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SUMMARY

Recently a blind source separation model was suggested for spatial data, along with an estimator
based on the simultaneous diagonalization of two scatter matrices. The asymptotic properties of
this estimator are derived here, and a new estimator based on the joint diagonalization of more
than two scatter matrices is proposed. The asymptotic properties and merits of the novel estimator
are verified in simulation studies. A real-data example illustrates application of the method.

Some key words: Joint diagonalization; Limiting distribution; Multivariate random field; Spatial scatter matrix.

1. INTRODUCTION

Multivariate data measured at spatial locations s1, . . ., s, in a domain S¢ C R are frequently
encountered. Such data exhibit two kinds of dependence: measurements taken closer to each
other tend to be more similar than measurements taken further apart, and the variable values
within a single location are likely to be correlated.
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This complexity makes modelling multivariate spatial data computationally and theoretically
difficult due to the large number of parameters required to represent the dependencies. In the
present article we address this problem through blind source separation, a framework estab-
lished for independent component analysis of independent and identically distributed data and
of stationary and nonstationary time series; see Comon & Jutten (2010) and Nordhausen & Oja
(2018). Denoting a p-variate random field by X (s) = {X;(s),...,X,(s)}, where T is the trans-
pose operator, we assume that X (s) obeys the spatial blind source separation model introduced in
Nordhausen et al. (2015); that is, X (s) at location s is a linear mixture of an underlying p-variate
latent field Z(s) = {Z1(s), ..., Z,(s)}" with independent components,

X(s) = QZ(s), (1)

where 2 is an unknown p x p full-rank matrix. In this introductory section, we treat the random
fields X and Z as having mean functions zero for simplicity.

When the observed random field X takes the form (1), modelling and computational simplifi-
cations can be obtained. In fact, if no assumption at all is made on X, then the distribution of X is
characterized by p covariance functions and p(p — 1)/2 cross-covariance functions. In contrast,
when it is assumed that X takes the form (1), then the distribution of X is characterized by p
covariance functions and a p x p matrix. A function, being an infinite-dimensional object, is more
difficult to model and estimate than a fixed-dimensional matrix. Therefore, when the observed
random field X takes the form (1), modelling simplifications are available.

When no assumption is made on X, a common practice in geostatistics is to let each of the p
covariance functions and each of the p(p — 1) /2 cross-covariance functions of X be characterized
by ¢ parameters. For example, the case of ¢ = 2 could correspond to a variance and a length-
scale parameter for an isotropic function. Then the resulting gp(p + 1)/2 parameters are usually
estimated jointly by optimizing a fit criterion, typically the likelihood (Genton & Kleiber, 2015).
This involves solving an optimization problem in dimension gp(p+1) /2, where the computational
cost of an evaluation of the likelihood is O(p3n?). Once the gp(p + 1) /2 parameters are estimated,
the prediction of X (s) for new values of s can be performed at a computational cost of O(p3n?).

In contrast, suppose that model (1) holds for X. We will show in this paper that an estimate
of Q7! can be obtained. This is done by first computing scatter matrices with computational
cost O(p*n?) and then performing an optimization in dimension p?, where the computational
cost of the function to be evaluated is O(pz); see § 4 for details. If each covariance function
of Z is characterized by ¢ parameters, then each can be estimated separately by optimizing the
likelihood in dimension ¢. The evaluation cost of the likelihood is O(n3). Once the gp covariance
parameters are estimated, the prediction of X (s) for new values of s can be performed at O(pn?)
cost. Indeed, the predictions of Z;(s), ..., Z,(s) can be performed separately at O(n?) cost and
then aggregated at negligible cost.

Not all random fields X obey a spatial blind source separation model of the form (1). For
instance, (1) forces the cross-covariance functions of X to be symmetric. Nevertheless, it is a
reasonable model in a fair number of practical situations (Nordhausen et al., 2015) and brings
the computational benefits discussed above. Furthermore, an additional benefit of the form (1) is
dimension reduction. In blind source separation, often significantly fewer than the full p latent
components are needed to capture the essential structure of the original observations, and the
remaining components can be discarded as noise.

We therefore consider the spatial blind source separation model (1) in this paper and focus
on the estimation of 2~!. As discussed above, this estimation enables us to estimate the cross-
covariance functions of X and to perform prediction. Our approach to estimating 2! is based
on the use of local covariance, or scatter, matrices,
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M) =n""D " " fsi— X (s X ()", )

i=1 j=1

where / : RY — R is called the kernel function. Nordhausen et al. (2015) obtained estimators
I'(f) of Q! through a generalized eigendecomposition of pairs of local covariance matrices
with kernels of the form (fo, /), where f;,(s; — s;) = I(||s; — s;|I < h) for a positive constant /4
and fo(s) = I(s = 0), with /(-) denoting the indicator function. The estimators of Nordhausen
et al. (2015) are based on the following definition, with f = f;, for some 4 > 0.

