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Abstract

Lightning is a natural event that can cause severe human and financial losses.
This work introduces a probability risk assessment of the occurrence of the
cloud-to-ground (CG) lightning in urban and rural areas of Oklahoma. CG light-
ning, although not the most common type, is the most damaging. Previous
studies have reported that urban areas experience an increase in the frequency
of CG lightning events, during warm months. This increase poses serious threats
to urban industries and electronic systems. Lightning strikes are point process
in nature, although this quality has not been exploited in previous studies. We
utilize a probability model for the spatiotemporal point process of CG lightning
to estimate the risk of a CG lightning strike for a particular location and time.
The data are discretized into small spatiotemporal cells (voxels), and then, we fit
a generalized additive model with a complementary log–log link function using
the location and the day of occurrence of the strike as explanatories. On the basis
of this model, we compared the urban and rural monthly fitted rates of CG light-
ning strikes. We found that the rate in the rural area is smaller than the rate in
the Tulsa metropolitan area during the warm months; however, it is larger than
the rate in the Oklahoma metropolitan area during May and June.
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1 INTRODUCTION

1.1 Motivation
Lightning is a natural event that can cause severe human and financial losses. For example, in 2014, the Insurance Infor-
mation Institute reported that just in homeowners insurance claims, lightning strikes cost nearly $440 millions in the
United States. The types of events associated with these lightning losses include (a) accidents in industrial facilities due
to the release of hazardous substances (Necci et al., 2013), (b) interruption of or damage to electrical or electronic systems
exposed to lightning strikes (Cummins, Krider, & Malone, 1998), and (c) lightning-ignited fires in remote areas that can
be difficult to detect and respond to in a timely manner (Flannigan, Stocks, & Wotton, 2000). Therefore, predicting this
type of phenomena is of interest for planning purposes.

This work focuses on cloud-to-ground (CG) lightning, which, although not the most common type of lightning, is the
most damaging and hazardous to structures on the ground. In particular, we examine the frequency of CG lightning
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FIGURE 1 Annual maps (2006–2010) of the cloud-to-ground (CG) lightning counts obtained by hexagonal binning of the observations in
the two largest metropolitan regions in Oklahoma, Tulsa and Oklahoma City, and the selected rural area. The R function geom_hex() was
used to generate the maps, and the hexagons' grayscale fill is proportional to the counts of CG lightning strikes occurred in the corresponding
hexagon. The plotted circular areas will be used for the analysis described in Section 6

events in urban settings. Past research has found increases in CG lightning events in urban areas as compared to nearby
rural areas (Westcott, 1995; Orville et al., 2001; Steiger, Orville, & Huffines, 2002; Rose, Stallins, & Bentley, 2008; Farias,
Pinto, Pinto, & Naccarato, 2014). In the works of Westcott (1995) and Orville et al. (2001), it is suggested that the increase
in urban areas can be due to three mechanisms: (a) anthropogenic heating and moisture, (b) surface roughness due to the
built environment, and (c) air pollution. Downwind augmentation of CG lightning flashes is also one of the most consis-
tent findings in studies of urban lightning. Since CG lightning poses a serious threat to urban industries and electronic
systems, it is important for decision-makers to estimate the risk of CG lightning strikes. Here, we present a probability
risk assessment of the occurrence of CG lightning in urban and rural areas in Oklahoma.

To the best of our knowledge, most of the existing work on CG lightning strikes is based on the aggregate number
of observations per region. Existing studies include statistical analyses that use some of the following methodologies:
exploratory data analysis (EDA) tools, like the five-number summary and smoothing (Tukey, 1993; Hidayat & Ishii, 1998),
time series analysis (Villarini & Smith, 2013), and hypothesis tests between urban and rural regions (Westcott, 1995;
Orville et al., 2001). The point process nature of CG lightning strikes has not yet been extensively exploited, with the
exception of the analysis of the temporal properties of lightning (De Miranda, Pinto, & Saba, 2003; Telesca, Bernardi, &
Rovelli, 2005, 2008) and their association with lightning-caused fires (Podur, Martell, & Csillag, 2003; Hering, Bell, &
Genton, 2009). Here, we utilized a probability model to estimate the intensity of the CG lightning spatiotemporal point
process. The point process approach provides findings on the natural temporal and spatial variation in the intensity of
CG lightning without the need for arbitrary aggregation of individual strikes into counts.

