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Abstract—Geostatistics represents one of the most challenging
classes of scientific applications due to the desire to incorporate
an ever increasing number of geospatial locations to accurately
model and predict environmental phenomena. For example, the
evaluation of the Gaussian log-likelihood function, which con-
stitutes the main computational phase, involves solving systems
of linear equations with a large dense symmetric and positive
definite covariance matrix. Cholesky, the standard algorithm,
requires O(n3) floating point operators and has an O(n2)
memory footprint, where n is the number of geographical
locations. Here, we present a mixed-precision tile algorithm to
accelerate the Cholesky factorization during the log-likelihood
function evaluation. Under an appropriate ordering, it operates
with double-precision arithmetic on tiles around the diagonal,
while reducing to single-precision arithmetic for tiles sufficiently
far off. This translates into an improvement of the performance
without any deterioration of the numerical accuracy of the
application. We rely on the StarPU dynamic runtime system to
schedule the tasks and to overlap them with data movement. To
assess the performance and the accuracy of the proposed mixed-
precision algorithm, we use synthetic and real datasets on var-
ious shared and distributed-memory systems possibly equipped
with hardware accelerators. We compare our mixed-precision
Cholesky factorization against the double-precision reference
implementation as well as an independent block approximation
method. We obtain an average of 1.6X performance speedup on
massively parallel architectures, while maintaining the accuracy
necessary for modeling and prediction.

I. INTRODUCTION

The rise of mixed-precision algorithmic developments in the

scientific community coincides with the advent of machine

learning techniques for performing analytics on big data

problems. Because the convergence between HPC and big

data [1] is now at the forefront of research innovations for the

digital world, e.g., healthcare, security, and climate/weather

modeling, hardware vendors have tremendously invested in

designing chips during the last decade with an emphasis on

further provisioning low precision floating-point units [2],

[3]. This computing paradigm shift has mobilized researchers

in identifying opportunities within their legacy numerical

algorithms to exploit such hardware features. The main idea

consists in determining which computational phases within

an algorithm are resilient to a lower precision, while ulti-

mately maintaining the required level of accuracy for the

final solution. The availability of off-the-shelves hardware with

effective support of low precision floating-point arithmetics

has further democratized mixed-precision algorithms. This

hardware/algorithm synergism has demonstrated to be a game-

changing approach for solving some of the most challenging

scientific problems [4].

Given this fertile landscape, we propose to study geo-

statistics modeling and prediction using mixed-precision algo-

rithms. Rather than using first principles physics approaches,

geostatistics may represent a plausible alternative to accu-

rately model and predict environmental phenomena given the

availability of measurements at a high number of geospatial

locations. One of the main computational phases necessitates

the evaluation of the Gaussian log-likelihood function, which

translates into iteratively solving a number of large systems of

linear equations. The large dense symmetric and positive defi-

nite covariance matrix can be processed with the Cholesky fac-

torization with a cubic algorithmic complexity as the number

of geographical locations with measurements grow. There are

several methodologies to reduce this intractable complexity,

e.g., dimension-reducing PCA approaches, independent block

approximation method [5], or low-rank approximations [6],

to name a few. These methods are thoroughly described and

evaluated in [7].

In this paper, we present a new mixed-precision algorithm to

accelerate the Cholesky factorization during the log-likelihood

function evaluation in the context of environmental applica-

tions. Based on tile algorithms [8], the resulting Cholesky

factorization takes advantage of the covariance matrix struc-

ture, which retains the most significant information around

the diagonal of the matrix. Instead of completely annihilating

the off-diagonal contributions engendering a possible loss of

accuracy, we operate the computation of close-to-diagonal

tiles in double-precision accuracy while switching to single-

precision accuracy for the remaining far off-diagonal tiles.

Insight into the application data sparsity is paramount to take

into account, before moving forward with mixed-precision

algorithms. While mixed-precision algorithmic optimization

translates into performance gains, it is critical to validate the

statistical parameter estimators, which drive the modeling and

the prediction phases for climate and weather applications.

To cope with the heterogeneity of the mixed-precision

workloads, we rely on the STARPU dynamic runtime sys-

152

2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/19/$31.00 ©2019 IEEE
DOI 10.1109/HiPC.2019.00028



tem [9] to schedule the various tasks onto available resources,

while overlapping the expensive data movement with useful

computations. We assess the numerical accuracy and the per-

formance of the new mixed-precision Gaussian log-likelihood

function using synthetic and real datasets on a myriad of

shared and distributed-memory systems possibly equipped

with GPU hardware accelerators. We report the performance

of our novel mixed-precision Cholesky factorization against

the double-precision reference implementation as well as an

independent block approximation method. Our benchmarking

results reveal a significant improvement of the performance

speedup on these massively parallel architectures, with an

average of 1.6X performance speedup on these massively par-

allel architectures, while maintaining the necessary accuracy

for modeling and prediction purposes. This latest algorithmic

optimization further extends the features of our software

framework EXAGEOSTAT, which packages high performance

implementations of algorithmic adaptations for large-scale

environmental applications. To the best of our knowledge,

this is the first implementation of a mixed-precision Cholesky

factorization applied on a tile basis, using a non-iterative

approach. Although this paper focuses on applications for

geostatistics, the Cholesky factorization is a pivotal matrix

operation for several other big data applications.

The remainder of the paper is organized as follows. Sec-

tion II presents related work and Section III lists our research

contributions. Section IV provides the necessary background

for geostatistical applications. Section V recalls the current al-

gorithmic features of our EXAGEOSTAT software framework.

