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Abstract

Capturing the potentially strong dependence among the peak concentrations of

multiple air pollutants across a spatial region is crucial for assessing the related

public health risks. In order to investigate the multivariate spatial dependence

properties of air pollution extremes, we introduce a new class of multivariate

max‐stable processes. Our proposed model admits a hierarchical tree‐based
formulation, in which the data are conditionally independent given some latent

nested positive stable random factors. The hierarchical structure facilitates

Bayesian inference and offers a convenient and interpretable characterization.

We fit this nested multivariate max‐stable model to the maxima of air pollution

concentrations and temperatures recorded at a number of sites in the Los

Angeles area, showing that the proposed model succeeds in capturing their

complex tail dependence structure.
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1 | INTRODUCTION

Modeling the joint behavior of multivariate extreme
events is of interest in a wide range of applications,
ranging from finance to environmental sciences, such as
hydrology and applications related to climate change or
air pollution monitoring. Simultaneous exposure to
multiple air pollutants seriously affects public health
worldwide, causing loss of life and livelihood and
requiring costly health care. Therefore, policymakers,
such as those at the US Environmental Protection Agency
(EPA), are researching multivariate approaches to
quantify air pollution risks (Dominici et al., 2010). The
issue of air pollution is compounded by global warming
and climate change, as increasingly high temperatures
are suspected to contribute to raising ozone concentra-
tions and aggravating their effect in the human body
(Kahle et al., 2015). This situation urges a greater
understanding and better monitoring of air pollution

extremes, the complexity of which poses a challenge for
standard statistical techniques. Several air pollutants are
often recorded at multiple spatial locations and the
modeling of peak exposures across a spatial region must
transcend the assumption of independence in order to
capture their spatial variability. In this paper, we propose
a new methodological framework based on Extreme‐
Value Theory, for estimating the probability that various
air pollutants and temperatures will be simultaneously
extreme at multiple locations.

The statistical modeling of single extreme variables
observed over space is usually based on spatial max‐stable
processes (see, e.g., the reviews by Davison et al., 2012, and
Davison et al., 2019), which are the only possible limit
models of properly renormalized block maxima from
independent and identically distributed spatial processes.
Notice that although pointwise maxima may or may not
occur simultaneously, the dependence structure of max-
ima coincides asymptotically with the tail dependence
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structure from the original process. Therefore, except in
the case of asymptotic independence, max‐stable models
can be used to capture the potentially strong spatial
dependence that may exist among original variables at
extreme levels. Several spatial models for asymptotically
(in)dependent data were proposed by Wadsworth and
Tawn (2012), Opitz (2016), Huser et al. (2017), Huser and
Wadsworth (2019) and Krupskii et al. (2018). Here, we
restrict ourselves to asymptotic dependence by modeling
multivariate block maxima recorded over space using a
suitable max‐stable process. Genton et al. (2015) proposed
multivariate versions of the Gaussian (Smith, 1990), the
extremal‐Gaussian (Schlather, 2002), extremal‐t (Opitz,
2013), and the Brown‐Resnick (Kabluchko et al., 2009)
max‐stable models, and Oesting et al. (2017) introduced a
bivariate Brown‐Resnick max‐stable process to jointly
model the spatial observations and forecasts of wind gusts
in Northern Germany. In this paper, we propose a new
class of multivariate max‐stable processes that extends the
Reich‐Shaby model (Reich and Shaby, 2012) to the
multivariate setting, and that is suitable for studying the
spatial and cross‐dependence structures of multiple max‐
stable random fields within an intuitive and computation-
ally convenient hierarchical tree‐based framework. Our
model is unique in its flexibility for capturing cross‐
dependence and it is applied below considering five
variables over space. Recent related work includes Reich
and Shaby (2018b), but their proposed model has a highly
restrictive cross‐dependence structure and has been
applied in the bivariate case only.

In contrast to the standard spatial processes based on
the Gaussian distribution, such as the Brown‐Resnick,
the computationally demanding nature of the likelihood
function for max‐stable processes has hampered their use
in high‐dimensional settings within both frequentist and
Bayesian frameworks (Ribatet et al., 2012; Huser and
Davison, 2013; Castruccio et al., 2016; Thibaud et al.,
2016; Huser et al., 2019). In the Bayesian context,
Thibaud et al. (2016) showed how the Brown‐Resnick
max‐stable process may be fitted using a Markov chain
Monte Carlo (MCMC) algorithm; however, this remains
excessively expensive in high dimensions. From a
computational perspective, it is convenient to relax the
max‐stable structure by assuming conditional indepen-
dence of the extreme data given an unobserved latent
process (Casson and Coles, 1999; Cooley et al., 2007;
Davison et al., 2012; Opitz et al., 2018). This significantly
facilitates Bayesian and likelihood‐based inference and is
helpful for estimating marginal distributions by borrow-
ing strength across locations. Unfortunately, when the
latent process is Gaussian, the resulting dependence
structure lacks flexibility and cannot capture strong
extremal dependence. The Reich‐Shaby model (Reich

and Shaby, 2012) on the other hand has a conditional
independence representation given some latent positive
stable (PS) random effects and is jointly max‐stable.
Other popular max‐stable processes do not possess such a
convenient hierarchical characterization. In this paper,
we generalize the Reich‐Shaby process for modeling
multivariate spatial extremes by assuming a nested, tree‐
based, PS latent structure, which maintains a low
computational burden.

