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Facing increasing domestic energy consumption from population growth and industrialization, Saudi Arabia is aiming to reduce
its reliance on fossil fuels and to broaden its energy mix by expanding investment in renewable energy sources, including wind
energy. A preliminary task in the development of wind energy infrastructure is the assessment of wind energy potential, a key
aspect of which is the characterization of its spatio-temporal behavior. In this study we examine the impact of internal climate
variability on seasonal wind power density fluctuations over Saudi Arabia using 30 simulations from the Large Ensemble
Project (LENS) developed at the National Center for Atmospheric Research. Furthermore, a spatio-temporal model for daily
wind speed is proposed with neighbor-based cross-temporal dependence, and a multi-variate skew-t distribution to capture
the spatial patterns of higher-order moments. The model can be used to generate synthetic time series over the entire spatial
domain that adequately reproduce the internal variability of the LENS dataset.
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1. INTRODUCTION

Wind energy has become an important component of energy portfolios for many developed and developing
nations worldwide. This trend is largely driven by technological advances that enable more efficient harnessing
of available wind energy and its integration into energy transmission networks, but is also due to growing recog-
nition of the importance of renewable energy sources in climate change mitigation strategies (Bruckner et al.,
2014; Zhu and Genton, 2012, and references therein). For instance, Denmark relies on wind energy for nearly
40% of its domestic energy consumption, and this number is expected to rise to 50% by 2020 (DEA, 2016). In
2015, China added 33 GW of new installed capacity, to reach a total capacity of 148 GW, representing an increase
of 29% (WWEA, 2016). These and other examples provide convincing evidence that wind energy offers a viable
alternative to traditional fossil fuel-based energy sources, and are paving the way for other nations to exploit this
renewable and clean energy resource.

Saudia Arabia, with its vast oil reserves, has a long tradition of relying solely on fossil fuels for its energy
needs. However, faced with rising energy demands due to population growth and industrialization, it is actively
seeking to diversify its energy mix by expanding its renewable energy portfolio to 54 GW by 2032, of which
9 GW will come from wind power (KA-CARE, 2012). Due to the inherent variability and limited predictability
of the wind resource, assessing its spatial and temporal characteristics is a critical step in the development of
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wind energy infrastructure. Several studies have sought to quantify the wind potential over Saudi Arabia (e.g.,
Rehman and Ahmad, 2004; Rehman et al., 2007; Shaahid et al., 2014), however, these have mostly focused on just
a few locations, largely due to the country’s sparse observational network with varying record lengths. A recent
study by Yip et al. (2016) used a gridded reanalysis dataset with a multi-decadal record period to provide a more
comprehensive assessment, evaluating the abundance of the wind resource over the Arabian Peninsula. The authors
also investigated its variability and intermittency, as these pose the greatest challenges to the integration of wind
energy into existing power grid systems. In this study, as part of an ongoing collaborative effort with the National
Center for Atmospheric Research (NCAR), we focus on the spatio-temporal characteristics of this resource over
Saudi Arabia. Wind speeds fluctuate over a wide range of frequencies, with those of the order of days governed by
general weather patterns, while shorter frequencies are driven by local effects and turbulence (Pinson, 2013). Our
focus is on very low frequencies, where long-term wind trends and the effects of human activities may potentially
play a role. In particular, this is the first study that investigates the sensitivity of wind energy potential to internal
climate variability, that is, the variability that is intrinsic to the climate system due to the complex interactions
between its components at various temporal and spatial scales. Only recently has this source of variability been
properly identified in the geophysical community (i.e., Deser et al., 2012, 2014), and its impact is just beginning to
be understood. Because of the decadal timescales at which this source of variability operates, the characterization
of its impact usually relies on simulations from Earth system models (ESMs), which, in addition to solving the
atmospheric governing equations, include processes from other components of the climate system, namely, land,
ocean and sea ice; and so are well-suited to represent the complex interactions that occur at such timescales.
In this work we use a collection of simulations based on the community ESM (CESM), developed at NCAR
under the Large Ensemble Project (LENS) that are specifically designed to isolate the effects of internal climate
variability. These simulations and ESM simulations in general, however, are computationally expensive to run, and
many simulations are necessary to properly quantify the effects of natural variability. An alternative to simulating
atmospheric processes using these models is provided by stochastic weather generators (Wilks and Wilby, 1999;
Ailliot et al., 2015a), which are statistical models designed to generate synthetic sequences of meteorological
variables whose statistical properties closely resemble those of the observational datasets on which they are trained.
We develop one such model designed to capture the natural variability of daily wind speed in Saudi Arabia, that
may be used, among other applications, to assess future wind energy potential under different climate scenarios.