Section VI introduces our novel tile Cholesky factorization

using mixed-precision techniques. We detail its parallel imple-

mentation in Section VII. Section VIII reports the accuracy and

the performance results of our mixed-precision tile Cholesky

factorization on various hardware architectures using synthetic

and real datasets. Section IX summarizes our contributions

from the paper and highlights future work.

II. RELATED WORK

Several approximation techniques have been proposed in

the literature to reduce the arithmetic complexity and memory

footprint in large-scale problems. In [10], Gaussian Predictive

Processes (GPP) was proposed to reduce the dimensions of

large scale covariance matrices. This reduction is achieved by

projecting the original problem into a subspace at a certain

set of locations. However, this method usually underestimates

the variance parameter [7]. Another approach based on fixed-

rank kriging has been proposed by [11]. This approach uses

a spatial mixed effects model for the spatial problem and

proposes fixed rank kriging using a set of non-stationary

covariance functions. In [12], a covariance tapering approach

has been proposed by converting the given dense covariance

to a sparse matrix. The sparse matrix is generated by ignoring

the large distances and set them to zero. In this case, sparse

matrices algorithms can be used for fast computation. Other

methods such as Kalman filtering [13], moving averages [14],

and low-rank splines [15] have been proposed to approximate

the covariance matrix by reducing the problem dimension.

Hierarchical matrices (H-matrices) are widely used to ac-
commodate the large covariance matrices dimension by apply-

ing a low-rank approximation to the off-diagonal matrix [16].

Different data approximation techniques based on H-matrices
have been proposed in literature such as Hierarchically Off-

Diagonal Low-Rank (HODLR) [17], Hierarchically Semi-

Separable (HSS) [18], H2-matrices [19], [20], and Block/Tile

Low-Rank (BLR/TLR) [21], [22].

Most of the existing studies about mixed-precision in cli-

mate and weather applications are related to the analysis of

the effect of applying mixed-precision to such applications.

For instance, in [23], the authors show that low precision

arithmetic coming from faulty hardware has a negligible effect

on the overall accuracy of weather and climate prediction.

The study covers only the analysis part of the mixed-precision

impact on such applications. Another study by [24] examines

how a mixture of single- and half- precision could be useful

in the case of weather and climate applications. In [25], a hy-

brid CPU-FPGA algorithm is proposed with mixed-precision

support to compute the upwind stencil for the global shallow

water equations with magnificent speedup, compared to pure

CPU and hybrid CPU-GPU systems.

Mixed-precision iterative refinement approaches have been

studied for solving dense linear system of equations [26]

using single and double-precision arithmetics. A new mixed

precision iterative refinement approach [27] has shown a

significant improvement of the performance (speedup factor up

to four) using multiple precisions, i.e., 16-bit, 32-bit, and 64-

bit precision arithmetics for the dominant GEMM kernel, on

NVIDIA V100 GPUs. These mixed-precision approaches use

a unique precision arithmetic for the Cholesky factorization

and subsequently, iterate using multiple precisions to refine

the solution. There are, however, numerical restrictions de-

pending on the number of matrix conditions. There are also

recent works toward democratizing half-precision arithmetics

for climate applications for accelerating DL workloads [28]

achieving tremendous performance speedups.

Last but not least, the presented mixed-precision Cholesky

factorization may accelerate scientific applications beyond

the one studied herein. It may be applied to computational

astronomy applications, which consist in removing the impact

of the atmospheric turbulence on the distorted light from the

remote galaxies and captured by ground-based telescopes [29].

Moreover, Calculating the electronic structure of molecules in

material sciences may translate into solving the Schrödinger

equation, using a generalized symmetric eigenvalue decompo-

sition. The mixed-precision method may be applied during the

first computational phase of the eigensolver to approximate the

low interactions between distant electrons [30].

In this paper, we adopt the covariance tapering approach.

The default approach consists in ignoring the correlations

between the remote spatial locations separated with a predeter-

mined distance by setting them to zero. Instead, we use flexible

and adaptive mixed-precision algorithm to reduce the precision
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accuracy of these correlation values. We then launch the new

high performance Cholesky factorization operating on mixed-

precision tile data structures, which represents the main engine

driving the maximum likelihood estimation (MLE). This may

ultimately permit to achieve better numerical accuracy than

the covariance tapering approach for the prediction.

III. CONTRIBUTIONS

Our contributions can be summarized as follows: (1) we

propose a novel mixed-precision Cholesky factorization al-

gorithm to accelerate the maximum likelihood evaluation

(MLE); (2) we apply the new algorithm to the climate weather

modeling and predictions problems by extending the existing

ExaGeoStat software with the new mixed-precision Cholesky
algorithm; (3) we conduct a set of experiments to validate

the accuracy of the proposed algorithm and to show its

ability to satisfy the accuracy requirements of the climate

and weather applications; (4) we provide a quantitative per-

formance analysis to assess the performance of the proposed

algorithm on heterogenous shared-memory, and distributed-

memory environments.

IV. GEOSTATISTICS APPLICATIONS

A. Background

Climate and environmental data usually include a large

number of measurements distributed regularly or irregularly

across a given geographical region. Each location is asso-

ciated with a single value of climate or weather variable

such as temperature, precipitation, wind speed, air pressure,

etc. These data can be modeled as a realization from a

Gaussian spatial random field when considering geostatistics

applications. Specifically, for a given geographical region Rd,

let n represents the number of available spatial locations from
s1 to sn, and let Z = {Z(s1), . . . , Z(sn)}� be a realiza-

tion of a Gaussian random field Z(s), i.e., measurements,
at those n locations. Assume the random field Z(s) has
a mean zero and stationary parametric covariance function

C(h;θ) = cov{Z(s), Z(s + h)}, where h ∈ R
d is a spatial

lag vector and θ ∈ Rq is an unknown parameter vector.