The data were obtained from the U.S. National Lightning Detection Network and covered the period from 2006 to 2010
for the two largest metropolitan areas in Oklahoma, Tulsa and Oklahoma City, as well as a rural region, as shown in
Figure 1. The data are grouped into small spatiotemporal cells (voxels). A complementary log–log model was used under
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the assumption of the existence of a latent process with Universal Transverse Mercator (UTM) coordinates and day of
the year as explanatory variables. We employed a maximum likelihood fit using the conditions included in the work of
Schoenberg (2005), under which the parametric estimates of the intensity of a spatiotemporal point process are consistent,
although the actual point process being estimated may not be Poisson. The model was assessed based on the fitted linear
predictor. The analysis of the effects of the urban and rural conditions on the frequency of CG lightning strikes was based
on a comparison of their monthly expected number of CG lightning strikes for some selected subregions.

The remainder of this paper is organized as follows: In Subsection 1.2, we include a description of the physical properties
of the CG lightning data. Section 2 includes a description of the data available and the definition of an urban and a
rural area. The theory and assumptions behind our model are included in Section 3; in this section, we introduce the
conditional intensity function of the spatiotemporal point process, as well as the 0–1-valued process used in practice to
approximate the log-likelihood function. Section 4 includes the exploratory analysis of the temporal and spatial properties
of the collected CG lightning data for the three regions. Section 5 includes the results of the fitted generalized additive
model to the voxel-based data with the complementary log–log link function and the respective model assessment. In
Section 6, we compare the fitted monthly rates of CG lightning strikes between the urban and rural regions based on our
probability model.

1.2 CG lightning
The initial stage of all lightning events requires the separation of positive and negative charges into different regions of
a cloud. Most of the time, the positive charges accumulate in the upper part of the cloud, whereas the negative charges
accrue in the lower part. This separation of charges produces enormous electrical potential both within clouds, in the
form of cloud-to-cloud lightning, and from the cloud to the surface, in the form of CG lightning. Eighty percent of all
lightning is cloud-to-cloud, whereas the remainder is CG. Lightning occurs exclusively in clouds above the freezing level,
and it is restricted to precipitating clouds. The definitions included in this section and further details can be found in the
works of Aguado, Burt, Rohli, and Schmidlin (2007), Weidman (2013), and NASA (2013).

Most CG discharges begin with negatively charged air that moves downward in a rapid sequence of individual steps,
called a stepped leader. A spark surges upward from the ground to connect to the leader, initiating the first in a sequence of
illuminated strokes (return strokes). The combination of strokes forms a lightning flash. Most of the flashes consist of only
two or three strokes, but some consist of as many as 20 individual strokes. The number of strokes in a flash is called flash
multiplicity. Because each flash can be made up of several return strokes, the location used in this study corresponded to
the first return stroke.

Around 95% of flashes originate near the lower-negative charge center, delivering negative charges to the ground. Only
5% carry positive charges to the ground, but they are more lethal and often occur during the dissipating stage of a thun-
derstorm. The polarity of CG lightning can be positive, +CG, or negative, −CG, based on whether the lightning carries
a positive or negative charge. The peak current of the return stroke averages 30 kA for a typical −CG flash, whereas the
peak charge for +CG can be 10 times greater.

In this analysis, we studied two CG lightning characteristics that have been reported as being influenced by urban
conditions: (a) the number of CG lightning flashes experiences a significant increase in urban regions compared with
nearby rural areas (Westcott, 1995; Orville et al., 2001; Steiger et al., 2002) and (b) the percentage of positive flashes
experiences a decrease in urban areas compared with nearby rural areas (Orville et al., 2001; Farias, Pinto, Naccarato, &
Pinto, 2009; Stallins, Carpenter, Bentley, Ashley, & Mulholland, 2013).