Stochastic weather generators are widely used in applications ranging from agricultural models to climate
impact studies. For instance, they are commonly used in the energy industry to generate short-temporal frequency
simulations of wind data to assist utilities in grid integration studies, where these and other components of an elec-
trical grid are simulated to assess general performance measures and determine best practices (Archer et al., 2017).
In Ailliot and Monbet (2012), a model of this kind was used to generate wind time series at different meteorolog-
ical stations near potential wind farm sites to assess various quantities related to wind power production. Most of
these stochastic wind generators have focused on single-site models, and typically use Markov chains to describe
the temporal dependence on different wind regimes (Ailliot et al., 2006). Recently, focus has shifted towards a
multisite framework, which poses the challenge of having to explicitly account for the complex cross-correlation
patterns among neighboring sites (Bessac et al., 2015; Hering et al., 2015; Bessac et al., 2016). Thus, the num-
ber of sites under consideration is usually limited, because the quality of fit quickly deteriorates as the quantity
increases (Hering et al., 2015). The model presented here, however, with the approximately 1◦ horizontal reso-
lution of the LENS dataset, is applied to a 149-point spatial domain which, together with a temporal coverage
spanning more than 80 years, results in a spatio-temporal domain of nearly 5 million data points. To emphasize
the different framework of this statistical model, consistently with Jeong et al. (2018, 2019), we denote this as
a stochastic generator, and in particular in this application, a stochastic wind generator. While stochastic gener-
ators rely on a stochastic approximation of climate model output, they are also fundamentally different from an
emulator in that they are not used to explore the input parameter space and perform sensitivity analysis.

Environmental data often exhibit departures from Gaussianity, such as skewness and heavy tails. Traditionally,
to continue exploiting the appealing properties of the normal distribution and the well-developed theory of Gaus-
sian processes, a transformation is usually applied to the data; for example, a square root transformation (Gneiting,
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2002), a power transformation (Ailliot et al., 2015b; Bessac et al., 2016) or a Gaussian copula (Hering et al., 2015).
Only recently have there been studies that exploit the flexibility of skew-elliptical distributions, of which the skew-t
(Azzalini and Capitanio, 2003) and the skew-normal (Azzalini, 2005) distributions are special cases that directly
address the skewness and excess kurtosis that are commonly found in wind data. For example, Hering and Genton
(2010) developed a short-term wind speed forecasting model using a bivariate skew-t distribution, while Flecher
et al. (2010) used a closed skew-normal distribution (González-Farías et al., 2004) as part of a multi-variate
weather generator. This family of distributions represents an extension of the normal model and retains several of
its convenient properties, such as closure under conditioning and marginalization (see Genton (2004) or Azzalini
and Capitanio (2014) for an overview of the theory and applications). In this article we propose a stochastic wind
generator that leverages the flexibility of the skew-t distribution to capture the non-Gaussian features that are com-
mon to wind-speed time series. In particular, we consider a vector-autoregressive process to capture the temporal
auto- and cross-correlations, coupled with independent realizations from a multi-variate skew-t distribution as a
model for the spatial residuals. Given that our interest lies in generating spatial replicates at locations and support
that coincide with those of the training dataset, we consider the skew-t distribution only in its multi-variate form.
An extension to a spatial process (e.g., Beranger et al., 2017; Morris et al., 2017) would have been necessary had
the scope of this study involved an application of spatial interpolation, but it is not contemplated here.

The remainder of the article is organized as follows. Section 2 describes the daily wind speed data used for the
training and validation of the spatio-temporal model described in Section 3. Section 4 provides an assessment of the
temporal variability of the wind energy resource in Saudi Arabia, and Section 5 offers a discussion and conclusion.

2. WIND DATA

We consider daily wind speed in Saudi Arabia from the publicly available LENS dataset developed at NCAR (Kay
et al., 2015). The ensemble consists of 30 fully-coupled simulations, based on CESM version 1, with the commu-
nity atmosphere model (CAM), version 5, run at approximately 1◦ horizontal resolution in all model components.
The simulations span from the year 1920 to 2100, with radiative forcing following the CMIP5 protocol; namely,
historical forcing from 1920 to 2005, and the representative concentration pathway 8.5 (RCP8.5) from 2006 to
2100. Each simulation represents a unique climate trajectory, generated by introducing small round-off level dif-
ferences into their initial atmospheric conditions. For this study we use the historical segment (1920–2005) of 30
ensemble members over Saudi Arabia, bounded roughly by 15–32◦N and 35–55◦E, which at the noted horizontal
resolution corresponds to N = 149 points, in the temporal dimension T = 31,390 points (the model does not account
for leap years), resulting in nearly 5 million data points.

To illustrate the diverse wind regimes across Saudi Arabia, we examine the various shapes of the annual cycle,
as represented by the LENS ensemble mean. Figure 1 displays the annual cycles for five locations that broadly
capture the variety of regimes. The seasonal patterns can be interpreted with the aid of the mean monthly wind
fields (Figure S1 in Appendix S1, Supporting Information), constructed from the lowest level zonal and meridional
winds (UBOT and VBOT respectively) obtained from the LENS database. The Arabian Peninsula lies within the
trade-wind belt (Hadley cell) of the Northern Hemisphere. During winter, westerlies from the Mediterranean travel
southward towards the Persian Gulf (Shamal trade winds), and turn south and southwest through the Rub al-Khali
Desert toward Yemen. However beginning in spring, the northerly winds intensify, and the onset of the monsoon
circulation from the Indian Ocean induces a southeasterly flow along the southeastern part of the peninsula and
the Arabian Sea, into the Rub al-Khali Desert. As a result, the mild easterly flow over Point 3, located east of the
Asir Mountains, becomes strongly westerly during the summer, explaining the maximum daily wind speed during
this season. Moreover, the low speeds in March and September correspond to the transitions between easterly and
westerly flow, characterized by strong wind convergence. Despite their distance, Points 2 and 4 display a similar
pattern, with dual peaks arising in early spring and the middle of summer, largely due to the intensification of the
northerly winds during the monsoon season. The temporal pattern over Point 5, close to the eastern coast, most
clearly reflects the second intensification of the Shamal trade winds during May and June. The mountainous region
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Figure 1. (a) Selection of points over Saudi Arabia with colors showing the elevation in meters, and their respective (b) daily
wind speed annual cycles, computed as the mean annual cycle from the LENS. Wind speed data is based on the 1920–2005

output [Color figure can be viewed at wileyonlinelibrary.com]

on the eastern coast of the peninsula, as represented by Point 1, displays a dampened annual cycle, reflecting the
effect of the complex orography.