B. Matérn Covariance Function

The Matérn class of covariance functions is a generic

form that is used to construct the covariance matrix Σ(θ) in
geostatistics applications. The Matérn function is defined as,

C(r;θ) =
θ1

2θ3−1Γ(θ3)

(
r

θ2

)θ3

Kθ3

(
r

θ2

)
, (1)

where Σ(θ) is a symmetric positive definite covariance matrix
with entries Σij = C(si − sj ;θ), i, j = 1, . . . , n, and
θ = (θ1, θ2, θ3)

� is the model parameter vector. Here,

θ1 > 0 is the variance parameter, θ2 > 0 is a spatial range
parameter that measures how quickly the correlation of the

random field decays with distance, and θ3 > 0 controls
the smoothness of the random field, with larger values of

θ3 corresponding to smoother fields. Here, r = ‖s − s′‖
is the distance between any two spatial locations, s and

s′. This distance can simply be calculated using Euclidean
Distance (ED) metric in small geographic areas. For more

accurate estimation in large areas, the Great-Circle Dis-

tance (GCD) metric should be more appropriate [31], [32],

hav

(
d

r

)
= hav(ϕ2 − ϕ1) + cos(ϕ1) cos(ϕ2) hav(λ2 − λ1) ,

where hav is the haversine function, hav(d) = sin2
(
d
2

)
=

1−cos(d)
2 ; d is the central angle between any two points on a

sphere, ϕ1 and ϕ2 are the latitudes in radians of locations L1

and L2, respectively, and λ1 and λ2 are longitudes.

C. Maximum Likelihood Estimation (MLE)

Statistical inference about θ is often based on the Gaussian
log-likelihood function,

�(θ) = −n

2
log(2π)− 1

2
log|Σ(θ)|−1

2
Z�Σ(θ)−1Z, (2)

where θ = (θ1, θ2, θ3) and the maximum likelihood estimator

of θ is the value θ̂ that maximizes (2).
Equation (2) usually requires the optimization of three

model parameters, i.e., variance, range, and smoothness; this

involves a large number of iterations. The above equation

can be simplified to limit the number of these iterations by

reducing the number of optimized parameters. This modifica-

tion requires the optimization of two parameters only, i.e., θ2
and θ3, and considers θ1 as a multiplicative scale parameter
that can be computed directly from the optimized parameters

θ̃ = (θ2, θ3). In this case, equation (2) can be represented as,

(3)
�(θ̃, θ1

opt) = −n

2
log(2π)− n

2
+
n

2
log(n)

− 1

2
log|Σ̃(θ)|−1

2
Z�Σ̃(θ)−1Z.

The optimized parameter θ1 can be obtained at the end of
the optimization problem with θ1

opt = 1
nZ

�Σ̃(θ)−1Z where

Σ̃ is the covariance matrix generated using θ̃.
A large-scale evaluation of MLE is a prohibitively expensive

operation due to the necessary floating-point operations and

memory. Thus, the evaluation of equation (3) is challenging

because of the linear solver and log-determinant involving the

n-by-n dense and unstructured covariance matrix Σ(θ) and
requires O(n3) floating-point operations on O(n2) memory.
In real applications, some datasets can contain millions of

locations which requires a huge memory footprint that can

reach to tens or even hundreds of terabytes. In this paper, we

give one example of a real dataset from the Middle East region

with ∼ 1M locations.

V. THE EXAGEOSTAT SOFTWARE

The EXAGEOSTAT software presents a solution for the

exascale computing used in geostatistical modeling and pre-

diction based on the Cholesky factorization to drive the max-

imum likelihood estimation (MLE). EXAGEOSTAT currently

supports three ways of doing Cholesky factorization to perform

the MLE operation, as depicted in Fig. 1(a), Fig. 1(b), and

Fig. 1(c). The factorization variant depends on the approxi-

mation type applied to the given covariance matrix, i.e., full
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(a) Full Double-Precision (DP). (b) Diagonal Super-Tile (DST). (c) Tile Low-Rank (TLR). (d) Mixed-Precision (MP).

Fig. 1: Four ways of computing the Cholesky-based MLE in EXAGEOSTAT.

double-precision dense structure, IndepeNDent blocks/Diago-

nal Super-Tile (IND/DST) structure, or Tile Low-Rank (TLR)

structure. The following subsections give a brief background

on each method.

A. Dense Tile Cholesky Factorization

Fig. 1(a) gives an example of dense computation on a tile-

based matrix. All the tiles are represented in double-precision

and a set of Level 3 BLAS routines are applied to perform the

Cholesky factorization of a given n × n symmetric, positive-
definite matrix. In this paper, we assume that the factorization

of A is presented by LL� and L is an n × n real lower

triangular matrix with positive diagonal elements.

B. Diagonal Super-Tile (DST) Cholesky Factorization

Covariance tapering is commonly used to approximate the

covariance matrix from geostatistics applications by ignoring

the correlation with the very far locations [12], [33]. In [34],

a tapering algorithm is proposed by setting the correlation

between any two far locations i and j equals to zero. This
method has been called in statistics as Independent blocks
method (IND). The blocks represent different parts of the
whole geographical area with maximum dimension equals

to the maximum distance between two correlated locations.