2 CG LIGHTNING DATA

The CG lightning data analyzed in this paper were provided by the U.S. National Lightning Detection Network that
is owned and operated by Vaisala, Inc. The data cover the period from 2006 to 2010 for the Tulsa and Oklahoma City
metropolitan areas and a selected rural region. The CG lightning occurrences are acquired from 114 sensors that detect
electromagnetic radiation from lightning return strokes (Orville, 2008; Cummins & Murphy, 2009; Vaisala, 2011).

Figure 1 shows the approximately one and a half million of CG lightning flashes recorded during 2006–2010, in the
three regions of interest. For each CG lightning flash included, we analyzed the following features: (a) the location using
the UTM coordinates, denoted by (x, y), (b) the day of occurrence denoted by t, and (c) the polarity.
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The analysis was performed on the data collected in Oklahoma because of the rich atmospherical and climatological
information available for this state, including the Oklahoma Climatological Survey (2014) database. The two urban areas
studied here were chosen based on the definition of a metropolitan area provided by the United States Census Bureau
(2010). Both have a population of 50,000 or more, and each metropolitan area comprises one or more counties, including
the county containing the core urban area as well as any adjacent counties that have a high degree of social and eco-
nomic integration (as measured by commuting to work) with the urban core. In particular, we studied the two largest
metropolitan regions in Oklahoma: Tulsa and Oklahoma City.

The Tulsa metropolitan area includes the following seven counties: Tulsa, Rogers, Wagoner, Creek, Osage, Okmulgee,
and Pawnee. The Oklahoma City metropolitan area also includes seven counties: Canadian, Cleveland, Grady, Lincoln,
Logan, McClain, and Oklahoma. The CG lightning data in these metropolitan regions were compared with the CG light-
ning flashes that occurred in the selected rural area, which includes five counties: Okfuskee, Seminole, Hughes, Coal, and
McIntosh. We choose the rural area shown in Figure 1 because it borders both the Tulsa and Oklahoma City metropolitan
areas.

3 THE SPATIOTEMPORAL POINT PROCESS METHODOLOGY

A spatiotemporal point process is a random collection of points, where each point represents the time and location of an
event (Guttorp, Brillinger, & Schoenberg, 2002). The class of spatiotemporal point processes described by Fishman and
Snyder (1976) is uniquely characterized by its associated conditional intensity process, 𝜆. Suppose that the space–time
domain is broken into voxels (x, x + dx] × (y, y + dy] × (t, t + dt]. Consider the spatiotemporal point process, N, with
the conditional intensity function for (x, y, t), where (x, 𝑦) ∈ R2 and t = 1, … ,T is assumed to exist and is defined by

𝜆(x, 𝑦, t) = P{dN(x, 𝑦, t) = 1|Ht}∕dx d𝑦dt, (1)

where dN(x, y, t) = N(dx, dy, dt) counts the number of flashes in the voxel (x, x + dx] × (y, y + dy] × (t, t + dt] and Ht is
the prior history of the point process up to time t (Brillinger, Preisler, & Benoit, 2003). The conditional intensity function
may be thought of as the frequency with which events are expected to occur around a particular location, conditional on
the prior history of the point process up to a particular time.

In order to estimate the risk of a CG lightning, we model the conditional intensity of the spatiotemporal CG light-
ning point process for a particular location and time as a function of other covariates, such as the UTM coordinates and
the day of the year. The parameters can be estimated by maximizing the following log-likelihood function (Fishman &
Snyder, 1976):

𝓁(𝜽) = ∫
T

0 ∫
𝑦
∫x

log [𝜆(x, 𝑦, t|𝜽)] dN(x, 𝑦, t) − ∫
T

0 ∫
𝑦
∫x
𝜆(x, 𝑦, t|𝜽)dx d𝑦dt, (2)

where 𝜽 is a vector of free parameters. Under general conditions, the maximum likelihood estimates have been shown to
be consistent and asymptotically normal (Ogata, 1978; Rathbun & Cressie, 1994; Schoenberg, 1997).