3. MODEL DESCRIPTION

We describe the proposed spatio-temporal model, and discuss inferential aspects, highlighting several difficulties
and the approach undertaken to overcome them. Finally, we validate the model along several metrics that focus
on low-frequency aspects of the wind-speed time series.

3.1. Spatio-temporal Model

Let Wt,r = (W1,t,r,… ,WN,t,r)⊤ denote the N-vector of daily wind speeds over the domain at day t, in realization r.
We first consider a standardization of the form (Wi,t,r − 𝜇i,t)∕𝜎i,t, where 𝜇i,t refers to a seasonal effect and 𝜎i,t the
seasonal fluctuation in the standard deviation of the residuals, both indexed by time t and location i. The former
is estimated by regressing the mean of each calendar day of the time series of daily wind speed at each gridpoint
on a small set of harmonics, ranging from frequencies of 1–5 cycles per year. Similarly, the latter is obtained by
fitting the same range of harmonics to the standard deviation of each calendar day of the residual time series at
each gridpoint. We make the assumption that both standardization terms are common to all ensemble members,
to be consistent with the design of the LENS. Despite the realizations having a time span of over 80 years, we did
not find evidence of temporal non-stationarity in the estimates (see the diagnostics in Figures S2–S5). For ease of
notation, we assume henceforth that Wt,r and its component terms have undergone said standardization. For the
residuals, we propose a model of the form

Wt,r = A1Wt−1,r + A2Wt−2,r + 𝜺t,r t = 3,… ,T , (1)

where Ak, k = 1, 2, are N × N coefficient matrices and 𝜺t,r corresponds to the time t innovations of the rth real-
ization, for which E(𝜺t,r) = 0, and E(𝜺t,r𝜺

⊤
t,r) = 𝚺𝜺. We assume that the coefficient matrices are identical across

the ensemble, while the distinct trajectories of each realization are the result of i.i.d. innovations. This is in agree-
ment with the construction of the LENS and atmospheric flow more generally; the initial condition memory is lost
within a few weeks, after which each ensemble member evolves chaotically as if driven by random atmospheric
fluctuations (Kay et al., 2015). To assess whether fitting the model to a few realizations is sufficient to capture the
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variability across the LENS, the model in (1) is fit to the time series belonging to three members under the above
assumption of i.i.d. realizations. These three are chosen arbitrarily among the 30 realizations, replicating a sce-
nario where only three members are available. However, the results are robust to the number of members of the
training set (see Figure S6 and its associated section in Appendix S1).

The temporal dependence in wind time series at both hourly and daily time scales is usually well represented
in the univariate case by an autoregressive model of order 2 (e.g., Brown et al., 1984; Haslett and Raftery, 1989;
Ailliot et al., 2006) and in the multi-site setting, by its multi-variate counterpart, the vector-autoregressive (VAR)
process of order 2 (e.g., Hering et al., 2015; Bessac et al., 2016). An obvious difficulty that emerges in the latter
context is the estimation of the autoregressive matrices as the dimension of the multi-variate process grows. Para-
metric models for off-diagonal elements based on the distance between sites or shrinkage methods for reducing
elements to zero have been proposed to address this issue (Monbet and Ailliot, 2017). Schweinberger et al. (2017)
investigated the p ≫ N case, where p is the number of parameters and N is the number of observations, under the
assumption that informative spatial structure is available. Here the gridded nature of the spatial domain naturally
suggests a nearest-neighbor specification. Consider the following notation: W = (W3,… ,WT ), B = (A1,A2),
Zt = vec(Wt,Wt−1), Z = (Z2,… ,ZT−1) and U = (𝜺3,… , 𝜺T ). Then the VAR(2) process in (1) can be expressed
compactly as

W = BZ + U

or equivalently as W∗ = (Z⊤ ⊗ IN)𝜷 + U∗, which results from applying the vec operator to both sides of the
equation, so that W∗ = vec(W), 𝜷 = vec(B) and U∗ = vec(U). The nearest-neighbor specification amounts to
imposing zero restrictions on the non-neighbor coefficients, which correspond to linear constraints of the form
𝜷 = R𝜸, where R is a (2N2) × M matrix of rank M that encodes the Ai,j,k = 0 restrictions, for i, j = 1,… ,N,
k = 1, 2. Here, 𝜸 is an unrestricted M × 1 vector of unknown parameters, representing the non-zero elements of B
and M the number of such elements; see Chapter 5 in Lütkepohl (2005) for details. The generalized least squares
(GLS) estimator of 𝜸 is given by

𝜸̂ = [R⊤(ZZ⊤ ⊗ 𝚺−1
𝜺
)R]−1R⊤(Z ⊗ 𝚺−1

𝜺
), (2)

where 𝚺𝜺 denotes the covariance matrix of 𝜺t. The residuals arising from the GLS estimation of 𝜸, among sev-
eral nearest-neighbor configurations, did not adequately capture the autoregressive structure, in comparison with
the traditional OLS approach that replaces 𝚺U∗ in (2) with IN . The GLS approach attempts to account for the
second-order structure in the residuals through the autoregressive parameters, which is undesirable in this case as
we will model that structure in a subsequent stage. We therefore opted to proceed with the OLS approach. The
stability condition of the VAR(2) process is checked in the usual manner, verifying that all of the eigenvalues of
the autoregressive matrix of the compact form have modulus less than one.

