite-sample performance of some of
the mostly used nonparametric estimators for multivariate
componentwise maxima considering different strengths and
forms of dependence. Generally speaking, estimator per-
formance decays as the dependence strength between the
margins decreases and the dimensionality increases. We
computed the convex minorant counterparts of the nonpara-
metric estimators for the dependence function in dimensions
D ≥ 2 and highlighted that the nonparametric estimator
performance generally improves by imposing the convex-
ity constraint. Applying the Bernstein–Bézier polynomial
method leads to better estimator performance for bivariate
maxima,whereas the convexminorantmodification is amore
efficient alternative for higher dimensions and asymmetric
datasets. The choice of the Bernstein–Bézier polynomial
degree k is mainly influenced by the dependence strength
across dimensions. Fixing its value to k = 6 should be good
enough to avoid over- and under-fitting for most dependence
cases, but k should be much larger in the presence of very
strong dependence.

Yet, the question of obtaining continuous nonparametric
estimators of the spectralmeasure or the dependence function
satisfying the constraint A4 in the multivariate framework
(D > 2) remains open. The greater flexibility of nonpara-
metric methods with respect to parametric ones was also
validated: we have shown that moderate model misspecifi-
cation may have dramatic consequences on the performance
of parametric estimators for dimension D > 2 and there-
fore also on the estimation of joint probabilities for extreme
events.

In this simulation study, estimator performance was only
assessed for blockmaxima.Considering otherways of select-

ing the sample of extremes might be of interest. For instance,
selecting observations exceeding a specific threshold would
offer valuable insight into these popular threshold methods,
although the definition of threshold exceedances in the mul-
tivariate case is not as clear as in the univariate case. Also,
here we focused on a very specific dependence structure,
the symmetric and asymmetric logistic families. Future stud-
ies would benefit from exploring other types of dependence
structures, gaining a greater understanding of nonparametric
and parametric methods towards a wider range of applica-
tions.

Appendix 1: Nonparametric estimators

If Z = (Z1, . . . , ZD)� is a max-stable vector with distribu-
tionG(z) (1) and estimatedmargins Ĝd (3), then the variable

κ (ω) = min
1≤d≤D

⎡
⎣ − log

{
Ĝd(Zd)

}
ωd

⎤
⎦ , ω ∈ SD, (15)

has survival function

Pr {κ (ω) > t} = Pr
[
−log

{
Ĝ1(Z1)

}
> ω1t, . . . ,

− log
{
Ĝd(ZD)

}
> ωDt

]
= exp {−t A (ω)} ,

where t ≥ 0. Thus, the random variable κ (ω) has standard
exponential distribution with

E {κ (ω)} = A(ω)−1, and

E
[
log {κ (ω)}] = −log {A(ω)} − η, (16)

where η is the Euler–Mascheroni constant. The most popular
nonparametric estimators of A(ω) are based on the equations
in (16). For instance, Pickands (1981) proposed to estimate
the dependence function by the reciprocal of the samplemean
of κ (ω), i.e.

ÂRP
n (ω) =

{
1

M

M∑
i=1

κi (ω)

}−1

, ω ∈ SD, (17)

where κi (ω) is the empirical counterpart of (15) using sam-
plemaximami .While ÂRP

n (ω) provides a sensible estimation
of A(ω), it does not satisfy any of the conditions A1, A2
and A3. As such, Hall and Tajvidi (2000) proposed a variant
which verifies A2 and A3, defined as
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ÂRHT
n (ω) =

{
1

M

M∑
i=1

min
1≤d≤D

(
m̃−1

i;d/m̄
−1
M;d

ωd

)}−1

, ω ∈ SD,

(18)

where m̄−1
M;d = M−1∑M

i=1 m̃
−1
i;d , d = 1, . . . , D, and m̃ as

defined in (4). The second equation in (16) leads to another
dependence function estimator

Â∗ (ω) = exp

[
−η − 1

M

M∑
i=1

log{κi (ω)}
]

, ω ∈ SD .