In our proposed model, the dependence structure may
be represented by a tree framework, in which the
“leaves” (ie, the terminal nodes) correspond to different
spatial Reich‐Shaby processes representing different
variables of interest (e.g., pollutants), and the tree
“branches” describe the relationships among these
processes, which are grouped into clusters. The intraclus-
ter cross‐dependence is assumed to be exchangeable and
stronger than the intercluster cross‐dependence. In
principle, the underlying tree structure can involve an
arbitrary number of “layers” (ie, node levels) in order to
describe more complicated forms of cross‐dependence
among the spatial processes, although more complex
trees necessarily imply an increased number of latent
variables and parameters, thus complicating the infer-
ence procedure.

The remainder of this paper is organized as follows. In
Section 2, we review the modeling of spatial extremes
based on max‐stable processes. In Section 3, we introduce
our novel class of multivariate max‐stable processes and
we describe the inference procedure based on an MCMC
algorithm. In Section 4, we use our model to study the
dependence structure of concentration maxima of various
air pollutants and temperature, observed at a number of
sites across the Los Angeles area in California, US.
Section 5 concludes with some final remarks and
perspectives for future research.

2 | MAX ‐STABLE PROCESSES

Owing to their asymptotic characterization, max‐stable
processes are widely used for modeling spatially‐indexed
block maxima. Here, we briefly summarize the theory and
modeling of max‐stable processes in the spatial context, and
in Section 3 we extend these processes to the multivariate
spatial framework. Let ∈Y Ys s{ ( ),…, ( )}n s1 be independent
and identically distributed processes defined over the
region ⊂ 2 . If there exist normalization functions
a s( ) >n ∈b s0, ( )n  such that the renormalized process
of the pointwise maxima, that is, M as s( ) = ( )n n

−1

∈Y Y bs s s s{max{ ( ),…, ( )} − ( )},n n1 , converges in the
sense of finite‐dimensional distributions to a process
Z s( )* with nondegenerate margins, as → ∞n , then
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Z s( )* is a max‐stable process (see, e.g., de Haan, 1984). The
max‐stability of Z s( )* implies that there exist functions
α s( ) > 0n and β s( )n for all ∈n , such that, for each
collection of sites ∈ ∈Ds s,…, ,D1 , the finite‐dimen-
sional distribution G z z( ,…, )D1 of the variables Z s( ),…,* 1

Z s( )* D satisfies G α z β α z βs s s s{ ( ) + ( ),…, ( ) + ( )} =n
n n n D D n D1 1 1

G z z( , …, )D1 . The limit max‐stable process Z s( )* may be
used to represent, for example, monthly maxima of daily
measurements for a specific air pollutant observed at
various locations s within the study region . For each
location ∈s , the Extremal Types Theorem (see, e.g.,
Coles, 2001, Chapter 3) implies that the random variable
Z s( )* follows the generalized extreme‐value (GEV) dis-
tribution with location ∈μ s( ) , scale σ s( ) > 0, and
shape ∈ξ s( )  parameters. To disentangle marginal
and dependence effects, it is convenient to standardize
Z s( )* as

⎧⎨⎩
⎫⎬⎭
∕

Z ξ
Z μ

σ
s s

s s

s
( ) = 1 + ( )

( ) − ( )

( )
.

*
ξ s1 ( )

(1)

Thus, we obtain a residual, simple, max‐stable process
Z s( ), which is characterized by unit Fréchet marginal
distributions, that is, ≤ ∕Z z z zsPr{ ( ) } = exp(−1 ), > 0,
for all ∈s , corresponding to the case μ s( ) =

σ ξs s( ) = ( ) = 1. In practice, data are collected at a finite
set of locations, and the joint distribution of Z s( ) at

∈s s, …, D1 is necessarily a multivariate extreme‐value
distribution that may be expressed as

≤ ≤Z z Z z

V z z z z

s sPr{ ( ) , …, ( ) }

= exp{− ( , …, )}, , …, > 0,

D D

D D

1 1

1 1 (2)

where V z z( , …, )D1 is the associated exponent function
containing information about the spatial dependence
of the maxima. By max‐stability, we can verify that V is
homogeneous of order −1, that is, V tz tz( , …, ) =D1

t V z z t( , …, ), > 0D
−1

1 ; moreover, because of the unit
Fréchet margins in (2), we have ∞ ∞ ∕V z z( , , …, ) = 1 for
any permutation of the arguments. In particular, in the
case of independence between we have

∑V z z z( ,…, ) =D d

D
d1 =1
−1; in the case of perfect positive

dependence, we have
≤ ≤

V z z z( ,…, ) = maxD
d D

d1
1

−1. The pair-

wise extremal coefficient θ s s( , ) =i j ∈V (1, 1) [1, 2],
where V is here restricted to sites si and sj, is a
measure of the dependence between the variables Z s( )i
and Z s( )j . Perfect dependence corresponds to
θ s s( , ) = 1i j , and θ s s( , ) = 2i j leads to complete inde-
pendence.