In practice, the space–time domain can be broken up into voxels, and the spatiotemporal point process, N(dx, dy, dt),
can be replaced by a 0–1-valued process, Yx, y, t, on a lattice, with Yx, y, t = 1 if there is a flash in the corresponding voxel
and 0 otherwise for (x, 𝑦) ∈ R2 and t = 1, … ,T (Brillinger & Segundo, 1979; Berman & Turner, 1992; Baddeley et al.,
2010; Baddeley, Rubak, & Turner, 2015). Suppose that

P
(

Yx,𝑦,t = 1|Ht
)
= 𝜆x,𝑦,t,

where Ht is the prior history of the point process up to time t.
In order to estimate the conditional intensity function, we assume that Yx, y, t are independent given the covariates;

therefore, the Bernoulli approximation to the log-likelihood in Equation (2) is now
∑
x,𝑦,t

Yx,𝑦,t log(𝜆x,𝑦,t) +
∑
x,𝑦,t

(1 − Yx,𝑦,t) log(1 − 𝜆x,𝑦,t). (3)

Using the result in the works of Schoenberg (1997,2005), the estimates obtained by maximizing the log-likelihood
function in Equation (3) will be consistent asymptotically even though the CG lightning process is not really a Poisson
process.
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To simplify the notation, the pixels can be indexed by k = 1, … ,K rather than (x, y, t), and we express the log-likelihood
function as follows:

K∑
k=1

Yk log(𝜆k) +
K∑

k=1
(1 − Yk) log(1 − 𝜆k). (4)

To find the parameters, we maximize this log-likelihood function where the linear predictor (𝜂) based on the explanato-
ries uses a complementary log–log link function and is expressed as 𝜂 = log

(
− log (1 − 𝜆)

)
. We used the complementary

log–log link function since the theoretical and empirical results established in the work of Baddeley et al. (2010) showed
that the estimates with this link function are typically more accurate than the logit link function for a given grid size.

4 EXPLORATORY DATA ANALYSIS

4.1 Temporal analysis
In this section, we present the analysis of the purely temporal behavior of the resulting marginalized CG lightning
point process. We analyzed the two characteristics of interest described in Section 2, namely, the rate of CG strikes per
square kilometer and the proportion of +CG of the total count of CG lightning strikes (both positive and negative polar-
ities) over the time period 2006–2010 for each of the three regions. The top of Figure 2 includes the time plots and the
monthly boxplots of the square root of the rate of CG flashes per square kilometer and at the bottom the respective
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FIGURE 2 (Top) Square root of the rate of cloud-to-ground (CG) lightning flashes per square kilometer for each region: (a) time plot with
the loess smoother and (b) monthly boxplots with the loess smoother. (Bottom) Logarithmic function of the monthly proportion of +CG
lightning from the total number of CG lightning strikes: (c) time plot with the loess smoother and (d) monthly boxplots with the loess smoother
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plots for the logarithmic transformation of the proportion of +CG of the total count of CG lightning strikes. The four
plots include a smoother and the respective confidence intervals. The smoother is based on a local polynomial regression
(Cleveland, 1979; Chambers & Hastie, 1991); in this analysis, the R function loess() with a window size of 2∕3 was used.

Plot (a) in Figure 2 suggests that Tulsa's rate per square kilometer has a trend that is characterized by a quasi-parabolic
behavior with a maximum in 2008. Compared to the other two regions, Tulsa's rate is higher from 2008 to 2010. The trends
of the CG lightning flashes per square kilometer in Oklahoma City and the rural region behave very similarly, and both
experience a drop during 2008, the year when the Tulsa metropolitan region reached the highest level. The boxplots in plot
(b) show an annual seasonal effect, with the summer having the highest rate, whereas the winter experiences the lowest
rate of flashes; the outliers are associated to storms and unusual weather phenomena experienced in those months. For
example, in September 2009, an outlier in the Tulsa metropolitan area is due to a large number of strikes that occurred
on the afternoon of September 21, 2009 during a strong storm with hail.

