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Abstract

We present a preconditioned Monte Carlo method for computing high-dimensional multi-

variate normal and Student-t probabilities arising in spatial statistics. The approach combines

a tile-low-rank representation of covariance matrices with a block-reordering scheme for effi-

cient Quasi-Monte Carlo simulation. The tile-low-rank representation decomposes the high-

dimensional problem into many diagonal-block-size problems and low-rank connections. The

block-reordering scheme reorders between and within the diagonal blocks to reduce the impact

of integration variables from right to left, thus improving the Monte Carlo convergence rate.

Simulations up to dimension 65,536 suggest that the new method can improve the run time

by an order of magnitude compared with the non-reordered tile-low-rank Quasi-Monte Carlo

method and two orders of magnitude compared with the dense Quasi-Monte Carlo method. Our

method also forms a strong substitute for the approximate conditioning methods as a more robust

estimation with error guarantees. An application study is provided to illustrate that the new

computational method makes the maximum likelihood estimation feasible for high-dimensional

skew-normal random fields.
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1 Introduction

Data used for spatial statistical modeling usually display a certain degree of skewness and

heavy-tailedness (e.g., Kim et al. (2004)), for which there is comprehensive literature about

skew-elliptical distributions (Genton, 2004; Azzalini and Capitanio, 2014). The majority of such

constructed distributions can be written as selection distributions (Arellano-Valle et al., 2006),

where the latent conditioning random vector, U, belongs to a fixed set C. Therefore the prob-

ability density function of the observed random vector, V, involves P (U ∈ C|V = v), which is

difficult to evaluate in high dimensions. The common choice for the density generating function

of (UT ,VT )T often corresponds to the multivariate normal (MVN) distribution or the multivari-

ate Student-t (MVT) distribution. This paper proposes a method to compute the multivariate

normal and Student-t probabilities in high dimensions that utilizes the low-rank feature of the

spatial covariance matrix and a block-reordering scheme to increase the convergence rate.

Genton et al. (2018) improved the efficiency for computing the MVN probabilities in high

dimensions by utilizing hierarchical matrices (Hackbusch, 2015) and proper Quasi-Monte Carlo

(QMC) rules. Run times can be reduced by a factor of more than 20 for dimensions larger than

104. Cao et al. (2019) combined the hierarchical technique with the conditioning method from

Trinh and Genz (2015), which further improved the efficiency by a factor of 10 to 15 but the

method introduces approximations which do not provide error estimation. In fact, the univariate

conditioning method corresponds to the QMC method with a size-one sampling rule computed

at run time. In this paper, we further develop the QMC methods, seeking to reduce the needed

QMC sample size through the block-reordering scheme introduced in Cao et al. (2019).

The prevalent algorithm for computing the MVN probabilities is based on the separation-

of-variable (SOV) technique (Genz, 1992), which converts the integration region to the unit

hypercube. The counterpart for MVT probabilities was later proposed in Genz and Bretz (1999)

built on the definition in Equation (3) below. However, this MVT counterpart is less efficient

due to the lack of optimized libraries for computing the univariate Student-t probabilities and
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quantiles similar to those available for computing MVN probabilities and quantiles. Genz and

Bretz (2002) provided a second algorithm for computing MVT probabilities, considering the n-

dimensional MVT probability as a scale-mixture of n-dimensional MVN probabilities, shown in

Equation (4a), based on which the MVT probabilities are computed as efficiently as the MVN

probabilities. In this paper, we develop the low-rank versions of the QMC methods for MVT

probabilities.

The remainder of this paper is structured as follows. In section 2, we introduce the SOV

technique for MVN and MVT problems and describe dense QMC algorithms for both probabili-

ties. In section 3, we compare two integration-oriented reordering schemes and study the impact

on the ranks resulting from the block reordering scheme, which leads to the tile-low-rank (TLR,

or block-low-rank) version of the QMC algorithms. In section 4, we compare the dense QMC

method, the TLR QMC method, and the preconditioned TLR QMC method with a focus on

high-dimensional MVN and MVT probabilities. In section 5, we estimate the parameters for

simulated high-dimensional skew-normal random fields as well as fit the skew-normal model to

a large wind speed dataset of Saudi Arabia as examples where the methods developed in this

paper can be applied. Section 6 concludes the paper.

2 SOV for MVN and MVT Probabilities

The SOV technique transforms the integration region into the unit hypercube, where efficient

QMC rules can improve the convergence rate. The SOV of MVN probabilities is based on the

Cholesky factor of the covariance matrix (Genz, 1992) and this naturally leads to the second form

of SOV for MVT probabilities (Genz and Bretz, 2002). The two forms of the MVT probabilities

have been derived in Genz (1992) and Genz and Bretz (2002). In this paper, we summarize the

derivations for completeness and clarification of notations.
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2.1 SOV for MVN integrations

We denote an n-dimensional MVN probability with Φn(a,b;µ,Σ), where (a,b) defines a

hyperrectangle-shaped integration region, µ is the mean vector, and Σ is the covariance ma-

trix. The MVN probability has the form:

Φn(a,b;µ,Σ) =

∫ b−µ

a−µ

1√
(2π)n|Σ|

exp

(
−1

2
xTΣ−1x

)
dx. (1)

Without loss of generality, we set µ = 0 and denote the n-dimensional MVN probability with

Φn(a,b; Σ). We use C to represent the lower Cholesky factor of Σ and cij to represent the

element on the i-th row and j-th column of C. Following the procedure in Genz (1992), we can

transform Φn(a,b; Σ) into:

Φn(a,b; Σ) = (e1 − d1)

∫ 1

0

(e2 − d2) · · ·
∫ 1

0

(en − dn)

∫ 1

0

dw, (2)

where di = Φ{(ai −
∑i−1

j=1 cijyj)/cii}, ei = Φ{(bi −
∑i−1

j=1 cijyj)/cii}, yj = Φ−1{dj + wj(ej − dj)},

and Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution.