Thanks to the spectral characterization of max‐stable
processes (de Haan, 1984), various parametric models
have been proposed in the literature. The most

well‐known in the spatial framework are the Smith
(1990), Schlather (2002), Brown‐Resnick (Kabluchko
et al., 2009), extremal‐t (Opitz, 2013), Reich‐Shaby (Reich
and Shaby, 2012), and Tukey (Xu and Genton, 2017)
max‐stable processes. For comprehensive reviews on
spatial extremes, see, for example, Davison et al. (2012)
and Davison et al. (2019).

In this work, the Reich‐Shaby max‐stable model, which
admits a hierarchical construction in terms of PS random
effects, plays a key role. Its exponent function in (2) is

⎡
⎣
⎢⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥⎥∑ ∑

∕

V z z
z

ω
z z

s
( , …, ) =

( )
, ,…, > 0,D

l

L

d

D
d

l d

α α

D1

=1 =1

−1

1

(3)

where ≥ω l Ls( ) 0, = 1,…,l , are deterministic spatial
profiles (or kernels) such that ∑ ω s( ) = 1

l

L
l=1

for any
location ∈s , and α > 0. Although other kernels are
possible, Reich and Shaby (2012) proposed using the
isotropic Gaussian density functions

⊤{ }g
πτ τ

l Ls s v s v( ) =
1

2
exp −

1

2
( − ) ( − ) , = 1,…, ,l l l2 2

(4)

with a bandwidth (ie, spatial range parameter) τ > 0 and
fixed spatial knots v v,…, L1 distributed over the domain ,
which are then rescaled as ∑ω g gs s s( ) = ( ){ ( )}l l l

L
l=1

−1.
The hierarchical construction of the Reich‐Shaby

model, detailed in Web Appendix A, allows for fast
Bayesian inference in high dimensions. In Section 3, we
extend the Reich‐Shaby to the multivariate spatial setting.

3 | NESTED MULTIVARIATE
MAX ‐STABLE PROCESSES

3.1 | Tree‐based construction of
multivariate max‐stable processes

In our multivariate spatial process, the univariate spatial
margins follow the Reich‐Shaby model and interact with
each other according to a nested tree‐based structure for
their latent PS random effects.

We first define the two‐layer nested multivariate max‐
stable process, and then extend it to multilayer tree
structures. Analogously to the hierarchical construction of
the Reich‐Shaby model detailed in Web Appendix A, for
each k K= 1,…, , let ∕{ }U z zs( ) ~ exp − , > 0k

α αi.i.d. −1 ( )k 0 ,
denote a random Fréchet noise process controlled by the
product of the two parameters ∈α α, (0, 1]k 0 ; and let
ϑ s( ) =k ∑ ∕ ∕A A ω s{ ( ) }

l

L
k l l

α
k l

α α α α
=1 ; 0;

1
;

1 ( )k k k0 0 be a smooth
spatial process, where the terms ≥ω s( ) 0k l; are L kernel
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basis functions representing deterministic weights, such
that∑ ω s( ) = 1

l

L
k l=1 ; for any ∈s , and the variables Ak l;

and A l L, = 1,…,l0; , are mutually independent (across
both k K= 1,…, and l L= 1,…, ) PS variables with para-
meters αk and α0, respectively. Thus, A α~ PS( )k l k;

i.i.d.

⊥⊥ A α~ PS( )l0;
i.i.d.

0 . Although the PS density is not available
in closed form, the Laplace transform of A α~ PS( ) is
e tE( ) = exp(− )tA α− . Using this, we can show that

∕A Ak l l
α

; 0;
1 k follows a PS distribution with parameter α αk 0;

therefore, each process defined as Z U ϑs s s( ) = ( ) ( )k k k

(k K= 1,…, ) is a univariate Reich‐Shaby process defined
over the region ⊂ 2 , with the dependence parameter
α αk 0, kernels ω l Ls( ), = 1,…,k l; , and unit Fréchet mar-
gins; see Web Appendix A for more details. Cross‐
dependence among these marginal processes is induced
by their shared latent variables A A,…, L0;1 0; . Then, we
combine the residual univariate processes Z s( ),k

k K= 1,…, , into the multivariate max‐stable process
⊤Z ZZ s s s( ) = { ( ), …, ( )}K1 , whose finite‐dimensional distri-

butions at D locations s s,…, D1 are expressed as (2) in terms
of the exponent function

⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥⎥

⎞

⎠
⎟⎟∑ ∑ ∑

∕

V

z

ω

z k d

z z

s

( , …, )

=
( )

,

> 0 for all , .

K

l

L

k

K

d

D
k d

k l d

α α α α

k d

1

=1 =1 =1

;

;

−1 ( )

;

k k0
0

(5)

In (5), ⊤z zz = ( , …, )k k k D;1 ; denotes the vector containing
the maxima of the kth variable observed at D locations,
while the parameters ≤α α0 < , 1k 0 (k K= 1,…, ) control
the spatial and cross‐dependence structures. Model (5)
corresponds to a max‐mixture of L independent nested
logistic max‐stable distributions (Tawn, 1990), with
kernels ω s( )k l; introducing spatial asymmetries. This
nested cross‐dependence structure, represented by a
simple tree in the top panel of Figure 1, assumes that
all the univariate processes are exchangeable. In the
following, we refer to the max‐stable process Z s( ) with
(5) as a two‐layer nested multivariate max‐stable process.