(19)

However, Â∗ (ω) does not satisfy any of the constraints A1,
A2, A3 either. Capéràa et al. (1997) further modified (16)
introducing an estimator meeting the constraint A3 for D =
2; its extension to arbitrary dimension, provided by Zhang
et al. (2008), see also Gudendorf and Segers (2011), corre-
sponds to the following estimator

ÂRMCFG
n (ω)

= exp

[
log
{
A∗(ω)

}−
D∑

d=1

δd(ω)log
{
A∗(ed)

}]
,

ω ∈ SD, (20)

where the δd , d = 1, . . . , D, are continuous functions veri-
fying δd(ek) = 1(d=k) for all d, k = 1, . . . , D. In particular,
in the present paper we use δd(ω) = ωd . See Gudendorf
and Segers (2010) for a more complete explanation of the
construction of the above estimators and Segers (2007) for a
review of their properties.

Another type of nonparametric estimator of the depen-
dence function can be based on the madogram (Matheron
1987; Cooley et al. 2006). The multivariate madogram is
defined as (see Naveau et al. 2009) the expected value of
the difference between the maximum and the mean of the
rescaled variables G(Z)ω

−1
, i.e.

ν (ω) = E

[
max

1≤d≤D

{
Gd(zd)

1/ωd
}

− 1

D

D∑
d=1

Gd(zd)
1/ωd

]
,

ω ∈ SD. (21)

The estimator suggested by Marcon et al. (2017) consists of
a slight modification of the estimator introduced by Naveau
et al. (2009) for D = 2 that satisfies the conditions A2 and
A3 and applies to high dimensions. It is defined as

ÂMMD
n (ω) = ν̂M (ω) + c(ω)

1 − ν̂M (ω) − c(ω)
, ω ∈ SD, (22)

where c(ω) = D−1∑D
d=1 ωd/(1 + ωd) and ν̂M denotes the

following estimator of the multivariate madogram (21):

ν̂M (ω) = 1

M

M∑
i=1

[
max

1≤d≤D

{
Ĝd(mi;d)1/ωd

}

− 1

D

D∑
d=1

Ĝd(mi;d)1/ωd

]
.

Finally, Cormier et al. (2014) proposed to estimate the
Pickands dependence function through a graphical tool.
Given the bivariate copula C(u1, u2), consider the transfor-
mation

Ti =
log
{
Ĝ(ui;1)

}

log
{
Ĝ(ui;1)Ĝ(ui;2)

} ,

Zi =
log
[
Ĉn

{
Ĝ(ui;1)Ĝ(ui;2)

}]

log
{
Ĝ(ui;1)Ĝ(ui;2)

} .

where for each i = 1, . . . , n, Ĉn denote the empirical copula.
The Pickands dependence function is approximated by fit-
ting to the points (t1, z1), . . . , (tn, zn) a constrained B-spline
smoothing of orderm = 3 for a suitable sequence of k interior
knots, β1, . . . , βm+k and B-spline basis ε1;m, . . . , εm+k;m ,
i.e.

ÂCOBS
n =

m+k∑
j=1

β̂ jεm: j , (23)

where β̂ j is an estimate of β j for each j = 1, . . . ,m + k.

Appendix 2: Parametric models for the dependence
function

Several parametric models to describe extremal dependence
have been proposed in the literature. The logistic model,
introduced by Gumbel (1960a, b), is one of the most widely
used thanks to its simplicity. It has dependence function of
the form

A(ω) =
(

D∑
d=1

ω
1/α
d

)α

, ω ∈ SD, (24)

with dependence parameter 0 < α ≤ 1. The strength of
dependence decreases as α increases. In particular, the cases
of independence and perfect dependence correspond to α =
1 and α ↓ 0, respectively. When D = 2, the model (24)
simplifies to A(ω) = {

(1 − ω)1/α + ω1/α
}α

, ω ∈ [0, 1].
A limitation of the logisticmodel resides in its lack of flexibil-
ity as its dependence structure relies on only one parameter
and it does not allow for asymmetry, i.e. the margins are
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exchangeable. An asymmetric generalisation was suggested
by Tawn (1988) for dimension D = 2 and extended to higher
dimensions by Tawn (1990); see also Smith et al. (1990),
Coles and Tawn (1991) and Stephenson (2009). The asym-
metric logistic model has dependence function