Plots (c) and (d) in Figure 2 display the logarithmic transformation of the proportion of +CG lightning strikes. Plot (c)
exhibits that the urban's and rural's trends are characterized by a sigmoid behavior. The boxplots in plot (d) display an
annual seasonality in the three regions, with the proportion of +CG reaching its lowest level during the summer and its
highest peak during the winter. By comparing plots (a) and (c), the trends of the rate of CG flashes per square kilome-
ter and of the proportion of positive flashes appeared to be out of phase. This out-of-phase finding coincides with the
behavior previously reported (Orville et al., 2001; Farias et al., 2009; Stallins et al., 2013) over urban areas: a decrease in
the percentage of positive CG flashes during the season with the highest rate of CG lightning strikes (May to September)
(Orville et al., 2001; Farias et al., 2009; Stallins et al., 2013).

An interesting finding of our EDA is that the trend and seasonality of the analyzed variables (CG rate per square kilo-
meter and proportion of +CG lightning strikes) in the rural region are very similar to the ones of the Oklahoma City
metropolitan area. Also, contrary to what we were expecting, there is no evidence that the non-metropolitan region expe-
riences a lower rate per square kilometer than the two urban regions; instead, the non-metropolitan region's rate is higher
than Oklahoma City.

4.2 Spatial analysis
In this section, we present the analysis of the purely spatial behavior of the resulting marginalized CG lightning point
process. Due to the large number of CG lightning occurrences, we used a hexagonal binning of the observations per
year (Carr, Littlefield, Nicholson, & Littlefield, 1987) to produce Figure 1. The maps in this figure depict the regions
with the highest number of CG lightning flashes, for example, in 2007, these regions were located in the Oklahoma City
metropolitan area; in 2008, they were found in the Tulsa metropolitan area; and finally, in 2009, they included the area
that extends from Tulsa to the south and east territory of the rural area. The same Figure 1 shows that the CG lightning
flashes occur in clusters; the weaker clustering effect revealed during the years 2006 and 2010 could be explained by the
smaller number of CG lightning events that occurred during those years.

The monthly maps in Figure 3 display the smoothed CG lightning intensity function estimated with a biweight kernel
function (Diggle, 1985); these maps also reveal a monthly spatial clustering effect. We can think of these clustered regions
as locations with a higher risk of CG lightning flashes. We found that during the second quarter of the year, there is a
higher risk of CG lightning flashes. For example, in May, the Oklahoma City metropolitan area experiences the highest
risk of CG lightning, and this phenomenon affects the boundary with Tulsa and extends to the rural region. In June, the
map suggests the highest-risk region moves to the Tulsa metropolitan area, whereas the rural territory keeps experiencing
a high risk of CG lightning.

In order to confirm the suspected clustering effect, the summary statistic L-function has been frequently used
(Hering et al., 2009; Møller & Rasmussen, 2015). We are interested in identifying if there is a departure from complete
spatial randomness (Baddeley et al., 2015); if the complete spatial randomness hypothesis is rejected, then there must be
a tendency toward either clustering (having flashes close to each other) or regularity (repulsion between flashes). The
L-function defined in the work of Besag (1977) is a variance-stabilizing transformation of the K-function, that is,

L(r) =
√

K(r)
𝜋

. (5)
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FIGURE 3 Monthly kernel estimated cloud-to-ground lightning intensity function corresponding to the point pattern shown in Figure 1
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FIGURE 4 Estimated quarterly centered L-function corresponding to the cloud-to-ground point pattern shown in Figure 1. (Top)
Oklahoma City metropolitan area. (Middle) Tulsa metropolitan area. (Bottom) Non-metropolitan area

The K-function (Baddeley et al., 2015) is a second-order parameter of a point process. It is used to analyze a spatial
point process and to summarize the spatial dependence over a wide range of scales (Cressie, 1993). In the stationary and
isotropic case, Ripley's K-function is defined as K(r) = 𝜆−1 E(number of points within r of an arbitrary point), where
r ≥ 0 and 𝜆 is the conditional intensity.

We used the R function Lest() of the spatstat package (Baddeley et al., 2015) to estimate the L-function, given the
observations of the process inside a known, bounded window. Due to the unobservability of points of the random pat-
tern, the estimation of the L-function is modified with an edge correction to reduce the estimate's bias (Ripley, 1991;
Barndorff-Nielsen, Kendall, & van Lieshout, 1999).