The exchangeability of such two‐layer processes is not
always realistic, but we overcome this limitation by general-
izing the construction above to multilayer, partially ex-
changeable, tree structures based on nested PS random
effects. We now illustrate the three‐layer tree case. We define
T exchangeable clusters, each comprised of Kt (t T= 1,…, )
max‐stable processes. Thus, we have a total of ∑K K=

t

T
t=1

spatial processes. For each cluster t T= 1,…, and variable
k K= 1,…, t, let ∕{ }U z zs( ) ~ exp − , > 0t k

α α α
;

i.i.d. −1 ( )t k t; 0 ,
be a random Fréchet noise process, and let ϑ s( ) =t k;

∑ ∕ ∕ ∕A A A ω s{ ( ) }
l

L
t k l t l

α
l
α α

t k l
α α α α α α

=1 ; ; ;
1

0;
1 ( )

; ;
1 ( )t k t k t t k t t k t; ; ; 0 ; 0 be a

smooth spatial process, where ∈α α α, , (0, 1]t k t; 0 are

dependence parameters, ≥ω s( ) 0t k l; ; are deterministic
kernels such that ∑ ω s( ) = 1

l

L
t k l=1 ; ; , for any ∈s , and

⊥⊥ ⊥⊥A α A α A α~ PS( ) ~ PS( ) ~ PS( )t k l t k t l t l; ;
i.i.d.

; ;
i.i.d.

0;
i.i.d.

0 are
independent PS random amplitudes. Then, we set
Z U ϑs s s( ) = ( ) ( )t k t k t k; ; ; , and define the nested multivariate
max‐stable process with unit Fréchet margins as

⊤ ⊤ ⊤Z s Z s Z s( ) = { ( ), …, ( )}T1 with ⊤{ }Z ZZ s s s( ) = ( ), …, ( ) ,t t t K;1 ; t

t T= 1,…, . Analogously to (5), the finite‐dimensional
distributions of Z s( ) observed at D locations ∈s s,…, D1

may be written as (2) with the exponent function

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥⎥

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

∑ ∑ ∑ ∑
∕

V

z

ω

z t k d

z z

s

( , …, )

=
( )

,

> 0 for all , , ,

T

l

L

t

T

k

K

d

D
t k d

t k l d

α α α α α α

t k d

1

=1 =1 =1 =1

; ;

; ;

−1 ( )

; ;

t t k t t k t
; 0 ; 0

(6)

where ⊤ ⊤ ⊤( )z z z= , …,t t t K;1 ; t
and ⊤z zz = ( , …, ) ,t k t k t k D; ; ;1 ; ;

t T k K= 1,…, , = 1,…, t. The proof of (6) is provided in
Web Appendix B. As illustrated in the bottom panel of
Figure 1, the multivariate process Z s( ) with (6) may be

FIGURE 1 Example of simple two‐layer (top) and three‐layer
(bottom) tree structures, summarizing the extremal dependence of a
four‐dimensional process written as ⊤Z Z Z ZZ s s s s s( ) = { ( ), ( ), ( ), ( )}1 2 3 4

(top) and ⊤Z Z Z ZZ s s s s s( ) = { ( ), ( ), ( ), ( )}1;1 1;2 2;1 2;2 (bottom). The
cross‐dependence strength among variables is controlled by the product
of dependence parameters assigned the nodes that they share; e.g., in
the three‐layer tree (bottom), the intracluster cross‐dependence, that is,
between processes Z s( )t;1 and Z s( )t;2 , is summarized by the product
α αt 0, whereas the intercluster cross‐dependence, that is, between the
variables Z Zs s( ), ( )t k t k; ;1 1 2 2 , with ≠t t1 2 and k k, = 1, 21 2 , is
summarized by the parameter α0. The number of latent PS random
variables involved in the model is equal to the number of upper tree
nodes (excluding the terminal nodes) multiplied by the number of basis
functions, L; here, there are L5 (top) and L7 (bottom) latent variables.
This figure appears in color in the electronic version of this article
[Color figure can be viewed at wileyonlinelibrary.com]
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represented graphically using a tree, whereby the
terminal nodes represent the marginal max‐stable
processes and the upper nodes describe the cross‐
dependence relationships among the processes. When
T = 1 and ≡α α αk k1; 1 , (6) reduces to the two‐layer case in
(5). Hence, (6) provides more flexibility than (5) for
representing complex cross‐dependence structures, and
we call it a three‐layer nested multivariate max‐stable
process. Using the inverse of the mapping (1), we get a
multivariate max‐stable process with arbitrary GEV
margins and the hierarchical formulation:

∣

⊥⊥ ⊥⊥

Z A A A μ σ ξ

A α A α A α

l L

s s s s* ( ) { , , } ~ GEV{ * ( ), * ( ), * ( )},

~ PS( ) ~ PS( ) ~ PS( ),

= 1,…, ,

t k l t l t k l l
L

t k t k t k

t k l t k t l t l

; 0; ; ; ; =1
ind

; ; ;

; ;
i.i.d.

; ;
i.i.d.

0;
i.i.d.

