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a b s t r a c t

A robust estimator for functional autoregressivemodels is proposed, theDepth-based Least
Squares (DLS) estimator. The DLS estimator down-weights the influence of outliers by
using the functional directional outlyingness as a centrality measure. It consists of two
steps: identifying the outliers with a two-stage functional boxplot, then down-weighting
the outliers using the functional directional outlyingness. Theoretical properties of the DLS
estimator are investigated such as consistency and boundedness of its influence function.
Through a Monte Carlo study, it is shown that the DLS estimator performs better than
estimators based on Principal Component Analysis (PCA) and robust PCA, which are the
most commonly used. To illustrate a practical application, the DLS estimator is used to
analyze a dataset of ambient CO2 concentrations in California.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of functional data has received sustained interest in recent years because data can be obtained easily and
many phenomena can be thought of as the realization of a continuous stochastic process, e.g., yield curves, intraday price
curves, temperature records, or electricity consumption; seeRamsay and Silverman (2005). There is special interest in finding
relationships among different functional data. As in the analysis of data in the scalar case, regression models have been used
to identify these possible relations. Most of the developed models in functional regression consider the response variable as
a scalar (Cardot et al., 2003; Goldsmith et al., 2011; Attouch et al., 2012; Maronna and Yohai, 2013; Tang, 2014; Boente and
Vahnovan, 2017). However, little research exists on the case of functional predictor with a functional response.

A particular case of a functional response with a functional predictor is when the functional data have a temporal
dependence, i.e., we can predict the present using the past. One of the most popular models for functional data with a
temporal dependence structure is the functional autoregressive model of order p: FAR(p). In practice, the autoregressive
order p takes small values such as 1 or 2 (Kokoszka and Reimherr, 2013). Most research has assumed p = 1, and many
analyses have been developedwith FAR(1) (Antoch et al., 2010; Horváth et al., 2010; Kokoszka and Reimherr, 2013).We, too,
assume that the FAR(1) model holds for our data. However, we also suppose that the observed data could be contaminated.
This motivates us to propose a robust estimator for the FAR(1) model.

To define our proposed estimator, we first introduce the FAR(1) model. Let H = L2(D,B(D), λ) be the Hilbert space
of square integrable functions defined on compact subsets D ⊂ R, with inner product ⟨f , g⟩ =

∫
Df (x)g(x) dx, and λ the

Lebesgue measure. Let BH = {ρ : H → H ; ρ is bounded and linear} be the set of all bounded linear operators fromH toH.
Let LqH(Ω,F,P) = {X : (Ω,F,P) → H ; E(∥X∥

q) < ∞} be the set of random variables inHwith finite moments of order q.
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Then, the FAR(1) process is defined as a sequence of functional random variables {Xn(s); s ∈ D, −∞ < n < ∞} in H such
that

(Xn − µ)(s) = ρ(Xn−1 − µ)(s) + Wn(s), (1)

where ρ is an operator in BH, E(Xn) = µ, and {Wn} is functional white noise (Bosq, 2000). Without loss of generality, we
assume that µ = 0. If Xn ∈ L2H the covariance operator at lag h is defined as an element of BH by Γh(z) = E(⟨X0, z⟩Xh) =

E{(X0 ⊗ Xh)z}; the corresponding empirical version is defined as Γ̂h =
1

N−h

∑N−h
i=1 Xi ⊗ Xi+h, where ⊗ denotes the tensor

product.
Under this framework, integral operators form an important class. Let β(t, s) be a fixed measurable function on R2. The

integral operator ρ with kernel β is defined as ρ(z)(s) =
∫
β(t, s)z(t) dt. A crucial issue is to estimate ρ(z) or β(t, s). If model

(1) is satisfied with stationarity conditions, then

Γ1 = ρΓ0, (2)

and if Γ0 is invertible, then ρ = Γ1Γ
−1
0 .However, Γ −1

0 does not exist (Bosq, 2000). There is a significant amount of research
that focuses on avoiding this problem in order to obtain the estimator of ρ under this approach. The method used most
often is the principal component analysis (PCA) approach, where only the first k eigenfunctions corresponding to the largest
eigenvalues are taken into account, and the inverse operator of Γ0 is approximated by Γ −1

0 =
∑k

j=1λ
−1
j vj ⊗ vj. Cardot et

al. (1999) proposed projecting data into a space spanned by finite eigenfunctions of Γ0 to get a bounded Γ −1
0 . Bosq (2000)

used the same idea to predict a FAR(1) model. In general, regularization methods can be applied to compute the inverse,
i.e., (Γ0 + αn)−1 can be computed instead of Γ −1

0 (Crambes and Mas, 2013).
Another approach for estimatingρ is throughβ(t, s)with a least squares (LS) estimator,whichwas first studied byRamsay

and Dalzell (1991), who proposed a penalized LS (PeLS) method. Similarly to the regression model case in R, β̂(t, s) can
be obtained by minimizing errors in the L2-norm. As before, we have an ill-posed problem that requires regularization to
obtain the estimator. Ramsay and Silverman (2005) discussed several approaches, including the assumption of finite basis
function and regularization. Wu and Müller (2011) computed the estimator using a weighted LS approach. Ivanescu et al.
(2015) extended penalized functional regression considering P-splines for the regularization, and Scheipl and Greven (2016)
discussed identifiability issues.

In addition to the estimation problem discussed above, real datasets might face the issue of contamination with different
types of outliers, such as isolated outliers, level shifts in mean, variance change, which affect the parameter estimation.
Several probability models for time series outliers can be defined, such as additive outliers, innovations outliers, and
replacement outliers (see Maronna et al., 2006, Chapter 8). The effect of the outliers is different depending on the type
of outliers. For example, innovation outliers have rather minor effects compared to additive outliers because of leverage
points. The isolated outliers are a special case of the additive outliers model and appear in many phenomena. They could
be associated with data quality, i.e., a mistake made in an observation record. Let Xn be a functional time series. Then Yn is
an observation with isolated outlier at time n if Yn(s) = Xn(s) + v(ζ , s), where v(ζ , s) represents the outlier and ζ is the
contamination size. Notice that the effect is only in the observed time and does not affect the subsequent observations. In
this paper, we suppose that the observed functional time series has isolated outliers.