We find that a first-order stencil neighborhood scheme (North, West, South, East) for A1 and a diagonal form
for A2 adequately represent the temporal and cross-temporal structure (Figure S7). Figure 2 displays the esti-
mates for the leading and diagonal terms in A1 and A2 respectively. Symbols in Figure 2(a) denote neighbor to
which the value of the leading term corresponds. The estimates in A1 are consistently positive across the entire
domain, with values exceeding 0.7 along the boundaries. The leading terms in the northern part of the country
are generally from the West neighbor, whereas those along the center belong to the North neighbor, in agreement
with the predominant wind patterns in Figure S1. Those of A2, however, are consistently negative, and even more
so in the Eastern Province.

Given a domain of this size, with its wide range of wind regimes, the assumption of stationarity for a parametric
form of the associated correlation matrix would be inappropriate. Several approaches have been advocated in the
statistical literature to deal with non-stationary spatial covariance structures, beginning with the seminal work of
Sampson and Guttorp (1992) and their spatial deformation approach. More recently, other approaches based on
spatially weighted combinations of stationary spatial covariance functions (Fuentes, 2001; Fuentes and Smith,

wileyonlinelibrary.com/journal/jtsa © 2018 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 312–326 (2019)
DOI: 10.1111/jtsa.12437



NON-GAUSSIAN SPATIO-TEMPORAL MODEL FOR DAILY WIND SPEEDS 317

Figure 2. Estimates for the (a) leading terms in A1 and (b) the diagonal elements of A2; all statistically significant at 1%,
withstanding an adjustment for multiplicity using the false discovery rate (Benjamini and Hochberg, 1995). Symbols in (a)
indicate the neighbor corresponding to the leading term: circle, itself; triangle point-up, North; triangle point-down, South;

slanted cross, West; cross, East [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. (a) Nine regions used in the fitting of the innovation 𝜺t, defined using Ward’s method, an agglomerative method that
minimizes the sum of squared Euclidean distances between the points and the centroids of their respective cluster. Here each
point corresponds to the N-dimensional vector of rescaled VAR(2) residuals. The (b) skewness and (c) kurtosis coefficients
have been added as visual guides to help explain the regional shapes [Color figure can be viewed at wileyonlinelibrary.com]

2001) and process convolutions (Higdon, 1998; Paciorek and Schervish, 2006) have received particular attention
(see Sampson (2010) for a review). Here we partition the spatial domain into regions where the assumption of
stationarity is plausible; that is, we divide the vector 𝜺t (henceforth we drop the subscript r for convenience)
into Nc subvectors, 𝜺t = (𝜺⊤1,t,… , 𝜺⊤Nc ,t

)⊤, where each 𝜺c,t, composed of dc number of gridpoints, is designed
to capture regional features. We use Ward’s hierarchical clustering method to partition the domain, as it tends
to produce clusters of approximately equal size (Everitt et al., 2011). Nine regions (Figure 3) result in cluster
sizes that are suitable for parameter estimation. The clustering of spatial locations has a long history in envi-
ronmental applications (Wilks, 2011). Recently, Lorente-Plazas et al. (2015) used a combination of hierarchical
and non-hierarchical techniques to cluster wind station data collected in the Iberian Peninsula. In the Markov
regime-switching literature, clustering is often performed along the temporal dimension to identify different
weather regimes (Kazor and Hering, 2015).

Each 𝜺c,t is assumed to follow an independent multi-variate skew-t distribution, based on the formulation of
Azzalini and Capitanio (2003) which has an analogous derivation to the familiar Student-t distribution, as opposed
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Figure 4. Histograms of VAR(2) time series of the five points denoted in Figure 1. The marginal skew-t distribution, obtained
by marginalizing its multi-variate parent, is denoted in blue. A reference Gaussian density has been added and denoted in red.

The sample skewness and kurtosis are noted in each panel [Color figure can be viewed at wileyonlinelibrary.com]

to others such as that of Branco and Dey (2001); see Azzalini et al. (2016) for a comparison of these formulations.
A d-dimensional random variable Z follows a multi-variate skew-t distribution, denoted by STd(𝝃,𝛀,𝜶, 𝜈), with
𝝃 being a location d-vector, 𝛀 a d × d scale matrix, 𝜶 a d-vector skewness parameter, and 𝜈 being the degrees of
freedom, if it has a probability density of the form

f (z) = 2td(z − 𝝃;𝛀, 𝜈)T
(
𝜶⊤𝝎−1(z − 𝝃)

√
𝜈 + d

𝜈 + Q(z)
; 𝜈 + d

)
, (3)

with Q(z) = (z − 𝝃)⊤𝛀(z − 𝝃), 𝝎 = diag(𝜔1,… , 𝜔d) > 0, 𝛀 = 𝝎𝛀̄𝝎, 𝛀̄ a d × d correlation matrix, td(⋅;𝛀, 𝜈) is
the probability density of the d-dimensional Student-t distribution, and T(⋅; 𝜈) denotes the cumulative distribution
function of a univariate Student-t distribution with 𝜈 degrees of freedom.