0

(7)

where ∕ { }μ μ σ ξ ϑs s s s s( ) = ( ) + ( ) ( ) ( ) − 1 ,*
t k t k t k t k t k

ξ s
; ; ; ; ;

( )t k;

σ s( ) =*t k; α α α σ ϑs s( ) ( )t t k t k t k
ξ s

0 ; ; ;
( )t k; , and ξ α αs( ) =*

t k t; 0

α ξ s( )t k t k; ; . By integrating out the PS random effects, the
process Z s( )*t k; is max‐stable and has GEV margins with
parameters μ σ ξs s s( ), ( ), ( )t k t k t k; ; ; .

3.2 | Spatial and cross‐dependence
properties

In a three‐layer multivariate max‐stable model (see Section
3.1), each marginal process Z t T ks( ), = 1,…, , = 1,…,t k;

K ,t is a Reich‐Shaby process with unit Fréchet margins;
therefore, it inherits its spatial dependence properties,
which were studied in depth by Reich and Shaby (2012).
The product α α αt k t; 0 plays the role of the dependence
parameter α in (3) and acts as a mediator between the noise
component U s( )t k; and the smooth spatial process ϑ s( )t k; .
Below, we describe the cross‐dependence properties of our

new multivariate spatial model.
Similar to Reich and Shaby (2012), we propose using

the Gaussian kernel (4) with a different bandwidth
τ > 0t k; for each marginal process, and the spatial knots

∈v v,…, L1 are fixed on a regular grid. Again, we rescale
the kernels to ensure that they sum to one at each
location, that is, ∑ω g gs s s( ) = ( ){ ( )} ,t k l t k l l

L
t k l; ; ; ; =1 ; ;

−1

t T k K= 1,…, , = 1,…, t, with gt k l; ; defined similarly to gl

in (4). In practice, we must choose a number of knots L
that balances computational feasibility with modeling
accuracy. A too small L might not be realistic and could
affect subsequent inferences by artificially creating a
nonstationary process (Castruccio et al., 2016), whereas a
too large L would significantly increase the computa-
tional burden. Reich and Shaby (2012) suggested fixing
the number of knots, L, such that the grid spacing is
approximately equal to or smaller than the kernel
bandwidth τt k; .

To understand the cross‐dependence structure of (6)
and the meaning of its parameters, we consider the
product of the dependence parameters along a specific
path through the underlying tree. The amount of noise
assigned to the marginal (univariate) Reich‐Shaby
process in the t k( ; )th terminal node is governed by
α α αt k t; 0; in contrast, α αt 0 controls the cross‐dependence
among the variables belonging to the same cluster t . The
cross‐dependence among variables belonging to distinct
clusters is controlled by α0. Since ≤α α αt 0 0, the
intracluster cross‐dependence is always stronger than
the intercluster cross‐dependence.

For model (6), the pairwise extremal coefficient
∈θ t k t ks s{ , ; ( ; ), ( ; )} [1, 2]i j 1 1 2 2 (see Section 2) sum-

marizes the strength of dependence between each pair of
variables ⊤{ }Z Zs s( ), ( )t k i t k j; ;1 1 2 2

, with t t T, = 1,…, ,1 2

k K k K= 1,…, , = 1,…,t t1 21 2
. The variables Z s( )t k i;1 1

(pro-
cess k1 in cluster t1 observed at location si) and Z s( )t k j;2 2

(process k2 in cluster t2 observed at location sj) are perfectly
dependent when θ t k t ks s{ , ; ( ; ), ( ; )} = 1i j 1 1 2 2 , and comple-
tely independent when θ t k t ks s{ , ; ( ; ), ( ; )} = 2i j 1 1 2 2 . The
dependence strength increases monotonically as the value
of the extremal coefficient approaches unity. Writing

≡θ t k t k θs s s s{ , ; ( ; ), ( ; )} ( , )i j i j1 1 2 2 for simplicity, we dis-
tinguish three cases from (6):

Hence, as the two sites get closer to each other (ie, as
→s si j), the cross‐extremal coefficient reduces to

→θ s s( , ) 2i j
α α αt k t; 0 if t t t k k k= = , = =1 2 1 2 (same clus-

ter, same variable), →θ s s( , ) 2i j
α αt 0 if ≠t t t k k= = ,1 2 1 2

(same cluster, different variable), or →θ s s( , ) 2i j
α0 if

≠ ≠t t k k,1 2 1 2 (different cluster, different variable). This
clearly confirms that intracluster cross‐dependence is

⎧

⎨
⎪⎪

⎩
⎪⎪

∑

∑

∑

≠

≠ ≠

∕ ∕

∕ ∕

∕ ∕

θ

ω ω t t t k k k

ω ω t t t k k

ω ω t t k k

s s

s s

s s

s s

( , ) =

{ ( ) + ( ) } , = = , = = ,

{ ( ) + ( ) } , = = , ,

{ ( ) + ( ) } , , .

i j

l

L
t k l i

α α α
t k l j
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stronger than intercluster cross‐dependence. Moreover,
the nugget effect is evident when we notice that 2 > 1α0

for all values of ∈α (0, 1]0 . Figure 2 illustrates these
pairwise dependence properties and shows realizations of
the three‐layer nested max‐stable model with exponent
function (6) and the underlying tree structure displayed
in the bottom panel of Figure 1, for specific values of the
dependence parameters.