In [32], we have implemented the IND method by depending

on the diagonal elements where the maximum distance can be

represented by the number of in-used diagonal tiles. We have

called this implementation as the Diagonal Super-Tile (DST)
method. Fig. 1(b) gives an example of the DST method where

two diagonal tiles are represented in full precision and the

other tiles are set to zeros.

Although the IND/DST approach seems impractical in many

cases, since it ignores the existing relation between some of

the spatial locations; in some cases, an IND/DST approach can

be better than sophisticated likelihood approximation methods

such as low-rank methods [5], for instance, when observations

are dense enough and with low noise effects on the correlations

between existing spatial locations. In general, an IND/DST

approach can be used to reduce the space and computing

complexity of dense computations, as long as it achieves the

required accuracy.

C. Tile Low-Rank (TLR) Cholesky Factorization

Low-rank approximation is a common way to approxi-

mate geostatistics covariance matrices [6]. In [35], we have

leveraged EXAGEOSTAT to support Tile Low-Rank (TLR)

approximation. The TLR solution depends on exploiting the

data sparsity of the given covariance matrix by compressing

the off-diagonal tiles up to a certain accuracy level. In TLR

approximation, the diagonal tiles are kept as dense while the

Singular Value Decomposition (SVD) technique is used to

approximate the off-diagonal tiles. Each off-diagonal tile is

represented by two matrices U and V representing the most

significant k singular values and their associated left and right
singular vectors, respectively. k is the actual rank of each tile.
In general, variables ranks are expected across different matrix

tiles. In the case of low accuracy level, small ranks lead to low

memory footprint while in the case of high accuracy level,

large ranks lead to high memory footprint.

Fig. 1(c) gives an example of applying TLR to a given

covariance matrix. Each off-diagonal tile (i, j) is represented
by the product of Uij , with size k × nb and Vij with size
nb × k, where nb represents the tile size. nb should be

tuned in different hardware architectures to obtain the best

performance since it corresponds to the trade-off between

arithmetic intensity and degree of parallelism.

VI. MIXED-PRECISION CHOLESKY FACTORIZATION

The Cholesky factorization represents one of the most

time-consuming operations, when computing the likelihood

function given by equation 2. In geostatistics applications, a

double-precision arithmetic is usually required to satisfy the

desired accuracy level [32], [35]. Assuming an appropriate

ordering of the spatial locations, the covariance matrix from

those applications has the most valuable information around

the diagonal elements of the matrix. The closest locations

to a certain location are more correlated to this location,

in comparison with far locations. Thus, some methods have

proposed to ignore the relation between far locations by

ignoring their impact on the covariance matrix, i.e., set to

zero [33].

In this paper, we propose a mixed-precision Cholesky

factorization algorithm based on the tile-based Cholesky fac-

torization algorithm. This algorithm aims at keeping valuable
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Fig. 2: Unrolling the first outer loop iteration of Algorithm 1 with a 5× 5 tile matrix size and a diagonal thickness set to 2.

information around the diagonal elements by using a double

floating precision in the diagonal elements, and at the same

time, representing the off-diagonal elements in single floating

precision to accelerate the algorithm execution time while

preserving the accuracy required by the application. However,

applying a mixed floating precision is a tricky process, since

the computation of each tile depends on other tiles with

different data format representation.

To compute the Cholesky factorization of a given dense

matrix, only the upper or the lower part of the matrix is used to

store the output of the operation, i.e.,A = LL�. Our proposed
implementation uses the other part of the matrix to store the

single-precision representation of the matrix tiles, and recalls

them when needed. For the diagonal tiles, a tile vector of size

n× nb is required to store the single-precision representation
of these tiles.

VII. IMPLEMENTATION DETAILS

Algorithm 1 shows the proposed mixed-precision algorithm.

A symmetric positive-definite matrix A, and the required
accuracy level diag thick are the two required inputs to the
algorithm. The accuracy level represents the number of the

diagonal tiles that are represented as double-precision while

the remaining off-diagonal tiles are represented in single-

precision. Fig. 1(d) shows an example of a mixed-precision

data formatting with diagonal thickness = 2 while Fig. 2 gives

a step-by-step example of Algorithm 1 using a 5 × 5 matrix
and two double-precision diagonal tiles.

The algorithm begins by converting all the off-diagonal tiles

to a single-precision format using dconv2s kernel, and stores
the results to the upper triangular part of the matrix (i.e.,

assuming lower triangular Cholesky factorization is applied)

(lines 2-6). The conversion includes a transpose operation to

the selected tile (i, j). This step is also shown by Fig. 2(a). In
line 8, a double-precision Cholesky factorization is applied to

the diagonal tile (k, k) (Fig. 2(b)). This diagonal tile is used
to perform some single-precision operations on the tiles at the

same column k. Thus, a single-to-double conversion operation
sconv2d is applied to the (k, k) tile, and the output is stored
in a temporary vector tmp (line 9 and Fig. 2(c)). In lines 10-
17, trsm operation is applied to all the tiles of column k.
This operation can be a single or double-precision based on

the location of the target tile. The condition statement in line

11 is used to determine the required precision for the trsm

Algorithm 1 Mixed-precision tile Cholesky factorization

(lower triangular case)

1: Input: A symmetric positive definite matrix A, and
the accuracy level diag_thick.