Detecting outliers could be a challenge; therefore, many methods have been developed to detect them. A common
approach used to detect functional outliers is based on functional depth. Sun and Genton (2011) defined the functional
boxplot, which is based on the modified band depth (MBD) (López-Pintado and Romo, 2009) or other curve rankings.
The functional boxplot detects shift outliers efficiently, even in the case of temporal dependence (Sun and Genton, 2012).
Other proposals for the detection of functional outliers can be found in Hyndman and Shang (2010), Hubert et al. (2015)
and Arribas-Gil and Romo (2015). Huang and Sun (2016) proposed a concept of total variation depth to detect shape and
magnitude outliers, and combined this concept with the functional boxplot. Dai and Genton (2018a) proposed a notion of
directional outlyingness as a centrality measure of functional data, which allows data to be ranked according to magnitude
and shape outlyingness. In this work, we use the two-stage functional boxplot (Dai and Genton, 2018b) to detect outliers,
that is, the functional boxplot combinedwith an outlier detection procedure based on the functional directional outlyingness
proposed in Dai and Genton (2018a). We also use the corresponding depth to down-weight the outliers and obtain a robust
estimator of the kernel surface, β(t, s).

To illustrate the effect of contamination with isolated outliers on a dataset, we simulate {Xi(s) ; s ∈ [0, 1], i =

1, . . . ,N}, using the FAR(1) model with the kernel function β(t, s) = c exp{−(t2 + s2)/2}, where c is such that ∥ρ∥S =

{
∫∫

β2(t, s) dtds}1/2 = 0.5. We consider a modified set of five fixed observations by adding an outlier with Model 2 defined
in Section 4.2. Then, we estimate β(t, s) for each simulation using the PeLS estimator, β̂PeLS (defined in Section 4.1), and
compute the Integrated Squared Error (ISE) (defined in (14)) as a function of the perturbation level ζ . Fig. 1 depicts how the
error increases as the perturbation level increases.

A robust estimator could be achieved in terms of the FAR(1) model by performing a robust estimation of the eigen-
functions, then using the PCA approach. Examples of robust estimators for eigenfunctions can be found in Locantore
et al. (1999), Gervini (2008), Bali et al. (2011), Lee et al. (2013), Boente and Salibian-Barrera (2015) and Dürre et al.
(2016). However, a robust estimation of the eigenfunctions changes the order of the eigenvalues, which would change
the approximation of the covariance structure, due to the truncation procedure (Dürre et al., 2016). Another option is
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Fig. 1. Functional boxplot of ISE values as a function of perturbation level ζ contaminated with Model 2 (Section 4.2), on the estimated kernel surface
β(t, s).

the minimization approach, where we weight the function to be minimized in L1-norm or L2-norm. More generally, we
could consider robust estimation methods such as M-estimation and S-estimation. Maronna and Yohai (2013) proposed
a robust version of a spline-based estimate for a regression model with a scalar response, using an MM-estimate. Gervini
(2012) proposed estimating β in a general framework of functional regression by expanding the data in terms of robust
eigenfunctions and obtaining the estimator viaM-estimation. In general, there are fewworks on robust parameter estimation
in functional times series. Moreover, they tend to be difficult to apply to real datasets and computationally expensive for
large datasets.

The aim of this paper is to propose a robust estimator of the kernel β(t, s) under the presence of replacement outliers.
Our method considers directional outlyingness as a centrality measure to define weights that are used in a PeLS estimation.
Potential outliers in the data correspond to smaller weights. To identify the potential outliers, we use the two-stage
functional boxplot, since this approach is robust to various types of outliers and takes into account the shape and the
magnitude of the functional data.

The remainder of our paper is organized as follows. In Section 2, we define the weights based on the functional depth and
the Depth-based Least Squares (DLS) estimator for the kernel β(t, s), and theoretical properties of the proposed estimator
are studied. In Section 3, we derive the theoretical influence function of the DLS estimator and we present a visualization
tool for the empirical influential function. In Section 4, we compare the performance of our DLS estimator with those of the
PeLS, PCA, and robust PCA estimators under different simulation settings. The performance is measured by the integrated
squared error (ISE) and the empirical influence function (EIF). In Section 5, we analyze a dataset of hourly measurements of
ambient CO2 in California. Finally, in Section 6 we present some discussions and a direction for future work.

2. Robust estimation of the FAR(1) model

There are two main approaches to the study of functional data. The first approach assumes that data are collected
withoutmeasurement errors. Under this assumption, each observed point can be used tomake inferences about the process.
However, if we have a dense array, then we could fall into a big data problem. The second approach assumes that each
curve observed, Xobs(s), is composed of a smooth underlying curve, X(s), with measurement errors in each evaluation point,
i.e., Xobs(s) = X(s)+ e(s). In this approach, inference is based on the underlying curve X(s) and the assumption of some finite
basis functions for X(s); in other words, one selects a basis function and replaces the original data according to the best fit
under this basis. We adopt the second approach.

2.1. Model setting

Let BH be the set of all bounded kernel operators defined as ρ(z)(s) =
∫
Dβ(t, s)z(t) dt , with the norm operator ∥ρ∥S :=

{
∫
D

∫
Dβ

2(t, s) dtds}1/2 and,without loss of generality,D = [0, 1]. Let Xn be a FAR(1) processwith kernelβ(t, s) for the integral
operator, that is,

Xn(s) =

∫
D
β(t, s)Xn−1(t) dt + Wn(s), (3)

such that ∥ρ∥S < 1. Let φ(s) = {φ1(s), . . . , φl(s)}T be a finite basis function defined on D. Assume that Xn(s) can be
approximated by X̂n(s) = bT

nφ(s) =
∑l

i=1bn,iφi(s) and assume that it is the true process. We use the notation Xn and X̂n
indistinctly.

Let S1 = span{ν1, . . . , νk1}, S2 = span{η1, . . . , ηk2}, where ν = {ν1, . . . , νk1}
T and η = {η1, . . . , ηk2}

T are B-spline basis
functions. The linear space spanned by {νi(t)ηj(s)} is denoted by S1 ⊗ S2. We assume that β(t, s) ∈ S1 ⊗ S2 has a tensor
product surface β(t, s) = νT (t)Θη(s), with Θ being a k1 × k2 coefficient matrix.
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In addition, we suppose that the observed functional time series are generated by the model Yn = (1 − Zn)Xn + ZnVn,
where Zn is a Bernoulli process such that P(Zn = 1) = 1− ε, ε ≥ 0, Xn(s) is a FAR(1) process, Vn(ζ , s) is an outlier-generating
process with contamination size ζ such that Vn(ζ , s) = O(ζ ) and it is independent of Zn.