The integration region is transformed into [0, 1]n and efficient sampling rules can be applied to

simulate w, although the integrand is difficult to compute in parallel because di and ei depend on

{yj, j = 1, . . . , i−1} while yi depends on di and ei. Only univariate standard normal probabilities

and quantile functions are needed, which can be readily obtained with the high efficiency of

scientific computing libraries, for example, the Intel MKL. The Cholesky factorization has a

complexity of O(n3) but modern CPUs and libraries have been developed to handle matrices

with more than 10,000 dimensions with ease.

We use ‘mvn’ to denote the integrand function of Equation (2), whose pseudocode was orig-

inally proposed in Genz (1992). Because the ‘mvn’ function is also the subroutine in other

functions of this paper, we summarize it here in algorithm 2.1a. The algorithm returns P , the

probability estimate from one sample and y whose coefficients are described in Equation (2).

Keeping a, b, and C unchanged, the mean and standard deviation of the outputs P from a
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Algorithm 2.1a QMC for MVN probabilities

1: mvn(C, a,b,w)
2: n← dim(C), s← 0, y← 0, and P ← 1
3: for i = 1 : n do
4: if i > 1 then
5: s← C(i, 1 : i− 1)y(1 : i− 1)
6: end if
7: a′ ← ai−s

Ci,i
, and b′ ← bi−s

Ci,i

8: yi ← Φ−1[wi{Φ(b′)− Φ(a′)}]
9: P ← P · {Φ(b′)− Φ(a′)}

10: end forreturn P and y

set of well designed w, usually conforming to a Quasi-Monte Carlo rule, form the probability

and error estimates. In our implementation, we employ the Richtmyer Quasi-Monte Carlo rule

(Richtmyer, 1951), where the batch number is usually much smaller than the batch size.

2.2 SOV for MVT integrations

We denote an n-dimensional MVT probability with Tn(a,b;µ,Σ, ν), where ν is the degrees of

freedom. Here, µ and Σ have the same meanings as in the MVN probability. To simplify the

notations, µ is again assumed to be 0. There are two common equivalent definitions for Tn, of

which the first one is:

Tn(a,b; Σ, ν) =
Γ(ν+n

2
)

Γ(ν
2
)
√
|Σ|(νπ)n

∫ b1

a1

· · ·
∫ bn

an

(
1 +

xTΣ−1x

ν

)− ν+n
2

dx, (3)

where Γ(·) is the gamma function. Based on this definition, Genz and Bretz (1999) transformed

the integration into the n-dimensional hypercube, where the inner integration limits depend on

the outer integration variables. However, the integration needs to compute the cdf and the

quantile function of the univariate Student-t distribution at each integration variable. A second

equivalent form defines Tn as a scale mixture of the MVN probability, specifically:

Tn(a,b; Σ, ν) =
21− ν

2

Γ(ν
2
)

∫ ∞
0

sν−1e−s
2/2Φn

(
sa√
ν
,
sb√
ν

; Σ

)
ds, (4a)

= E

[
Φn

(
Sa√
ν
,
Sb√
ν

; Σ

)]
. (4b)

4



The density of a χ-distribution random variable, S, with degrees of freedom ν, is exactly

21−
ν
2

Γ( ν
2

)
sν−1e−s

2/2, s > 0. Thus, Tn(a,b; Σ, ν) can be also written as Equation (4b). The inte-

grand boils down to the MVN probability discussed in the previous section. Hence, we can apply

a Quasi-Monte Carlo rule in the (n+ 1)-dimensional hypercube to approximate this expectation,

where only the cdf and the quantile function of the univariate standard normal distribution are

involved. It is worth pointing out that considering Tn as a one-dimensional integration of Φn and

applying quadrature is much more expensive than integrating directly in (n+ 1) dimensions.

We describe the integrand functions based on the two SOV schemes in algorithm 2.2a and

algorithm 2.2b, corresponding to Equation (3) and Equation (4a), respectively. Algorithm 2.2a

Algorithm 2.2a QMC for MVT probabilities based on Equation (3)

1: mvt(C, a,b, ν,w)
2: n← dim(C), s← 0, ssq ← 0, y← 0, and P ← 1
3: for i = 1 : n do
4: if i > 1 then
5: s← C(i, 1 : i− 1)y(1 : i− 1)
6: end if
7: a′ ← ai−s

Ci,i·
√
ν+ssq·(ν+i)

and b′ ← bi−s
Ci,i·

√
ν+ssq·(ν+i)

8: yi ← T−1
ν+i [wi {Tν+i(b

′)− Tν+i(a
′)}+ Tν+i(a

′)] ·
√

ν+ssq
ν+i

9: P ← P · {Tν+i(b
′)− Tν+i(a

′)}
10: ssq ← ssq + y2

i

11: end forreturn P

Algorithm 2.2b QMC for MVT probabilities based on Equation (4a)

1: mvt(C, a,b, ν, w0,w)

2: a′ ← χ−1
ν (w0)√

ν
a, b′ ← χ−1

ν (w0)√
ν

b return mvn(C, a′,b′,w)

calls the univariate Student-t cdf and the quantile function with an increasing value of degrees of

freedom at each iteration whereas algorithm 2.2b relies on (w0,w) from an (n + 1)-dimensional

Quasi-Monte Carlo rule and calls the ‘mvn’ kernel from algorithm 2.1a with the scaled inte-

gration limits. We use single-quoted ‘mvn’ and ‘mvt’ to denote the corresponding algorithms to

distinguish them from the uppercase MVN and MVT used for multivariate normal and Student-t

in this paper.
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Table 1: Relative error and time of the three algorithms. ‘mvt 1’, ‘mvt 2’, and ‘mvn’ refer to
algorithm 2.2a, algorithm 2.2b, and algorithm 2.1a. The covariance matrix is generated from
a 2D exponential model, exp(−‖h‖/β), where β = 0.1, based on n random points in the unit
square. The lower integration limits are fixed at −∞ and the upper limits are generated from
N(µu, 1.5

2), where µu = max(4,min(7, log4 n)). ν is set as 10 for the ‘mvt’ algorithms. The
upper row is the average relative estimation error and the lower row is the average computation
time over 20 iterations. All three algorithms have the same sample size of N = 104.

n 16 64 256 1,024 4,096

mvt 1
0.2%
0.6s

1.2%
2.6s

8.6%
10.9s

9.2%
46.1s

5.8%
223.1s

mvt 2
0.0%
0.0s

0.4%
0.0s

2.8%
0.2s

2.9%
2.2s

1.5%
32.8s

mvn
0.0%
0.0s

0.3%
0.0s

2.9%
0.2s

2.7%
2.1s

1.7%
37.6s

A numerical comparison between algorithm 2.2a and algorithm 2.2b is shown in table 1.