For interpretation purposes, we employed the centered L-function (L-function minus the identity); this summary statis-
tic under clustering is expected to be above the zero line, but under regularity, it tends to be below the zero line (see, e.g.,
Møller & Waagepetersen, 2003). In order to better identify the clustering effect over the different annual seasons, we esti-
mate the quarterly centered L-functions using the data for the period 2006–2010. Figure 4 includes the estimated centered
L-function with a border edge correction and the corresponding simulated 95% envelopes. For visualization purposes,
this figure depicts the estimated L-functions for distances (r) up to 200 m; the values for larger distances are omitted as
the trends remain the same after 200 m.

As expected, the centered L-functions exhibit that the CG lightning flashes occur in clusters (Zajac & Rutledge, 2001;
Podur et al., 2003; Villarini & Smith, 2013); this finding was identified in the urban and rural regions. As CG light-
ning flashes accompany thunderstorms, the clustering effect that characterized the thunderstorms (Strauss, Rosa, &
Stephany, 2013; Chronis et al., 2015) could be one of the reasons why the CG flashes occur in clusters. We also noticed a
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regularity effect within 5 to 10 m during the second quarter (Q2) of the year for the three regions. Tulsa experiences this
regularity effect during the third quarter (Q3) too.

5 THE SPATIOTEMPORAL LIKELIHOOD APPROACH

5.1 Model fitting
The spatiotemporal likelihood approach is based on the 0–1-valued process, Y. The lightning data are grouped into small
spatiotemporal cells (voxels) of size 1 km× 1 km× 1 day. The parameters are estimated by maximizing the log-likelihood
function defined in Equation (4), where k refers to the kth voxel and Yk = 1 if there is a flash in the corresponding
voxel and 0 otherwise. We assumed a smooth dependence of the risk probability of occurrence of a CG lightning flash on
the spatial (xk, yk) and temporal (dayk) effects. Hence, we used the R function gam() to fit the Bernoulli model with the
following linear predictor:

𝜂k = log
(
− log(1 − 𝜆k)

)
= log (vk) + g1(xk, 𝑦k) + g2(dayk) (6)

with an offset of log (vk), which is the volume of the kth voxel. Here, (xk, yk) are the UTM coordinates of the kth response
and (dayk) refers to the day of the year when it took place. The g()'s are (nonparametric) smooth functions to be estimated.
Then, the model is the following:

𝜆 = P (Y = 1|𝜂) = 1 − exp (−v exp(𝜂)) . (7)

As we used a regular grid for our analysis, the value of vk is constant (vk = v) for any voxel. The log-likelihood function was
maximized by applying penalized iteratively reweighted least squares (Wood, 2006a), and the variances were estimated
by using the Bayesian approach (Wood, 2006b).

Figure 5 shows the contour and the perspective plots of the estimated spatial effect, ĝ1, for the three regions of study.
These plots indicate a higher risk of CG lightning occurrences in the Tulsa metropolitan area, particularly in Tulsa,
Okmulgee, and Pawnee counties. Tulsa County is the second most densely populated in the state and with the highest
income. The higher risk identified in Tulsa could be explained by the large concentration of aviation and aerospace ser-
vices provided by the Tulsa International Airport. For example, this airport is the global maintenance headquarters for
American Airlines and is a large employer. The southern region of Tulsa is where most of airport employees live. The
high-risk area in the northern part of the rural area might be due to the influence of the nearby Oklahoma City area.

The southeast area of Oklahoma City is more prone to the occurrence of CG lightning. As this area is located in a
region that is seldom downwind of the larger urban region, we would expect little influence from the urban environment
(Hand & Shepherd, 2009). Therefore, this finding does not support the downwind augmentation of CG lightning flashes,
which is one of the most consistent findings in studies of urban lightning. Including other explanatory variables in
our model might provide a better understanding of other conditions associated with the increase in lightning in this
urban area.

The estimated temporal effect ĝ2 with the corresponding 95% confidence interval is displayed in Figure 6. We identify
an annual seasonal effect in the three regions; this finding coincides with the one described in the EDA included in
Section 4. The plots suggest that the highest risk of CG lightning is experienced during the summer months, from May to
September, with May being the month with the highest risk. Another finding is that the Tulsa metropolitan area and the
rural area experience again a higher risk of CG lightning during August.