As mentioned before, a regularization method can be applied to solve the inverse issue and the smoothness when
estimating β . Therefore, we implement the PeLSmethod of using a tensor product (B-spline) surface to obtain our estimator.
The inner product matrix of the basis is denoted by Jνη =

∫
ν(s)ηT (s) ds.

2.2. Penalized weighted optimization

We propose estimating β(t, s) using a penalized, weighted LS estimator to reduce the impact of outliers. The weights are
a function of the functional depth, since the use of depth is natural in this context. Depth reaches its maximum at the center
of the data and decreases as it moves further away from the center. The curves near the center (or median curve) correspond
to depth values approximately one and small values to extreme curves, hence, outlying curves are naturally down-weighted
by the depth.

Let d(Xi) be the depth of the curve Xi and wi be the weight based on (d(Xi), d(Xi−1)). Then, we obtain the estimator from
the solution of the following optimization problem:

Θ̂ = min
Θ

[∫
D

N∑
i=2

wi

{
Xi(t) −

∫
D
Xi−1(s)νT (s)Θη(t) ds

}2

dt + P(β)

]
, (4)

in which P(β) is a marginal quadratic penalty that can be expressed as

P(β) = λ1vec(Θ)T Jηη ⊗ P1vec(Θ) + λ2vec(Θ)TP2 ⊗ Jννvec(Θ), (5)

where λ1 and λ2 are the tuning parameters and P1 and P2 are the fixed marginal penalty matrices for the first component
and second component on the kernel surface’s domain, respectively; see Wood (2006) for this tensor representation.

Let BT be the coefficient matrix with rows bT
j , and let B−j denote the matrix B without the column j. Let W be a

(N − 1) × (N − 1) diagonal matrix with elements wi for i = 2, . . . ,N . Using (2) and the empirical version of the covariance
operator, Θ̂ must satisfy(

JTηη ⊗ JTφνB−NWBT
−N Jφν+λ1Jηη ⊗ P1 + λ2P2 ⊗ Jνν

)
vec(Θ̂) = vec

(
JTφνB−NWBT

−1J
T
φη

)
, (6)

which is equivalent to ρ̂(Γ̂ w
0 + ϱP̃) =

N
N−1 Γ̂

w
1 , where Γ̂ w

h represents a weighted estimator of Γh; that is, Γ̂ w
h (z)(s) =

1
N−h

∑N−h
i=1 wi+1⟨Xi, z⟩Xi+h(s). Thus, a robust estimator can be obtained from β̂(t, s) = νT (t)Θ̂η(s), where Θ̂ is the solution

of Eq. (6). We note that the estimator depends on the selection of the weight function and the selection of the type of depth.
To choose the weight function, we perform two steps. First, we identify the potential outliers using the two-stage

functional boxplot; second, we down-weight the outliers using the corresponding functional depth defined from the
directional Stahel–Donoho outlyingness.

The two-stage functional boxplot consists of the following procedure. For each s, let dSDO(X0(s), FX(s)) = u(s) · |X0(s) −

X̃(s)|/MAD{X(s)} be the directional Stahel–Donoho outlyingness (dSDO), where u(s) = {X0(s)− X̃(s)}/|X0(s)− X̃(s)|, X̃ is the
median of X , and MAD(X) is the Median Absolute Deviation of X . Let MO and VO be defined as

MO(X, FX ) =

∫
dSDOX (s) ds and VO(X, FX ) =

∫
∥dSDOX (s) − MO∥

2 ds.

A curve Xi is considered as an outlier if its corresponding (MOi,VOi) is an outlier with respect to the population distribution
of (MO,VO), see Dai and Genton (2018a). Let S1 be a subset of the indexes such that, for each i ∈ S1, Xi is an outlier. Then, we
obtain new indexes of abnormal curves, S2, applying the functional boxplot to the remaining non-outlying curves, Xj, j ̸∈ S1.
Let S = S1 ∪ S2 be the set of indexes of outlying curves.

We consider the functional directional outlyingness (FO) as FO(X, FX ) =
∫
DdSDO(X(s), FX(s))

2 ds, and propose using the
corresponding depth as follows:

dO(X, FX ) =
1

1 + FO(X, FX )
∈ [0, 1]. (7)

Let dOi be the depth of observation i, and let c = max{dOj ; j ∈ S}. With this depth and the two-stage functional boxplot,
we define the weights as follows.

Definition 1 (Weights Based on dO(X, FX )). Let {Xi}
N
i=1 be a FAR(1) observed time series. Define the weight wi as

wi = W (di) = 1(c,1](di) + dOidOi−11[0,c](di), (8)

where di = min{dOi, dOi−1} and 1A(x) is the indicator function.

Remark 1. The parameter di indicates if Xi or Xi−1 are detected as outliers. If di ≤ c , then Xi and Xi−1 are down-weighted
with their corresponding depths values.
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Observe that, if Vn(ζ , s) = O(ζ ) then F (Vn, FX ) has the same order, O(ζ 2), than V 2
n (ζ , s) when ζ → ∞, thus the effect of

the outlier in the optimization problem (4) is ‘‘removed’’ by the corresponding depth dO(Vn, FX ).

Definition 2 (Depth-based Least Squares (DLS) Estimator). Let {Xi}
N
i=1 be a functional time series such that the FAR(1) model

holds. Then, the DLS estimator is β̂DLS(t, s) = νT (t)Θ̂DLSη(s), where Θ̂DLS is the solution of the optimization problem (6) with
weights wi as in (8).

Algorithm 1 presents the steps followed to obtain the DLS estimator for the observed functional time series {Xi(s) ; s ∈

D, i = 1, . . . ,N}.

Algorithm 1.

1. For i = 1, . . . ,N , compute dOi from (7).
2. Use the two-stage functional boxplot to obtain S and set c = max{dOj; Xj is an outlier}.
3. Compute wi and let Θ̂ be the solution to Eq. (6).