2: for i=1,2,...,p do
3: for j=i+diag_thick,...,p do
4: Aji ← dlag2s(Aij)

5: end for
6: end for
7: for k=1,2,...,p do
8: Akk ← dpotrf(Akk)
9: tmp0k ← dlag2s(Akk)
10: for i=k+1,...,p do
11: if |m-k| < diag_thick then
12: Aik ← dtrsm(Akk,Aik)
13: else
14: Aki ← strsm(tmp0k,Aki)
15: Aik ← sconv2d(Aki)
16: end if
17: end for
18: for j=k+1,...,p do
19: Ajj ← dsyrk(Ajk,Ajj)
20: if |k-j| < diag_thick then
21: Akj ← dconv2s(Ajk)
22: end if
23: for i=j+1,...,r do
24: if |m-k| < diag_thick then
25: Aij ← dgemm(Aik,Ajk,Aij)
26: else
27: Aji ← sgemm(Aki,Akj,Aji)
28: end if
29: end for
30: end for
31: end for

operation. If the (i, k) tile is a diagonal tile from the definition
of the diagonal thickness, a dtrsm operation is then applied

(Fig. 2(d)), otherwise, a strsm operation is applied to the

single-precision tiles of (k, k) stored at tile (0, k) in vector
tmp and the (k, i) tile (Fig. 2 (e)). In the case of a single-
precision, the sconv2d operation should be applied to update
the value of the double tile. In line 19, a dsyrk operation is
applied to the diagonal tile (j, j) (Fig. 2 (f)). In lines 20-21,
all the double-precision tiles except the diagonal tiles (j, j)
are converted to single-precision (Fig. 2 (g)). In lines 23-29,

a dgemm operation is applied if the (i, j) tile is a double-
precision tile (Fig. 2(h)), otherwise, a sgemm operation is

applied (Fig. 2(i)).
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VIII. EXPERIMENTAL RESULTS

This section presents the evaluation of the proposed mixed-

precision versus the full double-precision Cholesky algorithm.

The evaluation involves assessing the performance of the MLE

algorithm on heterogenous shared-memory, and distributed-

memory systems. The assessment of the accuracy involves the

estimation of the MLE model parameters and the Prediction

Mean Square Error (PMSE), in the context of climate/weather

applications using both synthetic and real datasets.

A. Hardware and Software Platform

Our experiments were performed on various hardware archi-

tectures. For the shared-memory systems performance assess-

ment, we used two Intel processors, a 36-core dual-socket Intel

Haswell chip and a 56-core dual-socket Intel Skylake chip. For

the heterogeneous shared-memory (CPU/GPU) systems per-

formance assessment, we used three Intel processors equipped

with different GPUs accelerators, a 14-core dual-socket Intel

Broadwell chip equipped with a Nvidia Tesla K80 Kepler

GPU. a 18-core dual-socket Intel Haswell chip equipped with a

Nvidia Tesla P100 Pascal GPU, and a 20-core dual-socket Intel

Skylake chip equipped with a Nvidia Tesla V100 Volta GPU,

For the distributed memory assessment, we used Shaheen-II, a

Cray XC40 system with 6174 compute nodes based on dual-

socket 16-core Intel Haswell processors running at 2.3 GHz.

Each node has a 128 GB of DDR4 memory. The Shaheen-II

has a total of 790 TB of aggregate memory.

Our code was compiled with gcc v5.5.0 and linked against

the Chameleon library1 with HWLOC v1.11.8, StarPU v1.2.4,

Intel MKL 2018, GSL v2.4, CUDA v9.0, NLopt v2.4.2

optimization libraries, HDF5 v1.10.1, and NetCDF v4.5.0. Our

code will be integrated soon to the EXAGEOSTAT software2.

B. Experimental Testbed Datasets

A set of synthetic datasets and one real dataset were used to

evaluate the proposed algorithm. In the ensuing subsections,

we provide more details about these datasets.

1) Synthetic Datasets: EXAGEOSTAT provides an internal
data generator to simulate synthetic geostatistical data, based

on the Matérn covariance function. The synthetic data gen-

eration process includes two main operations. First, a set of

random 2D irregular spatial locations were generated between

]0, 1[. Second, an initial parameter vector θ0 was used to

generate a set of Z measurement vectors associated with the

generated locations. More details on the EXAGEOSTAT data

generator tool can be found in [32].

2) Real Dataset: we also selected a real geostatistical

dataset, the wind speed dataset, coming from the Middle East

region to assess our proposed algorithm. Wind speed is a result

of changing temperature through the air. The movements of the

air from high-pressure to low-pressure layers, or vice versa,

impact on the wind speed measurements. The importance of

wind speed, as one of the weather components, comes from

1https://gitlab.inria.fr/solverstack/chameleon
2https://github.com/ecrc/exageostat

Fig. 3: An example of climate/weather geostatistics real data

from the Middle East (wind speed data).

the fact that it generally affects different activities related

to both air and maritime transportation. Additionally, various

construction activities from airports to small houses can be

impacted by the speed and direction of the wind.

The target dataset was generated using WRF (WRF-ARW)

software [36]. The dataset was generated over the Arabian

Peninsula in the Middle-East region. Daily data are available

for over 37 years; Each data file represents 24 hours measure-

ments of wind speed recorded hourly on 17 different layers.

In our case, we picked up one dataset on September 1st, 2017

at time 00:00 AM on a 10-meter distance above the ground

(i.e., layer 0). No special restriction is applied to the chosen

data. We only select an example to show the effectiveness of

our proposed mixed-precision method, but may easily consider

extending the datasets.