The counterpart for MVN probabilities (algorithm 2.1a) is included as a benchmark. The table

indicates that the first definition as in Equation (3) leads to an implementation slower by one

order of magnitude. Additionally, the convergence rate from Equation (3) is also worse than that

from Equation (4a). Although the univariate Student-t cdf and quantile function are computed

the same number of times as their standard normal counterparts, their computation takes much

more time and probably produces lower accuracy due to the lack of optimized libraries. It is

also worth noting that the change of the relative error horizontally in table 1 is affected by

the changing true probability across the cells. Due to its performance advantage, we refer to

algorithm 2.2b as the ‘mvt’ algorithm from this point on. It has negligible marginal complexity

over the ‘mvn’ algorithm since the only additional step is scaling the integration limits. In

fact, its time efficiency is even improved over the ‘mvn’ algorithm because of the scaling of the

integration limits.
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Figure 1: Structures of hierarchical (left) and tile-low-rank (right) matrices.

3 Low-rank Representation and Reordering for MVN

and MVT Probabilities

3.1 Overview

For high-dimensional problems, Monte Carlo and quasi Monte Carlo methods are the only prac-

tical methods for computing the integrations of Equation (1) and Equation (3) in a general

setting. The cost of these computations depends on the product of the number of Monte Carlo

samples, N , needed to achieve a desired accuracy and the cost per Monte Carlo sample. Using

the standard dense representation of covariance, the computational complexity for each Monte

Carlo sample is O(n2) as can be seen in algorithm 2.1a and algorithm 2.2b. In contrast, the use

of hierarchical covariance representations as shown in fig. 1 allows this complexity to be reduced

to O(kn log n) (Genton et al., 2018) where k is a nominal local rank of the matrix blocks and n

the overall problem dimension. Using nested bases in the hierarchical representation Boukaram

et al. (2019), it is possible to reduce this cost further to an asymptotically optimal O(kn).

Small local ranks k in the hierarchical representation depend on the separability of the under-

lying geometry and are directly affected by the ordering of the underlying point set. When the

row cluster and the column cluster of an off-diagonal matrix block are well separated spatially,

the ranks of these blocks tend to be rather small, growing very weakly with the problem dimen-

sion n. When the geometry is a subset of R2 or R3, a space-filling curve or a spatial partitioning
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method in combination with a space-filling curve may be used for indexing to keep the index

distances reasonably consistent with the spatial distances. The point set is then further divided

into blocks (clusters) according to these indices to build the hierarchical representation.

The optimal ordering for reducing the cost per Monte Carlo sample however is unfortunately

generally not the optimal ordering for reducing the total number of samples N . A proper reorder-

ing scheme that takes into account the widths of the integration limits of the MVN and MVT

probabilities can have a substantial effect on reducing the variance of the estimates, making the

numerical methods far more effective relative to a default ordering Schervish (1984); Genz and

Bretz (2009). Trinh and Genz (2015) analyzed ordrering heuristics and found that a univariate

reordering scheme, that sorts the variables so that the outermost integration variables have the

smallest expected values, significantly increased the estimation accuracy. This heuristic was more

effective overall than more expensive bivariate reordering schemes that might further reduce the

number of samples needed. In Cao et al. (2019), a block reordering scheme was proposed with

the hierarchical matrix representations used in high dimensions. Specifically, within each diag-

onal block Bi, univariate reordering was applied and the blocks were reordered based on their

estimated probabilities using this univariate reordering scheme.

The important point here is that these reordering schemes shuffle the variables based on their

integration limits to achieve better convergence for the integration, measured by the number of

samples needed. They produce different orders from the geometry-oriented ordering obtained by

spatial partitioning methods or space-filling curves. The reordering increases the local ranks k

of the hierarchical representation making the per-sample computation more expensive.

In this paper, we seek a better middle ground between the geometry-oriented and the

integration-oriented orderings by combining a block reordering scheme with the tile-low-rank

representation of covariance illustrated in fig. 1. We also introduce the TLR versions of the

QMC algorithms for computing MVN and MVT probabilities.
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(b) n=65,536
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1

Figure 2: Increase in local rank and memory footprint of the Cholesky factor of a hierarchical
matrix due to integration-oriented ordering. In each subfigure, the left panel is under Morton
order while the right panel is under the block reordering. The diagonal block size is

√
n. The

storage cost for the lower triangular part of the Cholesky factor is marked in each subfigure. The
color for each block is coded by the logarithm of the rank-to-block-size ratio, linearly transformed
into (0, 1).

3.2 TLR as a practical representation for MVN and MVT

To show the effect of rank increase due to re-ordering, we consider an MVN computation experi-

ment. We use Morton order (Samet, 1990) as the geometry-oriented ordering scheme for building

an initial hierarchical covariance matrix, and examine the rank change under the integration-

oriented block ordering scheme proposed in (Cao et al., 2019) for MVN probabilities using ran-

domly generated integration limits. The reordering for MVT problems shares the same principle.

Specifically, because the expectation of S from Equation (4a) is
√

2Γ{(ν + 1)/2}/Γ(ν/2), con-

verging to
√
ν quickly as ν increases, Genz and Bretz (2002) proposed substituting S with

√
ν

and the reordering becomes exactly the same as that for the MVN probability.