The next proposition shows the consistency of the corresponding operator ρ̂(z)(s) =
∫
β̂DLS(t, s)z(s)dt. Its proof is in

Appendix A. Let ∥z∥2
= ⟨z, z⟩ be the associated norm in H.

Proposition 1. Assume that Xn(s) = bT
nφ(s) is a FAR(1) process, ∥X0∥ ≤ M1 < ∞ a.s., and there exists a continuous differentiable

function W on (0, 1) that approximates W uniformly, i.e., for every ϵ > 0 there exists N1 ∈ N such that |W(di) − W (di)| < ϵ,
i ∈ {1, . . . ,N}, for all N > N1. Let λ1 → 0 and λ2 → 0 as N → ∞. Then,

sup
∥z∥≤1

∥ρ(z) − ρ̂(z)∥ = oP (1),

if one of the following conditions holds:

(a) The parameter c in Definition 1 is such that c → 0 a.s. as N → ∞, or
(b) bn has a symmetric distribution about the origin 0.

Remark 2. Condition (a) holds when themethod to detect outliers is efficient, which is satisfied for the two-stage functional
boxplot. Condition (b) holds, for example, when the functional data follow a Gaussian process.

The DLS estimator reduces the impact of the outliers on the estimation of the kernel surface β(t, s), down-weighting the
outliers similarly to the weighted LS estimator in the case of different variances in a univariate regression model. Indeed,
FO(X, FX ) can be decomposed as FO(X, FX ) = MO(X, FX )2 + VO(X, FX ), where MO(X, FX ) describes the position of X relative
to the center curve; that is, |MO(X, FX )| represents the magnitude outlyingness (MO) and VO(X, FX ) represents the shape
outlyingness (VO), see Dai and Genton (2018a) for details.

3. Influence function of the DLS estimator

3.1. Theoretical influence function

To measure the robustness of an estimator, we use the influence function (IF) (Hampel et al., 1986). IF is a particular
case of the Gâteaux derivative. We consider a random variable with distribution F on R, where x0 ∈ R and T (F ) is a
functional defined on the space of distribution functions, F = {F + ε(δx − F )} with ε ∈ [0, 1]. IF is defined as IF(x0; T , F ) =

limε↓0
1
ε
[T {(1− ε)F + εδx0}− T (F )], where δx is the distribution that assigns mass one to x. This represents the rate of change

in the functional T as a result of a small contamination by another distribution, G = δx. However, in time series analysis,
the form of contamination (1 − ε)F + εδx0 is not realistic. Martin and Yohai (1986) introduced another definition of IF for a
time series in which time series contamination is defined as Y ε

n = (1− Zε
n )Xn + Zε

nVn, where Xn is a stationary process, Zn is a
Bernoulli process such that P(Zε

n = 1) = ε, and Vn is an outlier-generating process. Then, the time series IF of T is defined as

IF(FX,Z,V ; T ) = lim
ε↓0

1
ε
{T (F ε

Y ) − T (FX )}, (9)

where F ε
Y is the joint distribution of Y ε

n , FX is the joint distribution of Xn, and FX,Z,V is the joint distribution of Xn, Zε
n , and

Vn. We note that (9) is valid in a general setting, even for random variables with values in the Hilbert space as defined in
Section 1; that is, Xn and Vn are functional stochastic processes.

The next proposition shows that the IF corresponding to the DLS estimator is bounded. Let TDLS
: F → S1 ⊗ S2 be the

functional TDLS(FX ) = βDLS where βDLS(t, s) = νT (t)ΘDLSη(s). We note that the ΘDLS determines the values of TDLS, and,
without confusion, we denote by vec(TDLS) the corresponding vec(ΘDLS).
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Fig. 2. Norm of mean empirical influence function (MEIF) (a) and functional hair-plot (b) for the β̂PeLS kernel estimator with contamination Model 1.
Observation 11 is indicated by the red dashed line.

Proposition 2. Let Xn(s) = bT
nφ(s) be a functional process such that the FAR(1) model holds and let Vn(ζ , s) = vTnφ(s) be the

outlier-generating process with Vn(ζ , s) = O(ζ ). The influence function of TDLS is given by

vec{IFn(FX,Z,V ; TDLS)} =

{
EFX

(
JTηη ⊗ JTφνbnbT

n Jφν + λ1Jηη ⊗ P1 + λ2P2 ⊗ Jνν
)−1

}
(10)

×

{
EFVn,Vn+1

(γnvnvTn+1) − EFVn,Vn+1
(γnvnvTn )vec(ΘDLS)

}
,

and it is bounded, where γn = dO(Vn, FX )dO(Xn+1, FX ).

The proof is in Appendix A. We observe that vec{IFn(FX,Z,V ; TDLS)} = IFn(FX,Z,V ; vec(TDLS)), so we conclude that Eq. (10)
defines the IF of the TDLS.

3.2. Empirical influence function

In practice, we use an empirical version of the IF (EIF) to quantify the influence of a contaminated observation i on the
estimator β̂(t, s) of the kernel. Let X = {Xi(s) ; s ∈ D, i = 1, . . . ,N} be a FAR(1) time series of length N , and let β̂(X) be the
kernel surface estimator using data X. The EIF of β̂(t, s) from an observation i is defined as

EIFi(β̂,X, ζ ) = N
{
β̂(X[i, ζ ]) − β̂(X)

}
, (11)

whereX[i, ζ ] is equal toX, except on the ith curvewhere it is replaced by the contaminated curveVi(ζ , s),with contamination
size ζ and s ∈ D; see Section 4.2 for contamination models.

If there is no temporal dependence, then the EIF is independent of the index i. In our case, we have temporal dependence.
To measure the effect of contamination at all possible locations, we consider the mean EIF (MEIF):

MEIFN (β̂,X, ζ ) =

N∑
i=1

{
β̂(X[i, ζ ]) − β̂(X)

}
. (12)

To visualize the EIF we consider a hair-plot. A hair-plot for the scalar case was proposed by Genton and Ruiz-Gazen
(2010) as a tool for visualizing influential observations in dependent data. To extend the hair-plot to the functional case,
we plot the norm ∥EIFi(β̂,X, ζ )∥S versus ζ . We visualize the MEIF in a similar way, i.e., ∥MEIF(β̂,X, ζ )∥S versus ζ . Fig. 2(a)
shows the MEIF and Fig. 2(b) shows the functional hair-plot of β̂PeLS(t, s) with β(t, s) = c exp{−(t2 + s2)/2}, where c is
such that ∥ρ∥S = 0.5, and the model of contamination is Vi(ζ , s) = Xi(s) + ζ . From the MEIF, we see that if |ζ | increases,
then the ∥MEIF∥S increases. From the hair-plot, we see that the ∥EIFi∥S is different depending on the location; in this case,
contamination in observation 11 results in a higher influential observation. Amore exhaustive simulation study is performed
in Section 4.4 to compare the IF of β̂DLS(t, s) and the IF of β̂PeLS(t, s) defined in Section 4.1.