5.2 Model assessment
To verify the appropriateness of the model in Equation (7), we implemented an assessment method based on the fitted
linear predictor like the one used in the work of Brillinger et al. (2003). Under the assumption of a complementary log–log
link function, the fitted linear predictor values may be assigned to the bins of a histogram. For each bin, some of the
corresponding Y ′s will be 0 and some will be 1. The “number of 1's” divided by the “number of 1's” plus the “number
of 0's” provides a nonparametric estimate of the function 𝜆(𝜂) = P(Y = 1|𝜂 = 1), with 𝜂 representing the linear
predictor of the employed generalized additive model. This estimate may be compared to 𝜆(𝜂|�̂�), where �̂� is the maximum
likelihood estimate.
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FIGURE 5 Contour and perspective plots of the estimated spatial effect ĝ1 of the model in Equation (6) using the point pattern shown in
Figure 1. (Top) Oklahoma City metropolitan area. (Middle) Tulsa metropolitan area. (Bottom) Rural area

Figure 7 shows the assessment of the complementary log–log model in Equation (6). The points are the observed relative
frequencies of CG lightning, after grouping the data into classes based on the fitted linear predictor �̂�. The solid red curve is
the fitted complementary log–log curve. The dashed lines are approximate 95% confidence intervals, which are obtained
via a binomial approximation. The fit of the model appears reasonable for the data in the three regions, but there seems
to be a departure from the complementary log–log model as some patterns of points are above the curve on the left of the
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FIGURE 6 Estimated temporal effect ĝ2 of the model in Equation (6) with 95% confidence intervals

plots. The departure from the complementary log–log model may disappear when we include other explanatory variables
in the model. The confidence intervals are wider for the larger values of the fitted linear predictors.

6 THE URBAN AND RURAL EFFECT

Several authors (Westcott, 1995; Orville et al., 2001; Steiger et al., 2002; Rose et al., 2008; Hand & Shepherd, 2009) have
found that some urban areas, such as Dallas–Fort Worth, Milwaukee, and Kansas City, experience an increase in the
occurrence of CG lightning flashes mainly in the summer compared to nearby rural regions. To identify whether this same
phenomenon occurs in Oklahoma, we compared the expected number of CG lightning strikes between two metropolitan
areas with a contiguous rural region. The expected number of CG lightning flashes was calculated by the month for
equal-area circular regions; each region has a radius of approximately 20 km and is shown in Figure 1. The centers of
the circles are located in Tulsa and Oklahoma City, whereas in the rural area, the center is located in a zone less densely
populated.

We used Hodges and Le Cam's Poisson binomial distribution (Hodges & Le Cam, 1960) as an approximation of the
distribution of the total number of CG lightning flashes in the lth region, named N(Rl). Hodges and Le Cam's result shows
that N(Rl) has, in the limit, a Poisson distribution with parameter 𝜆 =

∑
(x,𝑦)∈Rl

𝜆(x, 𝑦), where 𝜆(x, y) is the probability
of occurrence of a CG lightning flash at the location (x, y). In this study, the number of voxels is sufficiently large, and
𝛼 = max(x,𝑦)∈Rl [𝜆(x, 𝑦)] is small, satisfying the assumption of a Poisson binomial distribution.
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FIGURE 7 Model assessment of the complementary log–log model in Equation (6). The points are the observed relative frequencies of
cloud-to-ground lightning after grouping the data into classes based on the fitted linear predictor. The solid red curve is the fitted
complementary log–log curve, and the dashed lines are approximate 95% confidence intervals obtained via a binomial approximation.
(Top left) Oklahoma City metropolitan area. (Top right) Tulsa metropolitan area. (Bottom) Rural area

Recalling the binary-valued variable described in Section 3, Yk, defined on a lattice, with Yk = 1 if there is a flash in
the corresponding voxel and 0 otherwise, and considering a general distribution for Yk, the monthly expected number of
CG lightning events in the lth region is

E
[
N(m)(Rl)

]
=

∑
k∈Rl

𝜆
(m)
k , (8)

where N(m)(Rl) stands for the total number of CG lightning flashes in the lth region for the mth month and 𝜆
(m)
k is the

probability of occurrence of a CG lightning flash at the kth voxel in Rl for the mth month.
The empirical and fitted CG lightning rates by month are included in Figure 8; the solid lines are the fitted CG lightning

rates by month based on the model in Equation (7), with location and day of the year as explanatory variables; the gray
region provides their approximate 95%marginal confidence limits. The empirical rates by months and their approximated
95% confidence intervals based on a Poisson approximation are included as bar plots.