The pairwise extremal coefficients shown in the top
row confirm that spatial dependence for each individual
process is stronger than cross‐dependence and that
intracluster cross‐dependence is stronger than interclus-
ter cross‐dependence. The realizations displayed in the
bottom row show that strong cross‐dependence between
two distinct variables may result in colocalized spatial
extremes. For example, by comparing the plots of Z s( )1;1

and Z s( )1;2 , which belong to the same cluster, it can be
noticed that spatial extreme events (red/yellow regions)
tend to occur in the same area of the figure. This figure
appears in color in the electronic version of this article,
and color refers to that version.

3.3 | Inference

Parameter estimation for this type of model may be
performed within a Bayesian framework by implementing
a standard Metropolis‐Hastings MCMC (MH‐MCMC) algo-
rithm, which takes advantage of the hierarchical formula-
tion (7); see, for example, Reich and Shaby (2012). In Web
Appendix C, we detail the implementation of the MH‐
MCMC algorithm, which draws approximate samples from
the posterior distributions of the dependence parameters
α α α, ,t k t; 0, and τt k; , where t T k K= 1,…, , = 1,…, t , for the
nested max‐stable model (6). For simplicity, we assume here
that the prior distributions of the parameters α α,t k t; , and α0

are noninformative Unif(0, 1), and that the range para-
meters τt k; have prior distribution equal to
h0.5 × Beta(2, 5)max as suggested by Sebille (2016), p. 97,

where hmax denotes the maximum distance between
stations. This slightly informative prior distribution stabilizes
the estimation of the range parameters, whose posterior
distribution is usually right‐skewed, but it should not have
an important impact on the fitted model when the spatial
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FIGURE 2 Top row: Pairwise extremal coefficient θ t k t ks s{ , ; ( , ), ( , )}i j 1 1 2 2 , see (8), for the three‐layer multivariate max‐stable model
with exponent function (6) and underlying tree structure displayed in the bottom panel of Figure 1, for fixed reference location

⊤s = (0.5, 0.5)i and ∈s [0, 1]j
2. Here, α α α= 0.9, = = 0.70 1 2 and α α α α= = = = 0.41;1 1;2 2;1 2;2 , while the kernels are Gaussian densities as

in (3) with bandwidths τ τ τ τ= = = = 0.11;1 1;2 2;1 2;2 , with knots taken on a 100 × 100 regular grid. The panels summarize the spatial
dependence of each individual process (left), the intracluster cross‐dependence (middle) and the intercluster cross‐dependence (right).
Bottom row: Realizations of Z s( )1;1 (left), Z s( )1;2 (middle), and Z s( )2;1 (right). The color scale on the right‐hand side of each bottom panel
indicates the level of each process simulated on the standard Gumbel scale. This figure appears in color in the electronic version of this
article, and color refers to that version [Color figure can be viewed at wileyonlinelibrary.com]
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dependence is not too strong. While our model inherits the
same computational benefits as the (univariate) Reich‐Shaby
model, the computational time increases by considering
additional variables or adding layers to the latent tree
structure.

We conducted a simulation study reported in Web
Appendix D, based on the two‐layer and three‐layer
multivariate models, which suggests that the MH‐MCMC
works correctly and that the parameters can be properly
estimated in a reasonable amount of time.

4 | MULTIVARIATE SPATIAL
ANALYSIS OF AIR POLLUTION
EXTREMES

4.1 | Motivation

High concentrations of pollution in the air can harm the
human body. Current methods for assessing air pollution
dangers typically consider each pollutant separately, ignor-
ing the heightened threat of exposure to multiple air
pollutants. In order to inform the public and government
administrations, the US EPA and other international
organizations are moving towards a multipollutant ap-
proach for quantifying health risks of air pollution. In this
work, we investigate the extremal dependence among air
pollutants and temperature jointly across space. Here, we

use our new methodology based on nested multivariate
max‐stable processes to characterize the spatial and cross‐
dependence structures among these variables of interest. In
this paper, we focus on the estimation of the dependence
structure, while the spatial modeling of margins is carried
out separately using the Bayesian hierarchical model
proposed by Davison et al. (2012). More details on the
marginal estimation and model assessment are provided in
Web Appendix E.

4.2 | Data, model fitting, and
diagnostics

Following up on the study in Vettori et al. (2018), we here
investigate the extremal dependence between air pollu-
tants and meteorological data jointly across space. We
select daily measurements of carbon monoxide (CO),
nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and
temperature (T) at a number of sites in California from
January 2006 to December 2015. Vettori et al. (2018)
developed the Tree Mixture MCMC (TM‐MCMC) algo-
rithm for investigating plausible multivariate cross‐
dependence structures for each site separately. This
algorithm exploits reversible jump MCMC and the tree
structure of the nested logistic distribution to sample
from the posterior distribution of the parameters and the
tree itself. In Vettori et al. (2018), the multivariate

FIGURE 3 Study region around Los
Angeles, with the nine selected sites
indicated by numbers. This figure appears
in color in the electronic version of this
article [Color figure can be viewed at
wileyonlinelibrary.com]
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extremal cross‐dependence between air pollutants and
meteorological parameters was analyzed separately at
each site, thus ignoring spatial dependence. Since the
clusters CO–NO and NO –O –T2 3 appeared to be char-
acterized by stronger dependence, it makes sense to
assume two‐layer dependence structures, with one single
tree summarizing the dependence of CO–NO and
another tree summarizing the dependence of
NO –O –T2 3 , over the 21 sites under study. The results of
the fits based on the MH‐MCMC algorithm are reported
in Web Appendix F; see Web Figures S11 and S12.