The matrices in this experiment for two different problem sizes are shown in fig. 2. The

matrices are Cholesky factors of the covariance matrices built with the 2D exponential covariance

model, exp(−‖h‖/β), β = 0.3, based on a perturbed grid in the unit square as described in

section 5.2 and the rank of each block is defined as the number of singular values above an

absolute threshold of 10−2.

Figure 2 shows the change in storage costs (indicative of rank increase) introduced to the

hierarchical structure with a weak admissibility condition by the block reordering scheme. In the
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weak admissibility hierarchical structure, every off-diagonal block touching the main diagonal is

represented as UVT , where U and V are thin matrices. This representation is beneficial only if

the ranks of the blocks are small. However, in practice, the ranks can grow substantially when

the underlying geometry is arbitrarily reordered without taking into account spatial proximity.

To illustrate the rank change, we list the memory costs and color-code the rank-to-block-size

ratio under both a spatially-aware Morton order and random block reordering scheme in fig. 2.

We now compare the rank change caused by changing the ordering from the spatially-oriented

strategy to an integration-oriented strategy in the TLR representation. fig. 3 shows the effect

of reordering on the TLR Cholesky factor. The average rank of the off-diagonal blocks in the

34.53 MB 167.58 MB 42.1 MB 26.54 MB

0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1

(a) n=16,384

232.01 MB 1468.18 MB 359.57 MB 203.13 MB

0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1

(b) n=65,536

34.53 MB 167.58 MB 42.1 MB 26.54 MB

0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1

Figure 3: Change in local rank and memory footprint of the Cholesky factor of TLR matrix due
to integration-oriented ordering. In each subfigure, the left panel is under Morton order while
the right panel is under the block reordering. The diagonal block size is

√
n. The storage cost for

the lower triangular part of the Cholesky factor is marked in each subfigure. The color for each
block is coded by the logarithm of the rank-to-block-size ratio, linearly transformed into (0, 1).

TLR structure even decreased when applying the block reordering scheme, which shuffles the

diagonal blocks. This is because the block reordering scheme only shuffles the off-diagonal blocks

and does not affect the overall low-rank feature of the TLR covariance matrix. Additionally, if

we remove the first i rows and columns of a Cholesky factor, it becomes the Cholesky factor of

the Schur complement (Zhang, 2006) of the bottom-right block of the covariance matrix, which

is also the covariance matrix for the (i + 1)-th to the n-th variables, conditional on the first to

the i-th variables. Under Morton order, the indices usually begin at the corner of the geometry

and slowly moves into the center while under the block reordering scheme, blocks of variables
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more centered in the geometry are likely to have smaller indices. If we condition on the first

i variables and examine the overall correlation among the other (n − i) variables, it is smaller

if the first i variables are more centered. Hence, the overall magnitudes of the entries of the

TLR Cholesky factor are smaller under the block reordering scheme. When two TLR matrices

have similar low-rank behavior with singular values decrease equally fast, the one with smaller

magnitude entries has lower ranks overall if truncated to an absolute accuracy level. Therefore,

the TLR structure creates a synergy with the block reordering scheme.

The memory footprint of the TLR structure roughly increases at O(n3/2) because the tile

size is m =
√
n and the average rank for the off-diagonal blocks only grows weakly with n.

Although its asymptotic complexity is not optimal, it has proved sufficient for reasonably high

dimensions because of its smaller constants. There are also two practical benefits compared with

the weak admissibility hierarchical structure. First, fast approximation algorithms, for example,

the adaptive cross approximation (ACA) (Bebendorf, 2011), can be more reliably applied under

TLR due to its lower ranks. Second, the regularity of the flat structure of TLR benefits more

directly from modern hardware architectures.

3.3 Reordering schemes and TLR factorizations

The block reordering scheme was proposed in Cao et al. (2019) and shown to improve the

estimation accuracy of the conditioning method with lower complexity than the univariate or

bivariate reordering scheme introduced in Trinh and Genz (2015). In this paper, we introduce a

recursive version of the block reordering scheme computed during Cholesky factorization. The

recursive block reordering can be also viewed as the block version of the univariate reordering

scheme in Trinh and Genz (2015).

Algorithm 3.3a describes the original block reordering scheme proposed in Cao et al. (2019)

while algorithm 3.3b is the recursive version that produces the Cholesky factor. We use Σi,j to

represent the (i, j)-th size-m block of Σ. Similar notations are also used for a and b. When i 6= j,
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Σi,j is stored in the low-rank format. The blue lines in algorithm 3.3b mark the matrix operations

that are also in the block Cholesky factorization. If we ignore the cost for steps 5 and 9, the

complexity of algorithm 3.3b is the same as the Cholesky factorization. Although the complexity

for accurately computing Φm and the truncated expectations is high, the univariate conditioning

method (Trinh and Genz, 2015), with a complexity of O(m3), can provide an estimate for both

that is indicative enough. Algorithm 3.3a ignores the correlation between the m-dimensional

blocks and also uses the univariate conditioning method for approximating Φm. Therefore, the

block reordering scheme has a total complexity of O(nm2) but requires a succeeding Cholesky

factorization while the recursive block reordering has additional complexity of O(n2m) over the

Cholesky factorization but produces the Cholesky factor simultaneously.

Algorithm 3.3a Block reordering

1: bodr(Σ, a,b,m)
2: r = n/m
3: for j = 1 : r do
4: pl ≈ Φm(al,bl; Σl,l)
5: end for
6: for j = 1 : r do
7: j̃ = argminl(pl), l = j, . . . , r
8: p[j 
 j̃] and block-wise Σ[j 
 j̃, j 
 j̃], a[j 
 j̃], b[j 
 j̃]
9: end for

The truncated product and subtraction operations, � and 	, indicate the corresponding

matrix operations which involve truncation to smaller ranks to maintain required accuracy.