A(ω) =
∑
C∈S

{∑
d∈C

(φCdωd)
1/αC

}αC

, ω ∈ SD, (25)

with dependence parameters 0 < αC ≤ 1 and asymme-
try parameters φCd = 0 if d /∈ C, 0 ≤ φCd ≤ 1 for
d = 1, . . . , D, with

∑
C∈S φCd = 1, where S is the set

of all non-empty subsets of D = {1, . . . , D}. When D = 2,
the model (25) simplifies to A(ω) = (φ2 − φ1)ω + 1 −
φ2+

[{φ2(1 − ω)}1/α + (φ1ω)1/α
]α

, ω ∈ [0, 1],with depen-
dence parameter 0 < α ≤ 1 and asymmetry parameters
0 ≤ φ1, φ2 ≤ 1. The extent of asymmetry in the bivariate
dependence structure decreases as the asymmetry parameters
φ1 and φ2 approach unity. The symmetric case arises when
φ1 = φ2 = 1. Without much loss of flexibility, φ1 or φ2

could be fixed to 1 (Tawn 1988). Independence corresponds
to φ1 = φ2 = 1 and α = 1, whereas perfect dependence
corresponds to φ1 = 0 or φ2 = 0 or α ↓ 0.

Appendix 3: Proof of equation (11)

If U = (U1, . . . ,UD)� ∼ C1(u1, . . . , uD), where C1

denotes the outer power Clayton copula with generator
ϕ(t) = (tα+1)−1, then the randomvectorX = {−1/log(U1),

. . . ,−1/log(UD)}� is distributed according to the same
copula C1 and its marginal distributions are unit Fréchet.
According to Fougères (2004, p. 376), taking the sequences
an = (n, . . . , n)� and bn = (0, . . . , 0)� defined in Sect. 1,
the distribution of X is in the MDA of the logistic distribu-
tion (24). This means that, defining

(Mn;1, . . . , Mn;D)� =
[
max
1≤i≤n

{−1/log(Ui;1)
}
, . . . ,

max
1≤i≤n

{−1/log(Ui;D)
}]�

,

one has

Pr

(
Mn;1
n

≤ x1, . . . ,
Mn;D
n

≤ xD

)

→ exp {−V (x1, . . . , xD)} , n → ∞,

where V (x1, . . . , xD) =
(∑D

d=1 x
−1/α
d

)α

, α ∈ (0, 1].
Now, notice that any vector U∗ = (U∗

1 , . . . ,U∗
D)� dis-

tributed as U∗ ∼ C2(u∗) = C1(u
φ1
1 , . . . , uφD

D )
∏D

d=1 u
1−φd
d

has uniform margins and may be represented by setting

U∗
d = max

{
U 1/φd
d , Ũ 1/(1−φd )

d

}
, d = 1, . . . , D, with

(U1, . . . ,UD)T ∼ C1(u1, . . . , uD), independent of Ũd ∼
i.i.d.

Unif(0, 1). Therefore,writingM∗
n;d = max

1≤i≤n

{
−1/log(U∗

i;d)
}

and M̃n;d = max
1≤i≤n

{
−1/log(Ũi;d)

}
, d = 1, . . . , D, one

obtains

Pr

(
M∗

n;1
n

≤ x1, . . . ,
M∗

n;D
n

≤ xD

)

= Pr

(
Mn;1
n

≤ x1
φ1

, . . . ,
Mn;D
n

≤ xD
φD

)

×
D∏

d=1

Pr

(
M̃n;d
n

≤ xd
1 − φd

)
,

→ exp

[
−
{
V

(
x1
φ1

, . . . ,
xD
φD

)
+

D∑
d=1

(1 − φd)x
−1
d

}]
,

n → ∞,

which is amultivariate extreme-value distribution with expo-
nent function

V (x1, . . . , xD) =
{

D∑
d=1

(
xd
φd

)−1/α
}α

+
D∑

d=1

(1 − φd)x
−1
d .

Applying (2) we obtain

A(ω) =
{

D∑
d=1

(ωdφd)
1/α

}α

+
D∑

d=1

ωd(1 − φd),

which is a special case of the asymmetric logistic model
dependence function in (25).
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