We now extend this study by fitting a more complex
three‐layer nested max‐stable model to the five variables
(CO, NO, NO , O , T2 3 ), but at a smaller number (nine) of
sites, see Figure 3, for which stationarity and a single tree
structure over space is a reasonable assumption.

To choose the tree structure, we run again the TM‐
MCMC algorithm of Vettori et al. (2018) (see details
therein) to the stationary, standardized, monthly maxima
data for all variables separately for each site. The most

likely dependence structures identified by the TM‐
MCMC algorithm and the associated posterior probabil-
ities are represented in Figure 4.

The tree structures that appear more often across the
chains are trees A, B, and C. In these three trees, the
extreme concentrations of CO and NO are grouped
together. Moreover, extreme concentrations of NO2 are
grouped with extreme concentrations of O3 and high
temperatures in Tree B and with extreme concentrations
of CO and NO in Tree C.

We then proceed and fit the three‐layer nested
multivariate max‐stable model with the tree dependence
structures A, B, and C; the posterior medians are reported
in Figure 5.

The estimated parameters α0 take values close to 0.9 in
all three trees, indicating that the extreme concentrations
of CO and NO are weakly related to the extreme
concentrations of NO2 and O3 and to high temperatures
across the Los Angeles area. The cross‐dependence is
strongest between the pollutants CO and NO in Tree A

(A) (D)

(E)(B)

(C) (F)

FIGURE 4 The most frequent tree structures (right), indicated by letters A to F, identified by the TM‐MCMC algorithm of Vettori et al.
(2018) after R = 5000 iterations, burn‐in ∕R 4 and thinning factor 5. The histograms (left) report the posterior probability associated with
each tree for each site in Figure 3 calculated as the number of times each tree appears in the algorithm chain. This figure appears in color in
the electronic version of this article. TM‐MCMC, Tree Mixture Markov chain Monte Carlo [Color figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

FIGURE 5 Posterior medians of the dependence parameters α α α, ,t k t; 0 obtained by fitting our new three‐layer nested multivariate
max‐stable model (6) to the concentration maxima of CO, NO, NO , O2 3, and temperature using the MCMC algorithm and assuming the tree
structures A, B, or C from Figure 4. MCMC, Markov chain Monte Carlo
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and between CO, NO, and NO2 in the case of Tree C,
whereas Tree B also identifies the variables NO , O2 3, and
high temperature with fairly strong cross‐dependence.
Web Figure S13 (in Web Appendix G) compares
empirical and model‐based estimates of the pairwise
extremal coefficients; recall Section 2 and (8). Overall,
model‐based estimates are similar to their empirical
counterparts (taking the high variability of empirical
estimates into account), which suggests that the fitted
model is reasonable and adequately captures the complex
spatial cross‐dependence structure of extremes in our
dataset. As expected, the pairwise extremal coefficient
estimates computed for individual variables seem to
increase with the distance between sites. Moreover, both
the empirical and model‐based pairwise cross‐extremal
coefficient estimates indicate a moderate dependence
strength between variables belonging to the same cluster,
such as CO and NO, O3 and NO2, or O3 and T, regardless
of the distance between sites, whereas the variables
belonging to different clusters, such as O3 and CO or O3

and NO, are weakly dependent at any distances.
To verify that the nested multivariate max‐stable model

provides a good marginal fit for each of the processes under
study, Web Figure S14 (in Web Appendix G) compares the
MCMC output obtained from the joint fit of our three‐layer
model to the posterior medians of the dependence
parameters α and τ obtained from the (univariate) Reich‐
Shaby model fitted to each process independently. Overall,
the joint and individual models provide similar values for the
marginal parameters, confirming that our approach yields
sensible marginal fits, while simultaneously providing
information about the cross‐dependence structure. However,
the processes characterized by a large dependence parameter

α are quite noisy, and, thus, harder to estimate. The
computational time for the three‐layer model fits was less
than a few hours with R = 50000 MCMC iterations. Plots
and results are produced after removing an initial burn‐in of
∕R 5 iterations, and thinning the Markov chain by a

factor 500.

4.3 | Return level projections and air
pollution risk assessment

The US EPA typically uses the Air Quality Index (AQI) to
communicate air pollution risks to the public. In order to
illustrate the impacts of neglecting spatial and cross‐
dependence structures on the AQI return level estimates,
Figure 6 shows high p‐quantiles with probabilities ranging
from p = 0.5 to p = 0.996, considering April 2009 as the
baseline, computed for the maximum AQI over the
pollutants CO,O3, and NO2 and across space, using different
dependence models (but the same marginal model).