4. Monte Carlo simulation study

4.1. Competing estimators

In this section, we investigate the performance of the DLS estimator (defined in Section 2). We consider different kernels
and vary the contamination level with different types of outliers. We use the R package fda with the proposed weights to
compare the DLS estimator with the following estimators:
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1. PeLS estimator: β̂PeLS(t, s) = νT (s) ˆΘPeLSη(t), where Θ̂PeLS is solution to (4) and wi = 1 for all i.
2. PCA estimator:

β̂PCA(t, s) =
1

N − 1

N−1∑
l=1

k∑
j=1

k∑
i=1

λ̂−1
j ⟨Xl, v̂j⟩⟨Xl+1, v̂i⟩v̂j(s)v̂i(t),

where v̂i(s) denotes the eigenfunctions of Γ̂0.
3. RPCA estimator: Similar to PCA estimator, but replaces v̂i(s) with v̂R

i (s), where v̂R
i (s) denotes the robust eigenfunctions

proposed by Hyndman and Ullah (2007).

4.2. Simulation setting

We simulate {Xi(s) ; s ∈ [0, 1], i = 1, . . . ,N} by using the FAR(1) model from Eq. (3) with two different types of kernel
functions (β(t, s)) and two types of functional white noise, approximated on a fixed grid. The considered kernel functions
are (a) the Gaussian kernel, β1(t, s) = c exp{−(t2 + s2)/2} and (b) the linear kernel, β2(t, s) = c t , where c , in both cases, is
such that ∥ρ∥S = 0.5. The error terms considered are (a) the BrownianmotionW (s), s ∈ [0, 1], and (b) the Brownian bridge,
W̃ (s) = W (s) − sW (1), s ∈ [0, 1].

We consider the sample sizes N = 200 and N = 300, at m = 100 points equispaced on [0, 1], and M = 1000 replicates.
We fit a cubic B-spline basis for each simulated curve for a total of 15 basis functions, i.e, Xi(s) =

∑15
r=1br,iφr (s). Similarly,

we take 15 basis functions for ν and η on the tensor representation of β(t, s). The considered penalty functions in (5) are as
follows:

P1 =

∫ {
∂2

∂s2
ν(s)

}{
∂2

∂s2
νT (s)

}
ds and P2 =

∫ {
∂2

∂s2
η(s)

}{
∂2

∂s2
ηT (s)

}
ds. (13)

We determine the tuning parameters λ1 and λ2 through cross-validation. The same method is used to determine the
parameter k on PCA and RPCA estimators.

We consider five contaminationmodels to produce outliers into themodel Y ε
n = (1−Zε

n )Xn+Zε
nVn, where Zε

n is a Bernoulli
process such that P(Zε

n = 1) = ε (see Sun and Genton, 2011 for the first four models):

1. Model 1 (no contamination): Vn(ζ , s) = Xn(s);
2. Model 2 (shifted outlier): Vn(ζ , s) = Xn(s) + σζ , where ζ is the contamination size and σ has a Bernoulli distribution

on {−1, 1} with probability 1/2;
3. Model 3 (partially contaminated): Vn(ζ , s) = Xn(s) + σζ1[U,1](s), with the same parameters as Model 2, where U has

a uniform distribution on [0, 1];
4. Model 4 (contaminated by peaks): Vn(ζ , s) = Xn(s) + σζ1[U,U+l](s), with the same parameters as Model 2, where U

has a uniform distribution on [0, 1 − l]; and
5. Model 5 (contaminated with functional white noise): Vn(ζ , s) = Wn(s), where Wn is functional white noise.

We fix ζ = 1.5 and l = 1/4, and we vary the contamination levels (ε), ε = 0.05, ε = 0.10, and ε = 0.15. Fig. 3 shows a
simulation set from each of these models with the Gaussian kernel and the Brownian bridge. To evaluate the performance,
we compute ISE as:

ISE =

√∫
D

∫
D

{
β(t, s) − β̂(t, s)

}2
dtds. (14)

4.3. Simulation results

Weonly present theGaussian kernel resultswithwhite noise W̃ , since the results from the linear kernel andW are similar
(available in the online supplement). Table 1 presents a complete summary of the mean of ISE (MISE) values from all of the
simulation settings. The presence of outliers in the data increases the ISE values, and themagnitude varies depending on the
type of outliers, except for the RPCA estimator. The non-robust estimators, PeLS and PCA, produce larger ISE values than the
others, especially for Model 2. The RPCA estimator presents constant ISE values in all simulation settings, indicating that it
is robust, but its performance is still not satisfactory. It is worth mentioning that the RPCA outperforms the PeLS and PCA
estimators when ζ increases (see the online supplement). In contrast, the ISE values obtained by applying our DLS method
do not significantly increase in the presence of outliers and are smaller than the corresponding RPCA estimator. This result
is consistent across all simulation settings, even when varying N and the error term.

The DLS estimator outperforms the others estimators in all cases, having the smallest MISE values. Moreover, we can
notice that when there is no contamination, the DLS estimator is as accurate as the PeLS estimator.

The norm of the corresponding operator (ρ) defined by the kernel β(t, s) must be estimated more accurately, since this
value indicates the grade of persistence or dependency on the functional time series. Under the stationarity assumptions of



I. Martínez-Hernández et al. / Computational Statistics and Data Analysis 131 (2019) 66–79 73

Fig. 3. Simulated samples from Models 2, 3, 4 and 5. The red curves are outliers detected by the two-stage functional boxplot. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

the FAR(1) model (Bosq, 2000), the norm of the operator ρ should be less than one, i.e., ∥ρ∥S < 1. In our simulation, we set
∥ρ∥S = 0.5.