Σi1,j�ΣT
j1,j

and Σi,j�Σ−Tj,j have complexities of O(mk2) and O(m2k) respectively, where m is the

tile size and k is the local rank. The 	 operation uses ACA truncated at an absolute tolerance to

keep the result low-rank. For the studies in section 4 and section 5, we set the tolerance to 10−5.

Prior to the TLR Cholesky factorization, we construct the TLR covariance matrix with ACA

given the covariance kernel, the underlying geometry and the indices of variables. Therefore, the

total memory needed for computing MVN and MVT probabilities is O(kn2/m).
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Algorithm 3.3b Block reordering during Cholesky factorization

1: rbodr(Σ, a,b,m)
2: r = n/m
3: for j = 1 : r do
4: for l = j : r do
5: pl ≈ Φm(al,bl; Σl,l)
6: end for
7: j̃ = argminl(pl), l = j, . . . , r
8: Block-wise Σ[j 
 j̃, j 
 j̃], a[j 
 j̃], b[j 
 j̃]
9: yj ≈ Em[Y|Y ∼ Nm(0,Σj,j),Y ∈ (aj,bj)]

10: Σj,j = Cholesky(Σj,j)
11: for i = j + 1 : r do
12: Σi,j = Σi,j �Σ−Tj,j
13: ai = ai −Σi,j � yj, bi = bi −Σi,j � yj
14: end for
15: for j1 = j + 1 : r do
16: for i1 = j + 1 : r do
17: Σi1,j1 = Σi1,j1 	Σi1,j �ΣT

j1,j

18: end for
19: end for
20: end for

3.4 Preconditioned TLR QMC algorithms

Algorithm 3.4a and algorithm 3.4b describe the TLR versions of the ‘mvn’ and ‘mvt’ algorithms.

To distinguish them from the dense ‘mvn’ and ‘mvt’ algorithms, we expand the storage structure

of C, the TLR Cholesky factor, as the interface of the TLR algorithms. The definitions of Bi,

Ui, and Vi are shown in fig. 1, where Ui and Vi are indexed in column-major order.

Algorithm 3.4a TLR QMC for MVN probabilities

1: tlrmvn(B,U,V, a,b,w)
2: y← 0, and P ← 1
3: for i = 1 : r do
4: if i > 1 then
5: for j = i : r do
6: ∆ = Uj,i−1(VT

j,i−1yi−1)
7: aj = aj −∆, bj = bj −∆
8: end for
9: end if
10: (P ′,yi)← MVN(Bi, ai,bi,wi)
11: P ← P · P ′
12: end forreturn P
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Algorithm 3.4b TLR QMC for MVT probabilities

1: tlrmvt(B,U,V, a,b, ν, w0,w)

2: a′ ← χ−1
ν (w0)√

ν
a, b′ ← χ−1

ν (w0)√
ν

b return TLRMVN(B,U,V, a′,b′,w)

Similar to algorithm 3.3b, we use subscripts to represent the size-m segment of a, b, y,

and w. The two algorithms compute the integrand given one sample w in the n-dimensional

unit hypercube. In our implementation, the Richtmyer rule (Richtmyer, 1951) is employed for

choosing w. ‘tlrmvn’ is called by ‘tlrmvt’, where the additional inputs, ν and w0, have the

same meaning as those in algorithm 2.2b. The TLR structure reduces dense matrix-vector

multiplication to low rank matrix-vector multiplication when factoring the correlation between

blocks into the integration limits. The two algorithms can be either preconditioned by the block

reordering or the recursive block reordering. We examine the performance of the TLR QMC

algorithms in section 4.

4 Numerical Simulations

Table 2 gathers the performance of the dense (Genz, 1992) and the TLR QMC methods for

computing MVN and MVT probabilities, measured on a workstation with 50 GB memory and 8

Xeon(R) E5-2670 CPUs. Methods are assessed over 20 simulated problems for each combination

of problem dimension n and correlation strength β. The highest dimension in our experiment

is 216. Higher dimensions should be still feasible for the preconditioned TLR QMC methods

but the construction of the TLR Cholesky factor will be more time-consuming and a lower

truncation level for the ACA algorithm is needed to guarantee the positive definiteness of the

TLR covariance matrix. β = 0.3, 0.1, and 0.03 correspond to an effective range of 0.90, 0.30,

and 0.09, the first of which is considered long given that the underlying geometry lies in the

unit square. The tile size m for the TLR QMC methods is set as
√
n. The time for the block

reordering preconditioner is listed within the time costs of the ‘rtlrmvn’ and ‘rtlrmvt’ methods

while the time for constructing the covariance matrix and computing the Cholesky factor is not
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included. The QMC sample size is set at N = 104 for the methods without the block reordering

preconditioner while at N = 103 for the two preconditioned QMC methods. The sampling follows

the Richtmyer rule in the unit hypercube. Table 2 shows that the preconditioned TLR QMC

methods achieve a lower estimation error in most cases while reducing the time cost by one

and two orders of magnitude compared with the TLR QMC methods without preconditioning

Table 2: Performance of the three methods under weak, medium, and strong correlations. ‘mvn’
and ‘mvt’ are the dense QMC methods, ‘tlrmvn’ and ‘tlrmvt’ are the TLR QMC methods, and
‘rtlrmvn’ and ‘rtlrmvt’ are the TLR QMC methods preconditioned with the block reordering
scheme. The covariance matrix, integration limits, and the degrees of freedom are generated the
same way as in table 1. The upper row is the average relative estimation error and the lower row
is the average computation time over 20 replicates.