Fig. 3 shows the wind speed data where the locations

were divided into four subregions (i.e., 1, 2, 3, and 4). Each

region has approximately 250K locations. We choose to divide

the dataset into four regions to avoid the non-stationarity

exhibition, and to provide four different regions to properly

assess the accuracy of our method using different model

parameters.

C. Mixed Precision MLE Performance Evaluation

In this section, we provide a set of experiments to evaluate

the performance of the proposed mixed-precision, in compar-

ison with the full double-precision Cholesky algorithm in the

context of the MLE operation. We report the results on het-

erogenous shared-memory, and distributed-memory systems.

The reported time is the average time of one evaluation of

the likelihood function. All the plots display how the pro-

posed mixed-precision algorithm outperforms the full double-

precision algorithm on different architectures. All figures use

different variants of the MLE algorithm. Here, we use DP
to represent the pure double-precision arithmetic method,

and DP(x%)-SP(y%) to represent the mixed-precision method
where x% represents the amount of the diagonal tiles that

manipulates double-precision and y% is the amount of the

off-diagonal tiles that operates on single-precision.

1) Homogeneous Shared-Memory Architectures: we per-
formed the performance analysis of the mixed-precision MLE

method on two recent Intel shared-memory architectures, Intel
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(a) Intel Haswell (36-core).

(b) Intel Skylake (56-core).

Fig. 4: Execution time per iteration on Intel shared-memory

architectures.

Haswell and Intel Skylake processors, over different problem

size up to ∼ 134K spatial locations as shown in Fig. 4. The

x-axis represents the number of spatial locations n, and the y-
axis represents the execution time per iteration in seconds.

We reported the execution time to show the performance

improvement accomplished by the mixed-precision method.

Fig. 4(a) shows the average execution time on a 36-

core Intel Haswell processor for different mixed-precision

configurations. As shown, the elapsed time for the mixed-

precision method with different accuracy levels outperforms

the DP(100%) variant. The average obtained speedup of using
DP(10%)-SP(90%) variant compared to DP(100%) across
different n sizes is about 1.71X . This speedup decreases when
the number of diagonal DP tiles increases, i.e., the increase of
the DP diagonal tiles, and the decrease of the SP off-diagonal
tiles. The same observation can be made for the Intel Skylake

processor in Fig. 4(b) where the average speedup of DP(10%)-
SP(90%) variant compared to the DP(100%) is about 1.84X .
In general, it is utmost importance to tune the tile size nb for
achieving high performance when running in mixed-precision

or full accuracy mode. For both processors, we have used

nb = 960 to achieve the best performance.

Obviously, from the two figures, the average execution

time has an inverse proportion with the obtained accuracy

at the end. This behavior is expected since using more

single-precision tiles should reduce the execution time and

at same the time should decrease the estimation accuracy.

In section VIII-D, we performed a set of experiments on

synthetic datasets and real datasets to show the estimation and

the prediction accuracy difference between different mixed-

precision variants and the double-precision method.

2) Heterogeneous Shared-Memory Architectures: we esti-
mated the average execution time of the likelihood evaluation

function, using shared-memory systems equipped with GPU

accelerators. The overall execution time on CPU/GPU systems

involving both the computation time and the data movement

time from the CPU memory to the GPU memory or vice versa.

Thus, in our study, we estimated the total execution time and

the required data movement for both the double-precision and

mixed-precision methods.

Fig. 5(a) shows the total execution time, using an Intel

Broadwell equipped with a Tesla K80 Kepler GPU. The aver-

age speedup that we obtained by the mixed-precision variant

DP(10%)-SP(90%) was 1.74X with upto ∼ 96K spatial

locations. The cost of data movement for each mixed-precision

variant and for each n, in comparison with, the DP arithmetic
method, are also shown in Fig. 5(a). The DP(10%)-SP(90%)
can reduce the data movement amount upto 50% compared to

the DP(100%) variant. For example, with n = 96K the data

movement cost of the DP(10%)-SP(90%) variant is 1562.07
GB while the DP(100%) variant requires about 3032.73 GB.
In Fig. 5(b), the obtained speedup by the DP(10%)-SP(90%)
variant is 2.18X in average compared to the DP(100%) variant
using an Intel Haswell equipped with a Tesla P100 Pascal

GPU. We found that the difference of data movement between

the two variants could reach up to 40%. In Fig. 5(c), the
speedup reached 1.82X whereas the data movement were

reduced to as much as 60% of the DP(100%) variant using an
Intel Skylake equipped with a Tesla V100 Volta GPU.

In practice, StarPU moves data around much more than

expected, due to its aggressive perfecting strategy. Reducing

the data transfer amounts between the GPU memory and

CPU memory reduces the data communication overhead and

increases the overall obtained speedup which can reach more

than 2X in some cases.

3) Distributed-Memory Systems: we present the perfor-

mance analysis of the proposed mixed-precision computation

on the distributed-memory Shaheen-II Cray XC40 system

using a different number of nodes, 64, 128, 256, and 512

(i.e., up to 16384 cores). Fig. 6(a) and Fig. 6(b) show the

execution time of different mixed-precision variant compare to

the double-precision method. The figures show a speedup upto

1.61X and 1.45X when using 64 and 128 nodes. Moreover,

Fig. 6(c) shows the scalability with different number of nodes,

128, 256, and 512. As also shown in Fig. 6(a) and Fig. 6(b),

the mixed-precision method shows a linear scaling behavior

with different numbers of nodes, and the gained up speedup

for 256, and 512 nodes can reach 1.48X and 1.27X , using
the mixed-precision method.
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(a) Intel Broadwell w/ K80 GPU. (b) Intel Haswell w/ P100 GPU. (c) Intel Skylake w/ V100 GPU.