When contaminated by outliers, these normvalues are affected. Similar to the ISE value results, the non-robust estimators,
PeLS and PCA, are the most affected, especially by the shifted outlier in Model 2, producing norms that are much too large.
In contrast, the norm values obtained from the DLS estimator are more accurate than those of the other estimators in all of
the simulation settings. Boxplot results can be found in the supplementary online material.

4.4. Mean empirical influence function

We calculate the Mean Empirical Influence Function (MEIF) of the DLS estimator to determine its robustness. We also
present the MEIF for the PeLS estimator for comparison. We use the MEIF to explore the influence of contamination at all
possible locations, instead of the EIF, which depends on the individual observation index i. To illustrate the performance in
terms of theMEIF, we simulate realizations from the FAR(1) process with the Gaussian kernel, β(t, s) = c exp{−(t2 + s2)/2},
where c is such that ∥ρ∥S = 0.5 with sample size N = 200. For each simulation, {Xi(s)}Ni=1, we compute the MEIF
from Eq. (12) with different models of contamination; that is, Vn(ζ , s) = Model 2, Model 3, and Model 4. We vary ζ from
−14 to 14 and perform a Monte Carlo study with 100 replicates.

Fig. 4 shows the Hilbert–Schmidt norm of each MEIF (∥MEIF∥S ) as a function of ζ for each simulation. We observe
that the ∥MEIF∥S corresponding to the DLS estimator remains constant as |ζ | increases. On the other hand, the ∥MEIF∥S
corresponding to the PeLS estimator increases as |ζ | increases.

In real applications, accurately estimating the kernel surface (β(t, s)) and the norm of the operator ρ is important. Indeed,
to guarantee the stationarity assumption, we must have a norm less than one. Our method estimates ∥ρ∥S more accurately
than the other estimators in the presence of outliers. In conclusion, the DLS estimator is a robust method to fit the FAR(1)
model.

5. Data application

We consider daily curves of CO2 measurements (ppm units) from the California Air Quality Data published by the
California Air Resources Board. From Fig. 5, we expect some days with extreme measurements that affect the statistical
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Table 1
MISE values from Monte Carlo simulation study with the Gaussian kernel
(β(t, s)) and functional white noise W̃ (Brownian bridge). Models 1, 2, 3, 4,
and 5 indicate the different types of contamination (defined in Section 4.2);
the contamination level varies from 0.05 to 0.15 and sample sizes are N =

200 and N = 300. Bold font is used to highlight the best performance.

N = 200 Model 1 Model 2 Model 3 Model 4 Model 5

ε = 0.05
PeLS 0.162 0.350 0.273 0.166 0.220
DLS 0.173 0.186 0.175 0.176 0.184
PCA 0.241 0.275 0.272 0.251 0.257
RPCA 0.415 0.415 0.415 0.415 0.415

ε = 0.10
PeLS 0.162 0.452 0.337 0.172 0.276
DLS 0.173 0.197 0.182 0.177 0.208
PCA 0.241 0.342 0.314 0.261 0.285
RPCA 0.415 0.415 0.415 0.415 0.415

ε = 0.15
PeLS 0.162 0.510 0.358 0.181 0.320
DLS 0.173 0.223 0.191 0.180 0.231
PCA 0.241 0.379 0.347 0.271 0.320
RPCA 0.415 0.415 0.415 0.415 0.415

N = 300 Model 1 Model 2 Model 3 Model 4 Model 5

ε = 0.05
PeLS 0.135 0.323 0.260 0.138 0.200
DLS 0.144 0.149 0.146 0.142 0.155
PCA 0.237 0.272 0.268 0.246 0.252
RPCA 0.412 0.412 0.412 0.412 0.412

ε = 0.10
PeLS 0.135 0.417 0.323 0.146 0.261
DLS 0.144 0.163 0.151 0.146 0.178
PCA 0.237 0.341 0.311 0.255 0.283
RPCA 0.412 0.412 0.412 0.412 0.412

ε = 0.15
PeLS 0.135 0.470 0.350 0.157 0.300
DLS 0.144 0.190 0.168 0.146 0.207
PCA 0.237 0.380 0.348 0.267 0.316
RPCA 0.412 0.412 0.412 0.412 0.412

analysis. As in Section 4, we compare the PeLS, DLS, PCA, and RPCA estimations of the kernel surface (β(t, s)). We analyze
hourly measurements of the CO2 concentration (ppm units) in the ambient air in California, during the period of October 20,
2009, to February 14, 2011, for a total of 11,592 observations. These data can be downloaded from https://www.arb.ca.gov/
aqd/aqdcd/aqdcddld.htm. Here we focus on 483 daily trajectories of the data, where each curve has 24 observations (hourly
data); see Fig. 5. Due to the structure of the data, there is a natural dependence between the CO2 concentration during the
final hours of a day and the CO2 concentration during the early hours of the next day. Also, there is a dependence between
the CO2 concentration on a given day at hour h1 and the CO2 concentration on the next day at the same hour h1. We expect
our model to capture both dependencies. There are 44 missing observations. Since the goal is to describe the underlying
dynamic changes of a continuous curve, we replace missing observations with the average of their two closest neighbors.

In this analysis, our goal is to understand the dependency of the CO2 daily concentration on the previous profile. We
explore how the data analysis can be affected by the presence of outliers. The p-value of the test from Horváth et al. (2014)
for log CO2 data is 0.5, hence we conclude that the functional time series is stationary. The following dates are identified as
outliers by the two-stage functional boxplot:

11/16/2009 11/25/2009 12/21/2009 12/23/2009 1/11/2010 1/12/2010
1/23/2010 2/14/2010 11/5/2010 11/11/2010 11/22/2010 11/23/2010

11/25/2010 11/27/2010 11/29/2010 12/5/2010 12/6/2010 12/7/2010
12/23/2010 12/24/2010 1/15/2011 1/24/2011 1/25/2011 1/26/2011
1/27/2011 1/28/2011.

There are some curves that show fluctuation throughout the day, for example from 2/6/2011 to 2/13/2011, see Fig. 6(b).
However, from the functional boxplot in Fig. 5, we know that this behavior is not the most common in the data.