Empirical justification for the model in (1) with non-Gaussian innovations is displayed in Figure 3(b, c), where
the pointwise estimates of skewness and kurtosis for the VAR(2) residuals are presented. Clear departures from zero
and three, arise respectively, in the southwest part of the country. Furthermore, in Figure 4 the marginal probability
densities of the fitted multi-variate skew-t distributions for the five points denoted in Figure 1 are contrasted with
their respective histograms and a reference Gaussian distribution. The sample skewness is consistently positive
across the various points, as is the excess kurtosis, in agreement with the values shown in Figure 3(b, c).

3.2. Inference

One of the drawbacks of the parameterization used in (3), called the direct parameterization (DP), is that its
parameters are not easy to interpret, as there is no simple relationship between them and the moments or cumulants
of the distribution (Arellano-Valle and Azzalini, 2013). This is most readily apparent in the location parameter
𝝃, which bears no resemblance to typical centrality measures such as the mean or median. This is problematic
also for inference, as the reductions in the parameter space that usually accompany assumptions such as a mean
zero and a variance one do not materialize under this parameterization, as both the mean and the variance are
functions of all of the above parameters (see Appendix). A centered parameterization (CP) based on the moments
of the distribution was developed by Azzalini (1985) for the DP of the skew-normal distribution; partly to offer a
more intuitive parameterization, but more importantly, to respond to the singularity of its associated information
matrix at 𝜶 = 0, which does not apply to the skew-t distribution. Recently, Arellano-Valle and Azzalini (2013)
extended this CP to the skew-t distribution. In the univariate setting, with the skew-t DP given by (𝜉, 𝜔2, 𝛼, 𝜈), the
CP corresponds to the four centered moments (𝜇, 𝜎2, 𝛾1, 𝛾2), where 𝛾1 refers to the skewness coefficient and 𝛾2 is
the coefficient of excess kurtosis. An implicit assumption in the CP is that these moments exist, requiring that
𝜈 > 4, which may not hold in practice; and the exact value of 𝜈 imposes constraints on the feasible space of 𝛾1

and 𝛾2 (see Figure 1 in Arellano-Valle and Azzalini (2013)). An examination of the marginals revealed that the
values of the tuples (𝛾1, 𝛾2) encountered here were well within this feasible set. In the multi-variate case, the first
two components of the CP are the familiar mean vector and the covariance matrix, 𝝁 and 𝚺, while the skewness
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term, 𝜸1, consists of the vector of marginal skewness coefficients. The kurtosis term corresponds to the Mardia
index of multi-variate kurtosis (see Appendix), denoted by 𝛾M

2 .
Because the singularity at 𝜶 = 0, which characterizes the skew-normal likelihood, is lacking here, maximiza-

tion of the skew-t likelihood is often the method of choice to conduct parameter inference. However, we find that
when maximizing the log-likelihood to each set of residuals, the maximum likelihood estimator (MLE) tends to
favor a more precise representation of the correlation structure at the expense of the marginal structure. This is
not acceptable for our current application, which places a strong emphasis on the accurate representation of the
marginal structure given the sensitivity of wind power density to wind speed. We considered adding a penaliza-
tion term to the likelihood to constrain the optimization towards an improved marginal fit, but we obtained better
results with a method of moments approach based on the above CP, as it afforded us greater control in isolating
the fitting of the marginal structure from that of the spatial dependence. More specifically, using the CP gave
us the possibility to directly impose the condition that 𝝁 = 0 and adopt a parametrized form for the correlation
matrix 𝚺̂ for each region, thereby considerably reducing the CP parameter space. 𝚺̂ is parameterized by (𝜙, 𝜅),
a Matérn correlation function with range parameter 𝜙 and smoothness 𝜅. The latter was fixed at 1.5, and 𝜙 was fit
by OLS. Good agreement was found between the sample estimates of correlation of the VAR(2) residuals and the
corresponding value from the OLS-estimated Matérn correlation function. Furthermore, errors from the OLS fit
did not meaningfully contaminate the model-simulated seasonal variability in Section 4 (Figure S10). Although
the mapping from DP to CP is available in closed-form, the inverse map is not, and so it must be computed numer-
ically. In fact, only the mapping (𝜸1, 𝛾

M
2 ) → (𝜹, 𝜈) needs to be specified, since the rest of the DP parameterization

follows directly from these parameters and those of the CP parameters (see sections 6.2.2 and 6.2.3 in Azzalini
and Capitanio (2014) for details). The sn package (Azzalini, 2016) implements an algorithm which seeks the
(d + 1)-vector (𝜹⊤, 𝜈) that minimizes the 𝓁2-distance between (𝜸1(𝜹, 𝜈)⊤, 𝛾M

2 (𝜹, 𝜈)) and its CP counterparts. As is
common with many numerical optimization problems, finding a global maximum, or minimum in this case, is not
guaranteed. In the few regions where such a situation arose, that is, the 𝓁2-distance does not vanish, the difference
between the CP implied by the DP and the original CP was sufficiently small to be of no concern.