Fig. 5: Time and data movement cost per iteration on shared-memory architectures equipped with GPUs.

(a) 64 Nodes. (b) 128 Nodes. (c) Scalability with different # of nodes.

Fig. 6: Execution time per iteration on different number of nodes on Shaheen-II (Cray XC40).

D. MLE Statistical Parameters Estimation/Predictions Accu-
racy

The experiments in the previous subsection were geared

towards the performance evaluation across different hardware

architectures. Here, we aim to evaluate the effectiveness of our

proposed mixed-precision method for the MLE calculations in

terms of parameter vector estimation accuracy and prediction

error compared to the DP arithmetic method. To do so, we

used both synthetic and real datasets to evaluate the accuracy

and to show the effectiveness of the mixed-precision method.

1) Synthetic Datasets: The MLE operation involves esti-
mating the model parameter vector θ̂ = (θ1, θ2, θ3) for
the underlying data and uses these estimated parameters to

predict missing values at other known spatial locations. We

performed a set of experiments to evaluate the accuracy of our

proposed mixed-precision method for the MLE calculations,

based on Monte Carlo simulations. The simulations required

the availability of synthetic spatial datasets with different

properties to cover different cases that are expected to exist

in real data. For instance, θ2, which represents the correlation
degree between the given spatial locations, could be weak,

medium, or strong. Thus, accuracy verification should involve

datasets with different correlation degrees to properly evaluate

the proposed MLE computation method.

Recalling section VIII-B1, EXAGEOSTAT the data generator

is used to generate a set of 2D locations with a set of

associated Z measurement vectors. We produced a set of 40K
synthetic datasets that represents the three correlation levels,

the weak correlation (θ2 = 0.03), the medium (θ2 = 0.1),
and the strong (θ2 = 0.3) correlation levels. For each case,
we generated 100 different spatial data (i.e., locations and

measurements). We used the DP method, five levels for mixed-

precision method, i.e, DP(10%)-SP(90%), DP(20%)-SP(80%),
DP(40%)-SP(60%), DP(70%)-SP(30%), DP(90%)-SP(100%),
and two levels of the DST method, i.e., DP(70%)-Zero(30%)
and DP(90%)-Zero(10%), for accuracy comparison. We have
ignored the SP(100%) variant because most of the interactions

are captured within the vicinity of the diagonal tiles. Therefore,

it is critical to ensure high precision computations (i.e. double-

precision) around the diagonal tiles. If single-precision is used

instead, the covariance matrix may lose the numerical prop-

erty of positive definiteness, and the MLE procedure cannot

proceed. We also ignores comparisons against TLR because

it out of the scope of this paper and it requires a thorough

analysis, since it may yield poor results when nuggets (noise)

are relatively small and observations are mostly dense [5].

Different computation methods were used to estimate the

model parameter vector in order to show that the estimated

parameter vector θ̂ was consistent with the initial parameter
vector θ0 that had been used to generate the spatial data.
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θ θ θ

(a) Weak correlation (θ2 = 0.03).

θ θ θ

(b) Medium correlation (θ2 = 0.01).

θ θ θ

(c) Strong correlation (θ2 = 0.30).

Fig. 7: Parameters estimation boxplots of 40K synthetic datasets using DP, DP(x%)-SP(y%), and DST MLE algorithm. True
values of the parameters are represented by red dotted line when estimating the parameter vector.

Fig. 7 shows the estimation accuracy results for the 40K

synthetic datasets. The boxplots report the results for 100

different datasets for each correlation case. The experiment

involved an estimation of the accuracy of the model parameters

for weak, medium, or strong correlations (Fig. 7(a), Fig. 7(b),

and Fig. 7(c), respectively) The Prediction Mean Square Error

(PMSE) is also shown for each correlation case.

As shown in Fig. 7(a), weak correlated data, i.e., θ2 = 0.03,
required a minimum number of diagonal full-precision tiles,

i.e., DP(10%)-SP(90%), to correctly estimate the parameter
vector. At the same time, the DST method required at least

90% of the tiles to properly estimate the parameter vector.

Fig. 7(b) shows the estimated parameter vector accuracy with

medium correlated data, i.e., θ2 = 0.01. Compared to the
weakly correlated, the mixed-precision method is less accurate

but is still close to the correct values, whereas the DST

method fails to estimate the accurate parameters with both

used variants. Fig. 7(c) is related to strongly correlated data,

i.e., θ2 = 0.3. More accuracy is lost when a mixed-precision is
used but it is still acceptable, compared with the DST method.

These results were expected, because of the tight fit between

the spatial data correlation strength and the amount of numeric

loss in both mixed-precision and DST methods. A higher

correlation strength requires a more accurate representation

of the spatial covariance matrix.

2) Real Dataset: The estimation operations requires several
likelihood function evaluation. Assuming 10−3 optimization
tolerance, we estimate the average number of iterations that

requires by each computation variant to convergence. Results

showed that high correlated data required more iterations,

for both mixed-precision and DST methods, compared with

the DP method. Thus, in some cases, the total execution

time of the MLE operation using the mixed-precision method

exceeded the total time required by the DP arithmetic method.

However, the average number of iterations decreased with

fewer correlated data.