Fig. 7 shows the estimated kernel surface for the CO2 log curves. Fig. 7(b) represents the PeLS estimator. Despite the fact
that the stationarity test indicates that the data are stationary, the norm of the operator with βPeLS(t, s) is greater than one:
∥ρ̂βPeLS∥S ≈ 2.43. This means that the estimated FAR(1) model is non-stationary. Fig. 7(a) corresponds to the robust DLS
estimator, which has a norm close to 0.39, which agrees with the test. Following Section 4, we can say that this value is more

https://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
https://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
https://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
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Fig. 4. Functional boxplot of the norm ∥MEIF∥S for each simulation of β̂PeLS(t, s) (top) and β̂DLS(t, s) (bottom). In this case N = 200, β(t, s) is the Gaussian
kernel, andWn is the Brownian bridge.

Fig. 5. Daily trajectories of the log of CO2 data during the period of October 20, 2009, to February 14, 2011 (left), and two-stage functional boxplot of the
log of CO2 data (right) showing the outliers detected.

accurate. The operator norm estimated for PCA is ≈ 1.44 and for RPCA it is ≈ 0.01. These represent an example where the
use of a non-robust method can affect the stationarity assumption.

TheMISE values are 0.06, 0.15, 0.06, and 0.04 for the DLS, PeLS, RPCA, and PCA estimators, respectively. Although theMISE
values of PCA are smaller than the others, this estimator corresponds to a non-stationary process. Therefore, we prefer to
use the DLS or RPCA estimators. Regarding the shape of the estimated surface, the PCA and RPCA estimators produce similar
shapes but on different scales. We observe some of the daily profiles that peak before decreasing to a plateau dominate the
principal component. The PeLS estimator, β̂PeLS(t, s), depends only on variable t , which means that the predicted response
is a constant function. In addition, the PeLS estimator gives more weight to the last hour of the day, suggesting that the
entire daily curve could be completely determined by that one hour. In contrast, the DLS estimator captures the intraday
and intraperiod dependencies more accurately by giving more weight to final hours of the previous day, but also by giving
more weight to data from the same hours of the day across different days. Considering the accurate estimation of the norm
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(a) (b)

Fig. 6. Seven days of consecutive curves of the log of CO2 data from 5/4/2010 to 5/11/2010 (a), and seven days of consecutive curves from 2/6/2011 to
2/13/2011 (b).

(a) (b)

(c) (d)

Fig. 7. Kernel surface estimator for functional time series of the log of ambient CO2 concentrations in California. (a) DLS estimator, (b) PeLs estimator, (c)
RCPA estimator with eigenfunctions k = 3, and (d) PCA estimator with eigenfunctions k = 3.

produced by the DLS estimator and the reasonable interpretability of the kernel surface, we conclude that the DLS estimator
is superior.

6. Discussion

In this paper, we proposed the DSL estimator, a depth-based robust estimator of the kernel surface β(t, s) in the FAR(1)
model, using penalized, weighted least squares. We down-weighted possible outliers by defining the weights as a function
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of outlyingness. To detect outliers, we used the two-stage functional boxplot. Proposition 2 showed that the influence
function of the proposed estimator is bounded for replacement outliers, which is an attractive property. We also presented
a visualization tool similar to the hair-plot proposed by Genton and Ruiz-Gazen (2010), to visualize influential observations
for functional time series. In the Monte Carlo simulation study we demonstrated that the DSL estimator performs well with
different simulation settings. Moreover, we demonstrated that, with the proposed robust estimator, the operator norm
does not significantly change in the presence of outliers, a desirable property. Other notions of depths with the property
d(Vn, FX ) = O(1/ζ 2) could be used in this framework, but we prefer to use the directional Stahel–Donoho outlyingness,
because it performs well and provides a natural extension to the multivariate case for future work, including an extension
to the FAR(p) model.

Acknowledgments

This research was partially supported by (1) CONACYT, México, scholarship as visiting research student, (2) CONACYT,
México, CB-2015-01-252996, and (3) King Abdullah University of Science and Technology (KAUST). The authors thank the
two anonymous referees for their valuable comments.

Appendix A

Proof of Proposition 1. Assume condition (a) holds. Denote by ∥ · ∥L the uniform norm of operators, and observe that
∥ · ∥L ≤ ∥ · ∥S . Let Γ̂ w

0 be the corresponding depth-based estimator of Γ0, i.e.,

Γ̂ w
0 (z)(t) =

∑N
i=1 wiXi ⊗ Xi(z)(t)∑N

i=1 wi
=

zT Jφφ
∑N

i=1 wibibT
i φ(t)∑N

i=1 wi
,

for z(t) = zTφ(t). Let Ŵ(·) be the evaluation of W on the empirical di. Then,

Γ̂ w
0 =

∑N
i=1 wiXi ⊗ Xi∑N

i=1 wi
=

∑N
i=1 Ŵ(di)Xi ⊗ Xi +

∑N
i=1{wi − Ŵ(di)}Xi ⊗ Xi∑N

i=1 Ŵ(di) +
∑N

i=1{wi − Ŵ(di)}
.

By the stationarity assumption of Xt , we claim that∑N
i=1 Ŵ(di)Xi ⊗ Xi(z)∑N

i=1 Ŵ(di)
a.s.

−→
N→∞

Γ w
0 (z) :=

E{W(d0)⟨X0, z⟩X0}

E{W(d0)}
,

∑N
i=1{wi − Ŵ(di)}Xi ⊗ Xi∑N

i=1 Ŵ(di) +
∑N

i=1{wi − Ŵ(di)}
a.s.

−→
N→∞

E[{W (d0) − W(d0)}X0 ⊗ X0]

E{W(d0)} + E[{W (d0) − W(d0)}]
,

 E[{W (d0) − W(d0)}X0 ⊗ X0]

E{W(d0)} + E[{W (d0) − W(d0)}]


L

≤
ϵM2

1

c1
a.s.

−→
ϵ→0

0,

and N−1∑N
i=1{wi − Ŵ(di)} −→

N→∞

0. Using the above, it follows that ∥Γ̂ w
0 − Γ w

0 ∥L → 0, and using the assumption c → 0

as N → ∞, we obtain that W ≡ 1, and ∥Γ w
0 − Γ0∥L → 0. Therefore ∥Γ̂ w

0 − Γ0∥L ≤ ∥Γ̂ w
0 − Γ w

0 ∥L +
Γ w

0 − Γ0

L → 0.