β = 0.3

n mvn tlrmvn rtlrmvn mvt tlrmvt rtlrmvt

1,024
2.4%
2.1s

2.5%
1.0s

1.0%
0.1s

2.3%
2.1s

3.3%
1.1s

1.6%
0.1s

4,096
1.2%
45.0s

1.2%
9.5s

1.1%
0.9s

1.6%
43.9s

1.6%
8.9s

1.2%
0.8s

16,384
1.0%

1233.6s
0.9%
60.2s

0.8%
5.5s

1.0%
1236.1s

1.4%
58.4s

1.3%
5.3s

65,536 NA
2.2%

304.4s
1.7%
31.4s

NA
2.5%

301.4s
1.7%
31.2s

β = 0.1

n mvn tlrmvn rtlrmvn mvt tlrmvt rtlrmvt

1,024
2.4%
2.0s

2.3%
0.9s

1.2%
0.1s

2.6%
1.9s

3.2%
0.9s

1.6%
0.1s

4,096
1.7%
40.2s

1.8%
5.7s

1.2%
0.5s

1.8%
40.0s

2.3%
5.9s

1.5%
0.5s

16,384
1.4%

1216.7s
1.3%
43.8s

0.9%
3.8s

1.3%
1220.3s

1.3%
44.6s

1.0%
3.8s

65,536 NA
3.8%

299.9s
3.6%
29.4s

NA
4.1%

285.6s
2.4%
28.0s

β = 0.03

n mvn tlrmvn rtlrmvn mvt tlrmvt rtlrmvt

1,024
0.7%
1.9s

0.6%
0.9s

0.4%
0.1s

0.9%
2.0s

2.1%
0.9s

0.8%
0.1s

4,096
1.1%
39.5s

1.2%
5.7s

0.5%
0.4s

1.1%
39.6s

1.1%
5.8s

0.7%
0.4s

16,384
0.8%

1210.8s
0.9%
36.7s

0.4%
2.6s

0.9%
1214.4s

1.1%
37.2s

0.6%
2.4s

65,536 NA
4.5%

228.8s
2.1%
18.8s

NA
2.9%

233.6s
1.7%
19.5s
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and the dense QMC methods respectively. It is worth noting that the relative error can be

affected by the magnitude of the true probabilities. The average relative error decreases from

n = 1,024 to n = 4,096 because the true probability increases due to our design for generating

the upper integration limits. Cao et al. (2019) and Trinh and Genz (2015) generated their upper

integration limits from U(0, n) while Genton et al. (2018) simulated from a univariate Gaussian

distribution, which is also used in this paper. Although both methods led to ‘normal-ranged’

true probabilities, the former method produced more uninformative integration variables, for

example, the variables whose integration regions contain (−10, 10), which made the problem less

challenging since the uninformative variables can be ignored to simplify the problem to a much

lower dimension. Intuitively, wider-spread integration limits work in favor of the block reordering

scheme whereas, in contrast, any reordering scheme would become ineffective if all integration

limits are equal. Since table 2 is based on problems with relatively concentrated integration

limits, we expect even more accurate results for other simulated problems.

5 Application to Stochastic Generators

5.1 A skew-normal stochastic generator

Stochastic generators model the space-time dependence of the data in the framework of statistics

and aim to reproduce the physical process that is usually emulated through a system of partial

differential equations. The emulation of the system requires tens of variables and a very fine grid

in the spatio-temporal domain, which is extremely time-and-storage demanding (Castruccio and

Genton, 2016). For example, the Community Earth System Model (CESM) Large ENSemble

project (LENS) required ten million CPU hours and more than four hundred terabytes of storage

to emulate one initial condition (Jeong et al., 2018). Castruccio and Genton (2016) found sta-

tistical models could form efficient surrogates for reproducing the physical processes in climate

science and concluded that extra model flexibilities would facilitate the modeling on a finer scale;

see Castruccio and Genton (2018) for a recent account.
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The MVN and MVT methods developed in this paper allow to consider more complexity in

the construction of stochastic generators. A significant improvement in flexibility is to introduce

skewness since the majority of the statistical models used nowadays are Gaussian-based, i.e.

they rely on a symmetric distribution. Generally speaking, there are three ways of introducing

skewness to an elliptical distribution, all of which involve the cdf of the distribution. The first

is through reformulation, which multiplies the elliptical probability density function (pdf) by

its cdf. The second method introduces skewness via selection. Assuming (XT ,YT )T have a

joint multivariate elliptical distribution, X|Y > µ, where µ is an n-dimensional vector, has a

skew-elliptical distribution. Arellano-Valle and Genton (2010) studied a general class of skewed

reformulations and introduced its link to the selection representation. The third method is

defined by the stochastic representation, specifically, Z = X + |Y|, where X and Y are two

independent elliptical random vectors. Zhang and El-Shaarawi (2010) studied the skew-normal

random field based on this construction assuming a general correlation structure for Y, because

of which a direct maximum likelihood estimation is almost impossible. Instead, Y was taken

as a latent random variable and the EM algorithm was applied. In the M-step, the conditional

expectations of X were computed through the Markov chain Monte Carlo method. Thus, the

cost for maximizing the likelihood is expectedly high.

The three methods have equivalent forms in the one-dimensional case but extend differently

into higher dimensions. The first method is flexible but provides little information on the under-

lying stochastic process. The second method has a clear underlying model and its pdf is usually

more tractable than that from the third method but the choice for Y is usually not obvious,

especially when X is in high dimensions. In the third method, the parameterization is usually

more intuitive and the model can be also applied in spatial statistics as a random field. However,

the pdf is a summation of a number of terms exponentially growing with the number of locations

n, which renders the model difficult to scale. Weighing an intuitive stochastic representation

against the pdf complexity, we modify the third construction method based on the C random
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vector properties introduced in Arellano-Valle et al. (2002). A C random vector can be written as

the Hadamard product of two independent random vectors, representing the sign and the magni-

tude respectively. When Y is a C random vector and X is independent from Y, G(X,Y)|Y > 0

has the same distribution as G(X, |Y|) for any function G(·) (Arellano-Valle et al., 2002). Sim-

ilar to these authors, our model assumes a stochastic representation where the matrix-vector

multiplication that models the dependence structure among the skewness components follows

the absolute value operation:

Z∗ = ξ1n + AX + B|Y|, (5)

where ξ ∈ R is the location parameter, {Xi|i = 1, . . . , n} ∪ {Yi|i = 1, . . . , n} are independent

and identically distributed standard normal random variables. Hence, AX + B|Y| has the same

distribution as AX + BY|Y > 0 since we can choose G(X,Y) to be AX + BY. The pdf of Z∗

avoids the 2n-term summation, which was the hinge in Zhang and El-Shaarawi (2010), making

the pdf computation more scalable.