DEFINITION 1. An unmixing matrix estimator I( 1) jointly diagonalizes M( fo) and M( f)in
the following way:

FOMWEN =1, TNHOMNOTN" =AY,
where A( 1) is a diagonal matrix with diagonal elements arranged in decreasing order.

This method is conceptually close to principal component analysis, where latent variables that
have maximal variance are found through diagonalization of the covariance matrix. However,
since the covariance matrix does not capture spatial information, it was extended to the concept
of local covariance matrix in Nordhausen et al. (2015). Analogously, the diagonalization of local
covariance matrices aims to find latent fields that maximize spatial correlation.

Here, we expand on the work of Nordhausen et al. (2015) by relaxing the condition on the
kernel /" in Definition 1 so that it is no longer restricted to be of the ball form f;,. Furthermore, we
derive the asymptotic behaviour of the method proposed in Nordhausen et al. (2015) for a large
class of kernel functions f.

The idea behind the construction of these kernel functions is that the mean values of M (f) and
M (fo) would be diagonal matrices if, in their definition, the mixed components X were replaced by
the latent components Z. Hence, a general blind source separation strategy is to undo the mixing
in X by finding a matrix I'( f) that simultaneously diagonalizes M( f) and M (fo). This task is
computationally simple and can always be done exactly using generalized eigenvalue-eigenvector
theory. However, from temporal blind source separation, it is well known that when diagonalizing
only two matrices, the choice of the matrices can have a large impact on the separation efficiency.
Therefore, a popular strategy is to approximately diagonalize more than two matrices in the
hope of including more information; see, for example, Belouchrani et al. (1997), Miettinen et al.
(2014), Nordhausen (2014), Matilainen et al. (2015) and Miettinen et al. (2016). Approximate
diagonalization becomes necessary as the matrices commute only at the population level, but not
when estimated using finite data. There are many algorithms available for this purpose. We use
this idea to extend the method of Nordhausen et al. (2015) to the joint diagonalization of more
than two local covariance matrices. We also derive the asymptotic behaviour of the proposed
estimators.

2. SPATIAL BLIND SOURCE SEPARATION MODEL
2.1. General assumptions

In the spatial blind source separation model, the following assumptions are made.
Assumption 1. We have E{Z(s)} = 0 fors € 89,

Assumption 2. We have cov{Z(s)} = E{Z(s)Z(s)"} = I,.
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Assumption 3. We have cov{Z(s1),Z(s2)} = E{Z(s1)Z(s2)"} = D(s1,s2), where D is a
diagonal matrix whose diagonal elements depend only on s1 — s5.

Letcov{Zi(s;), Zi(sj)} = Ky (si—s;) = D(s;, s;)k x, Wwhere Ky denotes the stationary covariance
function of Z; fork = 1,...,p.

Assumption 1 is made for convenience and can easily be replaced by the assumption of a
constant unknown mean, as shown in the Supplementary Material. Assumption 2 requires that
the components of Z(s) be uncorrelated and implies that the variances of the components are equal
to 1, which alleviates identifiability issues and holds without loss of generality. Assumption 3
says that there is also no spatial cross-dependence between the components. However, even after
these assumptions are made, the model is not uniquely defined. The order of the latent fields and
also their signs can be changed. This is common to all blind source separation approaches and is
not found to be a problem in practice.

2.2. Identifiability
The expectations of M( f) and M (fo) are, respectively,

M) =n""D "3 i = PEX )X ()T, M) =n~" Y EX ()X (s1)").

i=1 j=1 i=1

Hence the empirical procedure of Definition 1, operating on M (f) and M (fo), can be associated
with the following theoretical procedure operating on M () and M (fp).

DEFINITION 2. For any function f : R? — R, an unmixing matrix functional T (f) is defined
to be a functional which jointly diagonalizes M (f) and M (fy) in the following way:

COMET () =1, THOMUIOT)" = Af),
where A(f) is a diagonal matrix with diagonal elements arranged in decreasing order.