Adding the penalization term Γ̂ w
0 + ϱP̃ we obtain a similar result,

∥Γ̂ w
0 + ϱP̃ − Γ0∥L → 0 (15)

if ϱ → 0 as N → ∞. Using the same arguments in the covariance operator at lag one, Γ̂ w
1 , we obtain

∥Γ̂ w
1 − Γ1∥L → 0. (16)

We are now in a position to show the consistency. Following Bosq (2000), and the fact that ∥Γ −1
0 ∥ is bounded, we have

ρ̂ − ρ = (Γ̂ w
1 − Γ1)(Γ̂ w

0 + ϱP̃)−1
+ Γ1(Γ̂ w

0 + ϱP̃)−1
{Γ0 − (Γ̂ w

0 + ϱP̃)}Γ −1
0 ,

consequently, ∥ρ̂ − ρ∥L ≤ ∥(Γ̂ w
0 + ϱP̃)−1

∥L{∥Γ̂ w
1 − Γ1∥L + ∥Γ1∥L∥Γ −1

0 ∥L∥Γ̂ w
0 + ϱP̃ − Γ0∥L}, and by using (15) and (16),

the proof is complete.
Assume condition (b) holds. From Zuo and Cui (2005), it follows that

σ̂w
h (t, s) = φ(t)T

∑N
i=1 wibibT

i+h∑N
i=1 wi

φ(s),



78 I. Martínez-Hernández et al. / Computational Statistics and Data Analysis 131 (2019) 66–79

is a consistent estimator of κσh(t, s). Since σ̂w
h (t, s) and σh(t, s) are the kernel of the covariance operator Γ̂ w

h and Γh,
respectively, it follows that Γ̂ w

h is a consistent estimator of κΓh, h = 0, 1. By similar arguments to the case (a), we have

ρ̂ − ρ = (Γ̂ w
1 − κΓ1)(Γ̂ w

0 + ϱP̃)−1
+ κΓ1(Γ̂ w

0 + ϱP̃)−1
{κΓ0 − (Γ̂ w

0 + ϱP̃)}(κΓ0)−1.

Therefore, ∥ρ̂ − ρ∥L ≤ ∥(Γ̂ w
0 + ϱP̃)−1

∥L{∥Γ̂ w
1 − κΓ1∥L +∥Γ1∥L∥Γ −1

0 ∥L∥Γ̂ w
0 + ϱP̃ − κΓ0∥L}, and by using the consistency

of Γ̂ w
h for κΓh, the proof is complete. □

Proof of Proposition 2. We represent Xn(s) and Vn(ζ , s) with a finite basis function; Xn(s) = xTnφ(s) and for each ζ ,
Vn(ζ , s) = vTnφ(s). Without confusion, we write Y instead of Y ε . Let FX and FY be the joint distributions of Xn and Yn,
respectively. Let vec(ΘDLS) be such that βDLS(t, s) = νT (t)ΘDLSη(s). Define Xn,n, Vn,n, Xn,n+1, Vn,n+1, and P as

Xn,n :=JTηη ⊗ JTφνxnx
T
n Jφν,

Vn,n :=JTηη ⊗ JTφνvnv
T
n Jφν,

Xn,n+1 :=vec
(
JTφνxnx

T
n+1J

T
ψη

)
,

Vn,n+1 :=vec
(
JTφνvnv

T
n+1J

T
ψη

)
,

P :=λ1Jηη ⊗ P1 + λ2P2 ⊗ Jνν.

We know that vec(ΘDLS) satisfies

EFX (Xn,n + P)vec(ΘDLS) = EFX (Xn,n+1).

If we let FYn,n+1 be the joint distribution of the bivariate process (Yn, Yn+1), then the bivariate contamination distribution is
FYn,n+1 = (1−ε)FXn,n+1 +εFVn,n+1 .Denote by vec(Θε

DLS) the corresponding estimator using process Yn. Therefore, the equation
EFY (Xn,n + P)vec(Θε

DLS) = EFYn,n+1
(Xn,n+1) is equivalent to{

(1 − ε)EFXn,n+1
(Xn,n + P) + εEFVn,n+1

(γtVn,n)
}
vec(Θε

DLS) = (1 − ε)EFXn,n+1
(Xn,n+1) + εEFVn,n+1

(γnVn,n+1).

We differentiate with respect to ε and evaluate at ε = 0:

EFXn,n+1
(Xn,n + P)

∂

∂ε
vec(Θε

DLS)
⏐⏐
ε=0 + EFVn,n+1

(γnVn,n)vec(ΘDLS) = EFVn,n+1
(γtVn,n+1).

We observe that ∂
∂ε
vec(Θε

DLS)|ε=0 = vec( ∂
∂ε
Θε

DLS|ε=0) = vec(IF(FX,Z,V ;ΘDLS)) = IF(FX,Z,V ; vec(ΘDLS)). Thus,

IF(FX,Z,V ; vec(ΘDLS)) ={EFXn,n+1
(Xn,n + P)}−1

{EFVn,n+1
(γnVn,n+1) − EFVn,n+1

(γnVn,n)vec(ΘDLS)}.

The contamination is only found in one component; i.e., the joint distribution FVn,n+1 is such that FVn,n+1 = δ(Vt (ζ ,s),Xn+1(s)),
where δ(v1,v2)(x, y) is the distribution that assignsmass one to (v1, v2). To prove that the corresponding IF is bounded,we note
that by definition γn = dO(Vn, FX )dO(Xn+1, FX ) and dO = 1/(1 + FO), therefore γn = O(1/ζ 2). Since Vn,n = JTηη ⊗ JTφνvnv

T
n Jφν ,

and FVn,n+1 = δ(Vn(ζ ,s),Xn+1(s)), we have

EFVn,n+1
(γnVn,n) = γnJTηη ⊗ JTφνvnv

T
n Jφν = O(1/ζ 2)O(ζ 2) = O(1),

and

EFVn,n+1
(γnVn,n+1) = γnJTηη ⊗ JTφνvnx

T
n+1Jφν = O(1/ζ 2)O(ζ ) = O(1/ζ ).

Consequently,EFVn,n+1
(γnVn,n+1)−EFVn,n+1

(γnVn,n)vec(ΘDLS) = O(1), andwe conclude that IF(FX,Z,V ; vec(ΘDLS)) is bounded. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2018.06.003.
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