The definition of the 𝜸1 vector naturally suggests the use of sample estimates of the skewness coefficients at
each gridpoint. For the multi-variate kurtosis coefficient, 𝛾M

2 , we considered its sample estimate, however, in some
cases it yielded unsatisfactory results in terms of the implied skewness of the marginals once mapped to 𝜈. In such
cases, we replaced the sample estimate with the value which, together with 𝜸̂1, minimizes the 𝓁2-distance between
𝜸1(𝜹, 𝜈) and 𝜸2(𝜹, 𝜈) and its sample counterparts, where here the dependence on (𝜹, 𝜈) indicates that these are the
respective moment vectors after performing the mapping using the sn package.

As an indication of the sampling variability, we considered bootstrap standard errors based on 100 bootstrap
samples for an arbitrarily chosen ensemble member and found that estimates of these for 𝛾1 across the domain
were contained in (0.014, 0.035) and 𝛾2 in (0.035, 0.179). Regarding the mapping from CP to DP, we recorded for
each cluster the mean-squared-error (MSE) between the sample 𝛾1 and 𝛾2 of their constituent gridpoints and the
respective values implied by the DP. Note that the errors corresponding to 𝛾1 serve as a reliable indicator of the
accuracy of the mapping between CP and DP, whereas those for 𝛾2 are contaminated by an inherent characteristic of
the DP paramerization, whose value of 𝜈 is inherited by all of the marginal skew-t distributions. Therefore the latter
errors also reflect the discrepancy between the actual marginal 𝜈 and this inherited value. The bootstrap estimates
of the means and standard deviations for the MSE of 𝛾1, across the domain, were contained in (0.002, 0.071) and
(0.01, 0.095) respectively. The analogous values for the MSE of 𝛾2 are (0.032, 0.49) and (0.02, 0.89).

3.3. Model Validation

To assess the performance of the model in simulating realistic realizations of the daily surface wind speed over
Saudi Arabia, the model was fit to three ensemble members, and 30 realizations were generated. Several aspects
of the simulated time series can be investigated as a basis for validation, such as the distribution of excursion
durations above or below some fixed threshold as in Ailliot and Monbet (2012). Had wind direction been part of
the analysis, for instance, the joint and marginal distribution of wind speed and direction, as well as their respective
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Figure 5. (a)–(d) Average autocorrelation functions of 30 realizations of daily wind speed of (red) the proposed model and
(black) the LENS, for Points 1, 2, 3 and 5 indicated in Figure 1. Dotted red and black lines represent the maximums and
minimums of the simulated and LENS values respectively, at each lag. A horizontal dashed blue line has been placed at zero.
(e)–(h) Mean quantile-quantile plots of the daily surface wind speed for the LENS and the 30 model realizations, for the same

points [Color figure can be viewed at wileyonlinelibrary.com]

autocorrelation functions may have been investigated (e.g., Hering et al., 2015). Given our interest in capturing
low frequency aspects of wind speed, we focus here on the marginal distributions of daily wind speed and its serial
dependence. However, for illustrative purposes, we have included an examination of the distribution of excursion
durations in Appendix S1 (Figure S8 and associated section).

Figure 5(a)–(d) shows the mean autocorrelation function (ACF) for the 30 realizations and 30 LENS mem-
bers, for four of the five representative points displayed in Figure 1, as the ACF for Point 4 is quite similar to
that of Point 2, and so is excluded. The realizations adequately reproduce this feature of the LENS data, despite
the marked differences among the autocorrelation structures across the various points. In particular, the ACFs
in Points 1 and 2 drop sharply beyond the first few lags, whereas Point 3, which is in a region where both the
northerly Shamal trade winds and southerly summer monsoon winds interact, shows a temporal dependence that
remains relevant beyond the 50-day lag.

A comparison of the agreement between wind speed distributions is displayed across Figure 5(e)–(h). The mean
quantile-quantile (QQ) plots of the first three points show very good agreement between the simulated distributions
and the LENS. Slight discrepancies emerge in the lower quantiles, most notably in Point 5 where even negative
wind speeds are simulated, but this is a common drawback of models that do not have mechanisms in place to
ensure non-negative values (Ailliot and Monbet, 2012). The discrepancies occur below the 2 m/s level, speeds at
which common wind turbines are idle, therefore, these can be disregarded for the purposes of our application. Of
greater importance is the upper tail of the QQ plots and the fit in all four cases is acceptable.

4. WIND ENERGY IN SAUDI ARABIA

The average wind speed or wind power density (WPD) at measurement height or adjusted-to-hub height is fre-
quently used in assessments of wind energy potential. WPD refers to the wind power that is available per unit
area, and is given by 1

2
𝜌w3, where 𝜌 represents the air density and w is the wind speed. Several methods exist for
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Figure 6. Standard deviation of wind power density (WPD) at 80 m for 1976–2005, in W/m2 for the five points denoted in
Figure 1, during the (a) May–April–May (MAM) season and the (b) June–July–August (JJA) season. At each point, the orange
boxplot corresponds to the WPD estimates derived from the LENS; the blue boxplots correspond to 30 generated realizations

of the proposed model. Log10-scale is used on the y axis [Color figure can be viewed at wileyonlinelibrary.com]

extrapolating near surface wind measurements to heights at which wind turbines operate (Emeis, 2012). Here we
use the power law method, which assumes that the vertical wind profile at height z is given by w(z) = w(zr)(z∕zr)a,
where zr is a reference height and a is the power law exponent, which depends on the surface roughness and the
thermal stability of the boundary layer. Typically, zr represents the height at which observations are available.
While the recommended value of a varies according to the surface type, it is frequently fixed at 1∕7; this value
has been found to be appropriate over open land surfaces, under neutral atmospheric stability. Since this value has
been used in other wind studies in this region (e.g., Rehman et al., 2007) and the coarse resolution of the LENS
dataset already limits the representativeness of our estimates, we use a = 1∕7 henceforth.