We remark that an unmixing matrix I'(f) can be found using the generalized eigenvalue-
eigenvector theory. In addition, an unmixing matrix is never unique, since if I'(f) and A(f)
satisfy Definition 2, then ST'(f) and A(f) also satisfy Definition 2 for any diagonal matrix S
with diagonal elements equal to —1 or 1. We also remark that A(f") is not the expectation of
f\( f) in general. Indeed, Definitions 1 and 2 are based on nonlinear functions of {M N, M (fo)}
and of {M (f), M (fy)}, respectively.

The usual notion of identifiability in blind source separation is that any unmixing functional
['(f) should recover the components of Z up to signs and order of the components. Thus, any
unmixing functional I'(f) should coincide with Q! up to the order and signs of the rows.

DEFINITION 3. We say that the unmixing problem given by f is identifiable if any unmixing
functional T'(f) satisfying Definition 2 can be written as PS Q~, where P is a permutation
matrix and S is a diagonal matrix with diagonal elements equal to —1 or 1.

The motivation behind identifiability is that if identifiability holds, then estimating M (fp) and
M (f) consistently by M (fo) and M( /) enables us to obtain I'( /), which will be approximately
equal to a matrix of the form PS Q~!, with P and S as in Definition 3. The following proposition
provides a necessary and sufficient condition for identifiability. This proposition and all other
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theoretical results in the paper are proved in the Supplementary Material. Let M~ denote the
inverse of the transpose of M.

PROPOSITION 1. The unmixing problem given by f is identifiable if and only if the diagonal
elements of Q™ 'M (f)QQ™" are distinct.

We remark that identifiability is a joint property of the kernel f and the covariance functions
Ki,...,K,.Forexample, consider the situation in which K1, . . ., K, are compactly supported and
equal to zero at distances larger than 0 < r < oo, where the function f'(s) = I(r; < ||s] < 72)
with r < r; < rp < oo is used as the kernel. Then identifiability does not hold because
Q7'M (f)Q" is equal to the zero matrix. On the other hand, if /" is a ball kernel of the form
f () =I(Is|| < rg) with rg > 0, then identifiability may hold for the same covariance functions
Ki,...,K,.

Finally, for any kernel f, a necessary condition for identifiability is that there should not exist
k,l € {1,...,p} with k & [ such that K; (s; — s5;) = K;(s; — s;) forall i,j = 1,...,n. Indeed,
if this were the case, then the diagonal elements k and / of Q7'M (f)Q~" would be equal for
any kernel /. An extreme example of this situation is where K = - - - = K}, with only Gaussian
components. In this case, for any orthogonal matrix Q, the distribution of the random field OZ is
the same as that of the random field Z; hence no statistical procedure can be expected to recover
the components of Z, even up to signs and permutations, when one only observes the transformed
random field X

2.3. Relationships to other models of multivariate random fields

The spatial blind source separation model is notably different from the usual multivariate
models for spatial data, which are often defined starting with their covariance functions contained
in a cross-covariance matrix,

C(s1,52) = cov{X (s1),X (s2)} = {Ck,l(SIaSZ)}isz

whereas our method for estimating ! does not need to model or estimate the covariance
functions of the latent fields Z; (s), . . ., Z,(s).

In a recent extensive review, Genton & Kleiber (2015) discussed different approaches to
defining cross-covariance matrix functionals and gave a list of properties and conventions that they
should satisfy, including stationarity and invariance under rotation. As Genton & Kleiber (2015)
pointed out, to create general classes of models with well-defined cross-covariance functionals is
a major challenge. Multivariate spatial models are particularly challenging as many parameters
need to be fitted. In textbooks such as Wackernagel (2003), usually the following two popular
models are described.

In the intrinsic correlation model it is assumed that the stationary covariance matrix C (%) can be
written as the product of the variable covariances and the spatial correlations, C(h) = p(h)T for
all lags i, where T is a nonnegative-definite p x p matrix and p (%) a univariate spatial correlation
function.

The more popular linear model of coregionalization is a generalization of the intrinsic
correlation model, and the covariance matrix has the form

Chy =) ok(Ti

k=1
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for some positive integer » < p, where all the p; are univariate spatial correlation functions and
the T} are nonnegative-definite p X p matrices, often called coregionalization matrices. Withr = 1
this reduces to the intrinsic correlation model. The linear model of coregionalization implies a
symmetric cross-covariance matrix.

Estimation in the linear model of coregionalization is discussed in several papers. Goulard &
Voltz (1992) studied the coregionalization matrices using an iterative algorithm where the spatial
correlation functions are assumed to be known. The algorithm was extended by Emery (2010).
Assuming Gaussian random fields, an expectation-maximization algorithm was suggested in
Zhang (2007), and a Bayesian approach was considered in Gelfand et al. (2004).