The fitted rate by month was higher during the warm months in both urban and rural areas. Overall, the fitted CG
lightning rate by month in the Tulsa metropolitan region seemed to be larger than that in the other two regions. The claim
that urban areas experience a higher rate of CG lightning flashes during the warm months than nearby rural regions is
not completely accurate based on the fitted rates shown Figure 8: The rate in the rural area is smaller than the rate in the
Tulsa metropolitan area during the warm months; however, it is larger than the rate in the Oklahoma metropolitan area
during May and June. The plots also suggest that the Tulsa metropolitan area experiences an increase in the CG frequency
rate in August, whereas the rural region experiences this increase in September. The latter growths have been associated
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FIGURE 8 Empirical and fitted cloud-to-ground lightning rates by month based on the model in Equation (6) for the circular areas shown
in Figure 1. The empirical rates by month are included as bar plots, whereas the solid red lines show the fitted rates by month

with large lightning events, as described by Westcott (1995), Orville et al. (2001), and Steiger et al. (2002). Large lightning
events refer to days when a large number of flashes is recorded.

7 SUMMARY AND DISCUSSION

This study developed a risk probability model that uses the point process nature of the CG lightning flashes and jointly
modeled the temporal and spatial domains. Our approach, compared with previous works, provided an additional step
in the modeling of CG lightning, as our proposed model estimates the probability of the occurrence of a CG lightning
flash for a particular time and location. Therefore, we were able to estimate the expected number of CG lightning strikes
that can be used for planning and resource allocation. A complementary log–log model was used under the assumption
of the existence of a latent process with UTM coordinates and the day of the year as explanatory variables. The proposed
model is also flexible enough to include other lightning properties (polarity, peak current, and multiplicity) as marks of
the process.

The estimated temporal effect revealed an increase in the frequency of CG lightning events during the warm seasons.
The estimated spatial effect showed that the areas with a higher risk of CG lightning flashes were located in the
Tulsa metropolitan area, particularly in Tulsa, Okmulgee, and Pawnee counties, along the border between the Tulsa
metropolitan region and the rural area, and in the southeast area of Oklahoma City.

One of the hypothesized explanations for the high rate of CG lightning flashes in the Tulsa metropolitan region was air
pollution. The urban areas experience elevated surface ozone concentrations during the summer season (Hu, Klein, Xue,
Shapiro, & Nallapareddy, 2013). Tulsa's propensity for lightning might be partially explained by the activities associated
with the Tulsa International Airport, not only because airports are among the largest sources of air pollution in the United
States (Westerdahl, Fruin, Fine, & Sioutas, 2008) but also due to the large number of aviation and aerospace services
provided there.

On the basis of the predicted probabilities and their associated confidence intervals, the estimated number of CG light-
ning strikes in the Tulsa metropolitan area appears to be larger than the other two regions. Because of the results of
previous works, we were expecting the estimated number of CG lightning strikes in the rural area to be smaller than the
estimated number in the urban regions during the warm months. On the contrary, the rate in the rural area is larger than
the rate in the Oklahoma metropolitan area during May and June.

In conclusion, we found that the Tulsa metropolitan area experiences conditions that promote the increased frequency
of CG lightning compared to the Oklahoma City metropolitan area and the nearby rural region. A suggested extension
of this work would be to include other explanatory variables, such as air pollution, population density, and topography,
which might explain the CG flash increments. Also, it will be of interest to identify the reasons why urban regions like
the Oklahoma City metropolitan area do not experience a higher rate of CG lightning than the nearby rural regions.

The risk assessment of the CG lightning events included in this work can be employed to help prevent such things as
electric power interruptions, forest fires, and human injuries and deaths caused by lightning strikes.
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