Our computation of WPD starts with surface wind speed, defined in the LENS dataset as the wind speed at
the lowest model layer (variable ZBOT in the database), which is then extrapolated to an 80 m height using
the above power law formula. The value of air density is assumed to be constant across space and time, and
equal to 1.225 kg/m3. Given the general increase in wind speeds during spring and summer, we focus on the
March–April–May (MAM) and June–July–August (JJA) WPD seasonal averages, which are derived from daily
WPD estimates; and we consider the last 30 years of the LENS dataset for comparability with recent studies.
The mean MAM WPD averages approximately 36 W/m2 across Saudi Arabia, and it increases to 39 W/m2 dur-
ing JJA, particularly along the northern coast of the Persian Gulf and west of the Asir Mountains, reflecting the
strengthening of the northerly Shamal trade winds and the southerly monsoon winds respectively (Figure S9).

Figure 6 displays the standard deviation (SD) of the LENS and simulated seasonal WPD estimates for both
seasons. Median differences across seasons and points tend to follow the fluctuations of the annual cycles denoted
in Section 2, as higher wind speeds tend to be accompanied with greater variability. For instance, the median is
nearly constant at Point 1, where the annual cycle experiences muted seasonal variation, but it more than doubles
near the coastal areas of the Persian Gulf at Point 5, increasing from over 6 W/m2 in MAM to nearly 15 W/m2 in
JJA. The fluctuations of the seasonal SD due to internal climate variability are shown to be considerable. At Point
5, the SD of JJA WPD varies between less than 15 and nearly 25 W/m2 across the 30 LENS realizations. At other
points, the variation is smaller yet still relevant, as in Point 2 or 3 for MAM, where the highest value is nearly
double that of the lowest. Comparing the values from the LENS with those implied by the model realizations
suggests that the model reproduces the median and variability in seasonal WPD reasonably well during MAM,
and this applies to the rest of the domain (Figure 7(b)). However, negative biases arise in the median during JJA,
especially at Point 5, where the bias reaches close to 4 W/m2. Figure 7(d) shows how this bias also extends to the
neighboring points along the Persian Gulf coastline.
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Figure 7. Median standard deviation (SD) of 80 m WPD, over 1976–2005, in W/m2 for the (a, c) LENS dataset over
May–April–May (MAM) and June–July–August (JJA) and the (b, d) differences with respect to the estimates derived
from the 30 generated realizations. Selected points denoted in Figure 1 are also depicted [Color figure can be viewed at

wileyonlinelibrary.com]

In JJA, the median SD (Figure 7(c)), as represented in the LENS, displays a spatial pattern closely resembling
that of the mean WPD shown in Figure S9. However, the generated realizations have difficulty in capturing this
rise in variability, as negative biases in excess of 4 and 2 W/m2 can be seen over the areas surrounding Points 5 and
3 respectively. Analogous results apply to other quantiles, such as the 5% and 95% quantiles. To assess the impact
of the errors of the OLS estimation on the WPD analysis, we fit the multi-variate skew-t distributions using the
sample correlation matrices in place of the parameterized Matérn correlation matrices, and we reported the results
in Figure S10.

5. DISCUSSION AND CONCLUSIONS

This study proposed a model for daily wind speeds at multiple sites based on a multi-variate skew-t distribution.
Most recent models developed for wind speed and the two-dimensional wind field combine a Hidden Markov
Model (HMM), to account for the influence of distinct weather regimes, with an autoregressive structure to capture
the high degree of autocorrelation that is common in atmospheric flow (Ailliot et al., 2006; Pinson and Madsen,
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2012; Hering et al., 2015; Bessac et al., 2016). These Markov-switching autoregressive (MS-AR) models have
been shown to adequately represent the marginal distribution of daily wind speed, as the Markovian structure pro-
vides the flexibility necessary to capture its higher-order moments. Recent efforts have attempted to extend this
framework to the multisite setting; however, the number of sites is usually limited as inference quickly becomes
problematic, in part due to the computationally demanding expectation–maximization (EM) algorithm that is used
to deal with the latent Markov chain. Here we proposed a model that retains the vector-autoregressive structure,
but that uses a neighbor-based scheme to reduce its dimensionality, and that replaces the latent weather regime
process with a multi-variate skew-t distribution in the innovations to reproduce the observed skewness and excess
kurtosis. The model was applied to a spatial domain of 149 points, which we partitioned into smaller regions of
sizes ranging between 3 and 31 points where the assumption of stationarity is plausible, and we then performed
the fit independently at each region. Our findings show that the model adequately matches the marginal distribu-
tions of daily wind speed, as well as the autocorrelation. However, the model shows some difficulty in matching
the distribution of excursion durations above or below a high and low threshold respectively, especially when the
degree of persistence between the two excursion types is markedly different. We conducted an analogous assess-
ment replacing the innovations in (1) with multi-variate Gaussian distributions. As expected, the fit of marginal
distributions showed a clear degradation, however, both the autocorrelation functions as well as the excursion
distribution were nearly identical to those presented in Figure 5, see Figures S11 and S12. This highlights the
relevance of the proposed mean structure to the performance in these two aspects, and suggests that adding sea-
sonally varying vector-autoregressive coefficients may alleviate the shortcoming in the latter. Further work will
involve incorporating a latent process to account for the large-scale variation of the wind field. Preliminary work
reveals that such variation can be incorporated by exploiting the fact that the multi-variate skew-t distribution is
constructed from a multi-variate skew-normal distribution, which has the convenient property that sums of it with
a normal distribution remains within the skew-normal family.