The marginal representation shown in Equation (5) is difficult to extend to the multivariate

skewed-t version because the sufficient condition for the equivalence between the conditional

representation and the marginal representation is that X and Y are independent (Arellano-

Valle et al., 2002). However, the sum of independent Student-t random variables does not

necessarily lead to another Student-t random variable. Another issue with this representation

is the difficulty to generalize as a random field. When A is a Cholesky factor, AX coincides

with the classical Gaussian random field but it is not obvious that B|Y| can be derived from

any well-defined random field. However, for stochastic generators, the model is usually simulated

on a fixed spatial domain without the need for prediction at unknown locations and therefore,

Equation (5) may serve as the surrogate model for a physical system. In general, this stochastic

representation has better-rounded properties due to its advantage in estimation, simulation, and

flexibility. Specifically,

• the pdf avoids the summation of 2n terms as in the model AX + |BY|, which makes the

18



pdf estimable;

• the marginal representation in Equation (5) allows for more efficient simulation compared

with conditional representations;

• the correlation structure between the skewness components B|Y| has full flexibility con-

trolled by B, which can adapt to different datasets for model fitting.

Considering the reasons above, we simulate Z∗ based on the skew-normal distribution without

tapping into any skewed Student-t counterpart for the simulation study and use the same model

as a stochastic generator for the Saudi wind speed dataset that has more than 18,000 spatial

locations.

5.2 Estimation with simulated data

We construct A and B before simulating Z∗, where A controls the correlation strength of the

symmetric component while B adjusts the level of skewness and the correlation between the

skewness component. To have a parsimonious model, A is assumed to be the lower Cholesky

factor of a covariance matrix constructed from the 2D exponential kernel, σ2
1 exp(−‖h‖/β1),

β1 > 0, and B takes the form of a covariance matrix from the kernel, σ2
2 exp(−‖h‖/β2), β2 > 0,

where h is the vector connecting the two spatial variables’ locations. We choose the form of a

covariance matrix instead of a Cholesky factor for B out of two reasons. Numerically, the row

sum of a Cholesky factor usually increases with the row index, which produces a large difference

between the sum of the first row and that of the last row when the dimension is high. This

would cause the coefficients of Z∗ to have a varying order of magnitude. Secondly, due to the

first reason, the likelihood would depend on the ordering or the indexing scheme of the random

variables in Z∗. Unlike the Cholesky factor, the row sums of a spatial covariance matrix usually

have similar magnitudes and the likelihood function becomes independent from the indexing

scheme when B is a covariance matrix. The pdf of Z∗ can be derived based on the results in
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Arellano-Valle et al. (2002) to be:

2nφn(z− ξ1n,AAT + BBT )Φn{−∞, (In + CTC)−1CTA−1(z− ξ1n); (In + CTC)−1}, (6)

where C = A−1B. O(n3) matrix operations are performed multiple times for computing the

covariance matrices, which is prohibitive under the dense representation. However, the TLR

representation can closely approximate AAT and B due to the separable underlying geometry

and the 2D exponential covariance model. The subsequent Cholesky factorization, matrix mul-

tiplication, and matrix inversion can be performed at adequate accuracy and the complexity can

be reduced by one order of magnitude. For each n = 4r, r = 4, 5, 6, 7, we generate the geom-
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Figure 4: Boxplots of 30 estimation results. Each estimation is based on one realization of the
n-dimensional skew-normal model. The red dashed line marks the true value used for generating
random vectors from the skew-normal model.

etry in the [0, 2r−4] × [0, 2r−4] square, mimicking an expanding domain. The spatial locations

are on a perturbed grid, where the grid’s length unit is 1/15 and the perturbation is uniformly

distributed within (−0.4/15, 0.4/15)2. A and B are constructed based on the covariance kernel

and the simulated geometry. The likelihood function is the pdf of Z∗ shown in Equation (6)

and the optimization seeks to find the parameter values that maximize the likelihood when z is

fixed. In each run, the geometry is regenerated and only dense representations are used for the
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simulation of Z∗ to avoid inducing extra estimation error. As the dimension n becomes higher,

the likelihood becomes extremely small so that we have to extract the eleven-bit exponent in the

double-precision representation and scale the likelihood back to the normal range when comput-

ing the P in algorithm 2.1a, algorithm 3.4a, and algorithm 2.2b. The optimization is built on

the Controlled Random Search (CRS) with local mutation algorithm (Kaelo and Ali, 2006) from

the NLopt library (Johnson, 2014). The true values for (ξ, σ1, β1, σ2, β2) are shown in fig. 4 and

their searching ranges are (−1.0, 1.0), (0.1, 2.0), (0.01, 0.9), (0.0, 1.0), and (0.01, 0.3) respectively.

The initial values for the four parameters are set equal to the lower limits of their searching

ranges and the stopping condition is an absolute convergence level of 10−3 in terms of the log-

likelihood. The boxplots for the four chosen dimensions each consisting of 30 estimations are

shown in fig. 4. Overall, the estimation improves as the dataset dimension n increases. The

outliers may indicate that there is a local maximum, where σ1 and β1 are large and σ2 is small,

on a similar magnitude level with the global maximum. In this case, the estimation result is

closer to a Gaussian random field.

In the application study, we found that the likelihood was at extreme values when the di-

mension n was high because the order of magnitude cumulated through the multiplication of

one-dimensional probabilities as shown in Equation (2). As a result, the exponent of the like-

lihood value exceeded what double-precision numbers could accommodate. In case of overflow,

we extracted and cumulated the exponent after each multiplication step described on Line 9 of

algorithm 2.1a. It is also possible to have Φ(b′) − Φ(a′) smaller than what the double-precision

allows so that the quantile function on Line 8 of algorithm 2.1a will produce invalid values. These

invalid likelihood values were usually produced by unreasonable parameter value inputs given

the observed z and we treated these likelihood values as a large number, which worked well for

our estimation study.