The PMSE boxplots for three correlation level are shown in

Fig. 8. As shown, for our three cases, i.e., strong, medium, and

weak correlation, the mixed-precision method has a prediction

accuracy close to the DP arithmetic method even with the

lowest accurate computation variant, i.e., DP(10%)-SP(90%).
However, the DST method only performs well when repre-
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(a) Weak correlation (θ2 = 0.03). (b) Medium correlation (θ2 = 0.01). (c) Strong correlation (θ2 = 0.30).

Fig. 8: Prediction Mean Square Error (PMSE) boxplots using k-fold cross-validation technique, where k = 10, of 40K synthetic
datasets using DP, DP(x%)-SP(y%), and DST MLE algorithm.

TABLE I: The Matérn covariance parameters estimation and the Prediction Mean Square Error (PMSE) using k-fold cross-
validation technique, where k = 10, for 4 geographical regions of wind speed dataset.

Matérn Covariance

R Variance (θ1) Spatial Range (θ2) Smoothness (θ3) Prediction Accuracy (PMSE)

mixed-precision DST mixed-precision DST mixed-precision DST mixed-precision DST

(DP/SP) (DP/Zero) (DP/SP) (DP/Zero) (DP/SP) (DP/Zero) (DP/SP) (DP/Zero)

DP 10/90 40/60 90/10 70/30 90/10 DP 10/90 40/60 90/10 70/30 90/10 DP 10/90 40/60 90/10 70/30 90/10 DP 10/90 40/60 90/10 70/30 90/10

R1 8.721 8.695 8.724 8.721 1.115 8.721 32.104 31.986 32.104 32.113 9.990 32.104 1.208 1.210 1.208 1.208 0.983 1.208 0.0361 0.0366 0.0366 0.0361 0.0747 0.0366

R2 12.533 12.548 12.535 12.533 1.589 12.533 27.603 27.640 27.599 27.603 9.990 27.603 1.270 1.269 1.270 1.270 0.970 1.270 0.0571 0.0574 0.0571 0.0571 0.0912 0.0571

R3 10.813 10.870 10.813 10.812 1.230 10.813 19.196 19.241 19.188 19.195 13.880 19.196 1.417 1.417 1.417 1.417 0.538 1.417 0.0612 0.0614 0.0612 0.0606 0.1026 0.0612

R4 12.441 12.440 12.402 12.439 2.452 12.441 19.733 19.732 19.682 19.733 9.990 19.734 1.119 1.119 1.120 1.119 0.875 1.119 0.2098 0.2100 0.2097 0.2098 0.6290 0.0678

senting 90% of the tiles in DP representation. We also found

the high correlated data to be helpful, in general, to accurately

predict missing measurements, but that the accuracy decreased

with fewer correlated data.
We validated the accuracy of the proposed mixed-precision

method, using the wind dataset. We divided it into four

subregions (i.e., 1, 2, 3, and 4) to give more examples to

validate our accuracy. Each region has approximately 250K
locations. Table I reports the complete results of the estimation

accuracy besides the prediction error of each computation

variant of DP, mixed-precision, and DST methods. The predic-

tion was estimated using the k-fold cross-validation technique,

for k=10, to validate the prediction accuracy using different

synthetic dataset sizes. The total number of missing values

equals to n=k (i.e., subsample size).
Results showed that, across all the regions, all the mixed-

precision variants achieved high accuracy estimation lev-

els, equal or at least very close to the estimation achieved

by the DP arithmetic method. For the DST method, only

DP(90%)/Zero(10%) correctly estimated the parameters of
the model. Accordingly, the prediction accuracy of all mixed
precision variants were close to the DP prediction accuracy,
whereas only DST (DP90%)/Zero(10%) could reach the same
prediction accuracy level for all the regions. We also observed

that with highly correlated data (i.e., Region 1 and 2), the

mixed-precision method required a larger number of itera-

tions to reach convergence, compared with the DP arithmetic

method. This number of iterations decreased with the usage

of more DP tiles in the diagonal. With fewer correlated data

(i.e., regions 3, and 4), the number of iterations was almost

the same as the DP arithmetic method.

IX. CONCLUSION AND FUTURE WORK

Maximum Likelihood Evaluation (MLE) can be used to

build a statistical model of a given set of spatial locations and

observations, by estimating the more accurate model parameter

values that maximize the likelihood that the given observations

come from a distribution with these parameter values. In Geo-

statistics applications, the MLE operation involves building a

covariance matrix which requires O(n3) floating point opera-
tors and an O(n2) memory space to be handled in dense for-
mat. The Cholesky factorization is the most time-consuming

operation in MLE computation. Thus, reducing the complexity

of performing it is a necessity to speedup the whole operation

especially in large-scale executions. This paper highlights a

novel mixed-precision approach for the Cholesky factorization

algorithm. The application covariance matrix is built in order

for double-precision and single-precision arithmetics to be

applied to diagonal tiles and off-diagonal-tiles, respectively.

The new implementation provided up to 1.6X performance

speedup on massively parallel architectures while maintaining

the accuracy necessary for modeling and prediction.

In the paper, we propose an empirical approach and en-

sure numerical accuracy since the computed ratio of DP/SP

is application-dependent. In future work, a more systematic

approach can take into account the distance between locations

and switch to lower precision beyond a certain distance thresh-

old. We also plan to extend the proposed mixed-precision

approach to have three precision layers, i.e., half-precision,

single-precision, and double-precision. In this case, we will

gain more speedup by ignoring the accuracy in the very far

off-diagonal tiles and, hopefully, keep the required accuracy.
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