The model was used to assess the sensitivity of wind resource potential in Saudi Arabia to the natural variability
of the climate system. Studies devoted to the quantification of this resource have usually focused on the annual or
seasonal mean wind speed, its temporal variability or the energy it can potentially provide as measured by WPD.
A recent work by Yip et al. (2016) investigating the wind power potential of the Arabian Peninsula exceptionally
considered other aspects, beyond its abundance, that are of particular relevance to the integration of wind energy
into existing grid systems, such as the intermittency and persistence of the wind resource. To date, however, no
study has addressed the impact of internal climate variability on wind energy related statistics, as its impact has
only recently begun to be understood, thanks in part to projects such as the LENS that are designed to isolate
its effects on the various earth system components. Our results, limited here to the variability of seasonal mean
WPD based on 30 ensemble members from the LENS project, highlight the considerable effect of this source
of variability on seasonal WPD. For instance, near the coastal areas of the Persian Gulf, the standard deviation
of JJA WPD varies between 14 and 22 W/m2. At other points further inland the variation is not as severe, but is
still relevant. Further work will expand on this analysis to include other aspects related to WPD, along the lines
of Yip et al. (2016). The accuracy of these WPD estimates are limited by the coarse horizontal resolution of the
LENS dataset, of approximately 1◦. In fact, we should expect to see departures from these as the resolution is
refined, if only because of the better representation of the orography and the fine-scale processes that affect the
boundary layer dynamics. A comparison of mean WPD at 80 m (Figure S9(c)) with the findings of Yip et al.
(2016), based on a comparatively finer horizontal resolution of 0.5◦ (latitude) and 0.67◦ (longitude), hints at these
potential discrepancies. Their work identifies the western mountains as offering more abundant wind resource
than the Persian Gulf coastal areas, whereas here it is not the case. Ongoing work by the present authors with a
high-resolution dataset are consistent with the findings of Yip et al. (2016); thus the estimates presented in this
article should be perceived as references from which to guide further inquiries performed at finer resolution.

The lack of reliable observational data over Saudi Arabia makes validation of the proposed model against obser-
vations challenging. A more structural hurdle to such a comparison is the difference in support between the LENS
dataset, whose wind measurements at each grid cell correspond to area averages, and wind speed observations,
obtained from meteorological masts or remote sensing systems such as LiDARs, which may be regarded as point
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measurements. Overcoming this difficulty would involve the application of some form of downscaling technique
which exceeds the scope of this work.

Ideally, climate centers should make projects such as the LENS regularly available to the research community at
increasingly higher resolution to promote further analyses. However, projects of this magnitude, requiring scores
of ensemble members, are costly from both a computational and a storage perspective. A cheaper alternative to
running these numerical models is provided by stochastic weather generators, which attempt to reproduce the
statistics of specific climate processes. The proposed model was fit to only three ensemble members, to assess its
ability to reproduce the variability of the entire ensemble. Although some degree of underestimation was revealed
over areas with abundant wind resource that warrants further study, it reasonably reproduced the variability of
seasonal WPD, thus justifying its use as a potential stochastic generator of wind speed time series for other datasets.
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APPENDIX: THE SKEW-T DISTRIBUTION

In this appendix we collect a series of relevant properties and results related to the skew-t distribution.
If Y = 𝝃 + 𝝎Z, with Z being the standard STd variate, that is, Z ∼ STd(0, 𝛀̄,𝜶, 𝜈), then

𝝁 = E(Y) = 𝝃 + 𝝎𝝁z, 𝜈 > 1,

𝚺 = var(Y) = 𝜈

𝜈 − 2
𝛀 − 𝝎𝝁z𝝁

⊤

z 𝝎, 𝜈 > 2,

with 𝝁z = b𝜈𝜹, where

b𝜈 =

√
𝜈 Γ

{
1

2
(𝜈 − 1)

}
√
𝜋 Γ

(
1

2
𝜈

) , 𝜈 > 1, and 𝜹 =
(
1 + 𝜶⊤𝛀̄𝜶

)−1∕2 𝛀̄𝜶.

Mardia’s measure of multi-variate kurtosis (Mardia, 1970), for a d-dimensional random variable X, is given by

𝛾M
2 = E

[
{(X − 𝝁)⊤𝚺−1(X − 𝝁)}2

]
− d(d + 2)

and for a STd variate, assuming that 𝜈 > 4,

𝛾M
2 = 2d(d + 2)

𝜈 − 4
+ 4(d + 2)

(𝜈 − 3)(𝜈 − 4)
𝛽2

0 + 2

{
2𝜈

(𝜈 − 3)b2
𝜈

− 3(𝜈 − 3)2 − 6
(𝜈 − 3)(𝜈 − 4)

}
𝛽4

0

where 𝛽2
0 = 𝝁⊤

0 𝚺
−1𝝁0, 𝝁0 = 𝝎𝝁z.
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