21



5.3 Estimation with wind data from Saudi Arabia

The dataset we use for modeling is the daily wind speed in the Kingdom of Saudi Arabia on

August 5th, 2013, produced by the WRF model, which numerically predicts the weather system

based on partial differential equations on the mesoscale and features strong computation capacity

to serve meteorological applications (Skamarock et al., 2008). The dataset has an underlying

geometry with 155 longitudinal and 122 latitudinal bands. Specifically, the longitude increases

from 40.034 to 46.960 and the latitude increases from 16.537 to 21.979, both with an incremental

size of 0.045. Before fitting the skew-normal model, we subtract the wind speed at each location

with its mean over a six-year window (six replicates in total) to increase the homogeneity across

the locations. The vectorized demeaned wind speed data is used as the input dataset, Z∗, for

the maximum likelihood estimation. The dataset has a skewness of −0.45 and is likely to benefit

from the skewness flexibility introduced by the model in Equation (5). It is worth noting that

B|Y| has a negative skewness under our parameterization for B although all its coefficients are

non-negative.

The likelihood function is described in Equation (6), where the parameterization of A and

B also remains unchanged. The optimization involves five parameters, namely ξ, σ1, β1, σ2,

and β2, whose searching ranges, initial values, and optimized values are listed in table 3. Since

the likelihood requires the inverse of A as shown in Equation (6), we set the lower limit of σ1

to 0.1 to avoid the singularity. The correlation-strength parameters β1 and β2 can theoretically

Table 3: Parameter specifications and estimations based on the skew-normal (SN) model and
the Gaussian random field (GRF)

ξ σ1 β1 σ2 β2

Range (−2, 2) (0.1, 2.0) (0.1, 5.0) (0.0, 2.0) (0.01, 1.0)

Initial Value 0.000 1.000 0.100 1.000 0.010

SN −1.211 1.028 4.279 0.419 0.065

GRF 0.338 1.301 4.526 N.A. N.A.
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be close to zero but setting a lower limit above zero can avoid boundary issues. The absolute

convergence level is set at 10−3 and the optimization produces the results shown in table 3,

which has a log-likelihood of 11,508. We compare the optimized skew-normal model with the

optimized classical Gaussian random field, which is also a simplified version of Equation (5),

where σ2 is fixed at zero: Z∗ = ξ1 + AX. The estimation of the Gaussian random field thus

involves three parameters, (σ1, β1, ξ), for which the optimization setups are the same as those for

the skew-normal model. The estimated parameter values are also summarized in table 3, which

has a log-likelihood of 10,797. The functional boxplots (Sun and Genton, 2011) of the empirical

semivariogram based on 100 runs of the fitted skew-normal model and the Gaussian random

field are shown in fig. 5. The skew-normal model has significantly smaller band width than the

Gaussian random field, although both cover the semivariogram of the original data. The BIC

values of the two models and the quantile intervals of the empirical moments based on the same

100 replicates are illustrated in table 4. The BIC values strongly indicate that the skew-normal

Table 4: Empirical moments and BIC comparison. SN denotes the skew-normal model and GRF
denotes the Gaussian random field. The intervals represent the 5% to 95% quantile intervals
based on 100 replicates.

Mean Variance Skewness Kurtosis BIC

Wind data 0.042 0.932 −0.445 2.873 N.A.

SN (−1.079, 1.360) (0.308, 1.054) (−0.644, 0.449) (2.274, 3.595) −22986

GRF (−1.644, 1.911) (0.612, 2.594) (−0.717, 0.489) (2.116, 3.705) −21565

model is a better fit than the Gaussian random field. This can be also seen from the variance

quantile intervals and the functional boxplots of the empirical semivariogram, where the former

has smaller variance and its semivariogram is more aligned with that of the Saudi wind data.

The empirical moments ignore the connection between the spatial locations, thus may not be

a comprehensive surrogate for the fitting quality. Except for the one for the variance, the two

models are not significantly different in terms of the other three quantile intervals but in general,

the moments’ quantile intervals for the skew-normal model are tighter, which indicates a better
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Figure 5: The heatmap based on one replicate and the functional boxplot of the empirical
semivariogram based on 100 replicates. Top to bottom are the fitted skew-normal model and
the Gaussian random field. The green curve denotes the empirical semivariogram based on the
wind speed data. The distance is computed as the Euclidean distance in the longitudinal and
latitudinal coordinate system.

fit.

6 Conclusion and Discussion

In this paper, we presented preconditioned TLR versions of the Quasi-Monte Carlo methods

in Genz (1992) and Genz and Bretz (2002) suitable for computing MVN and MVT probabili-

ties in very high dimensions. The preconditioning uses a block reordering scheme and results

in substantial improvement in performance. Consequently, the new methods can reduce the

computation time by an order of magnitude compared with methods using hierarchical matrices

(Genton et al., 2018) and two orders of magnitude compared with dense Quasi-Monte Carlo
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methods (Genz, 1992; Genz and Bretz, 2002) while keeping the estimation error at the same

level.

As an application of our proposed methods, we generated random vectors from a skew-normal

model described in Equation (5) of dimensions up to 214 and performed maximum likelihood es-

timation for five parameters simultaneously. The results showed significant estimation improve-

ment when the dimension of the random vector increased, highlighting the need for efficient

computation of high-dimensional MVN and MVT probabilities in modern data-rich applica-

tions. In another application, we fitted the same model to wind data from Saudi Arabia that

has a resolution of 155× 122. The BIC of the skew-normal model was significantly smaller than

that of the classical Gaussian random field and the moments, as well as the semivariogram of

the simulated skew-normal random vector, resembled those of the dataset closer.
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