Under stationary conditions, the return levels for the
return periods of 1 and 20 years roughly correspond to

∕ ≈p = 1 − 1 12 0.917 and ∕ ≈p = 1 − 1 (12 × 20) 0.996,
respectively. The AQI categories, representing different levels
of health concern, are represented by different colors. We
compare the fits of the full nested multivariate max‐stable
model, the Reich‐Shaby model fitted to each individual
process separately (ignoring cross‐dependence), the nested
logistic distribution fitted at each site separately using the
TM‐MCMC algorithm (ignoring spatial dependence), and the
GEV distribution fitted to each site and pollutant indepen-
dently (ignoring both spatial and cross‐dependence). The
AQI quantiles obtained from the posterior predictive
distribution of the Reich‐Shaby fits are much smaller than

FIGURE 6 High p‐quantiles zp computed for the spatial maximum of the largest Air Quality Index (AQI) for CO,O3, and NO2, setting April
2009 as baseline, obtained by fitting the nested multivariate max‐stable model (black lines); by fitting the Reich‐Shaby model to each individual
process separately, neglecting cross‐dependence (blue lines); by running the TM‐MCMC algorithm to estimate the cross‐dependence between
variables at each site separately, neglecting spatial dependence (red lines); and by fitting the GEV distribution to each site and pollutants
independently, neglecting spatial and cross‐dependence structures (green lines). Results are shown for the underlying trees A (left), B (middle),
and C (right). Probabilities are displayed on a Gumbel scale, that is, zp is plotted against p− log{−log( )}. AQI categories: 0‐50 satisfactory; 51‐100
acceptable; 101‐150 unhealthy for sensitive groups (orange); 151‐200 unhealthy (red);>200 very unhealthy (purple). This figure appears in color in
the electronic version of this article, and color refers to that version. TM‐MCMC, Tree Mixture Markov chain Monte Carlo [Color figure can be
viewed at wileyonlinelibrary.com]
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the ones obtained from the multivariate distribution fitted to
each site separately or the GEV distribution fitted to each site
and pollutants separately. Furthermore, the high quantile
projections based on the nested multivariate max‐stable
model are generally smaller than the high quantiles based on
the Reich‐Shaby model. Therefore, when neglecting spatial
dependence or the multivariate cross‐dependence among
processes, the return levels calculated for the maximum of
several extreme observations might be strongly overesti-
mated. Such a large difference in return levels for spatial risk
measures was also similarly noticed by Huser and Genton
(2016) when they explored the effect of model misspecifica-
tion in nonstationary max‐stable processes. Using our
proposed multivariate max‐stable process based on Tree A,
the high quantiles zp (for the maximum AQI across all sites
and pollutants) lie within the very unhealthy category for
probabilities ≥p 0.92, indicating that at least one of the
criteria pollutants under study exceeds this critical threshold
at one or more of the monitoring sites approximately once
every year. We obtained similar results from trees B and C.

5 | CONCLUSION

We introduced a novel class of hierarchical multivariate
max‐stable processes that have the Reich‐Shaby model as
univariate margins, and that can capture the spatial and
cross‐dependence structures among extremes of multiple
variables, based on latent nested positive stable random
effects. These hierarchical models may be conveniently
represented by a tree structure, and the complexity of the
dependence relations among the various spatial variables
might be increased by adding an arbitrary number of
nesting layers. Parameter estimation can be carried out
within a Bayesian framework using a standard Metropo-
lis‐Hastings MCMC algorithm. As shown in our simula-
tion experiments, the dependence parameters governing
the spatial dependence of individual variables and the
cross‐dependence among different variables can be
satisfactorily identified using our proposed algorithm.

We fitted the nested multivariate max‐stable process to
air pollution extremes collected in the Los Angeles area. In
addition to providing good spatial marginal fits for each of
the air pollutants under study, our model detects their
extremal spatial cross‐dependence, and takes into account
temperature extremes. Extreme concentrations of toxic air
pollutants, such as CO, NO, NO2, and O3 and high
temperatures are weakly related across the area of Los
Angeles. Furthermore, a strong cross‐dependence is
detected between the maxima of CO and NO, which are
both pollutants released by fossil fuel combustion. Also,
high concentrations of O3 and high temperatures often
occur simultaneously, which leads to a heightened health

threat according to Kahle et al. (2015). Modeling air
pollution extremes using the proposed nested multivariate
max‐stable model allows us to provide sensible multi-
pollutant return level estimates based on the AQI; thus,
our new methodology is useful for assessing the risks
associated with simultaneous exposure to several air
pollutants over space and might be used to develop future
air pollution monitoring regulations.

In order to fit the nested multivariate max‐stable
process, we must assume a single fixed tree structure
across space. To generalize our approach to spatially‐
varying tree structures, one could define a partition of
space with homogeneous subregions governed by possi-
bly different cross‐dependence tree structures. For more
flexibility, this partition could also be treated as random,
similarly to Reich and Shaby (2018a).

Another open problem is the modeling and character-
ization of multivariate spatial extremes defined as high‐
threshold exceedances. While Eastoe and Tawn (2009)
discussed the modeling of nonstationary extreme ozone
data in the univariate context, and Thibaud and Opitz
(2015) and de Fondeville and Davison (2018) showed
how to model spatial threshold exceedances using
suitable risk functionals, it is less clear how to properly
capture the joint spatial and cross‐dependence structures
of multivariate high‐threshold exceedances.
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