There is a simple connection between the spatial blind source separation model and the linear
model of coregionalization. The covariance matrix Cy (4) resulting from a spatial blind source
separation model is always symmetric and can be written as

p
Cx(h) =) Ke(W Tk,
k=1

where T} = a)ka)lz, with wy being the kth column of Q2. Thus, the spatial blind source separation
model is a special case of the linear model of coregionalization with » = p, and with all the
coregionalization matrices 7} (k = 1, ..., p) being rank-one matrices.

3. ASYMPTOTIC PROPERTIES FOR SIMULTANEOUS DIAGONALIZATION OF TWO MATRICES

Recall the definition (2) of a local covariance matrix and that
n

M(fo) =n""Y X (s)X (s)"
i=1

is the covariance estimator. Asymptotic results can be derived for the previous estimators under
Assumptions 1-3 and the further assumptions below.

Assumption 4. The coordinates Z1, . .., Z, of Z are stationary Gaussian processes on RY.

Assumption 5. A fixed A > 0 exists such that foralln € Nand alli,j = 1,...,n withi % j,
lsi —s;ll = A.

Assumption 6. Fixed 4 > 0 and o > 0 exist such that for all x € Reandallk =1,..., J22

Kix)| < ———.
|Kx ()] TF [

Assumption 7. If Assumption 6 holds, then for the same 4 > 0 and « > 0 we have

A

)< —.
FONS T g

Assumption 8. We have

liminf min [{Q_IM(f)Q_T}i’i—{Q_IM(f)Q_T}i_l,i_J > 0.

n—>00 j=2,...p
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Assumption 5 implies that S? is unbounded as n — oo, which means that we are dealing with
the increasing-domain asymptotic framework (Cressie, 1993).

Assumption 7 holds in particular for the function /(s = 0) and for the ball and ring kernels
Bh)(s) = I(|Is|| < h) with fixed 2 > 0 and R(h1,h)(s) = () < |Is]| < hp) with fixed
hy > hy > 0.

Up to reordering of the components of Z, which can be done without loss of generality,
Assumption 8 is an asymptotic version of the identifiability condition in Proposition 1. Under
Assumption 8, identifiability in the sense of Definition 3 holds for sufficiently large n, by
Proposition 1.

Proposition 2 below establishes the consistency of the estimator M( f), where f satisfies
Assumption 7.

PROPOSITION 2. Suppose n — o0 and that Assumptions 1-6 hold, and let f R? — R satisfy
Assumption 7. Then M (f) — M (f) — 0 in probability as n — oo.

We remark that M () depends on » and that we do not assume that the sequence of matrices
M (f) converges to a fixed matrix as  — oo. Hence, Proposition 2 shows that M () —M(f)
converges to zero, not that M (f) converges to M (f).

Next, we show the joint asymptotic normality of n!/2 {M(ﬁ)) —M (fy)} and nl/z{M(f) —M(f)},
viewed as sequences of p? x 1 random vectors. As in Proposition 2, we do not need to assume that
the sequence of 2p? x 2p? covariance matrices of these two sequences of vectors converges to a
fixed matrix. Hence, we will not show that these sequences of random vectors converge jointly
to a fixed Gaussian distribution; instead, we show that the distances between the distributions
of these random vectors and Gaussian distributions converge to zero as n — 00. As a distance
between distributions, we consider a metric dy, generating the topology of weak convergence
on the set of Borel probability measures on Euclidean spaces (see, e.g., Dudley, 2002, p. 393).
The advantage of using such a distance is that a sequence of distributions (£,),cn converges to
a fixed distribution £ if and only if dy, (L, £) converges to zero. The next proposition provides
the asymptotic normality result.

PROPOSITION 3. Under the same assumptions as in Proposition 2, let W (f) be the vector of
size p* x 1 defined, for i = (a — \)p + b witha,b € {1,...,p}, by

W ()i =n"2 M (f)ap —M(Fap}
Let Q, be the distribution of {W (), W (fo)"}". Then, as n — oo,

dw[Ons N{O, V (£, f0)}] — O,

where N denotes the normal distribution and details of the matrix V(f,fo) are given in the
Appendix. Moreover, the largest eigenvalue of V (f , fo) is bounded as n — oo.

In Proposition 3, V(f,fy) is a 2p> x 2p* matrix that depends on » and is interpreted as
an asymptotic covariance matrix. Also, in Proposition 3 the vectors W (f) and W (fy), which
are asymptotically Gaussian, are obtained by row vectorization of n!/ 2(M (fo) — M(fp)} and
nl/z{M(f) — M (f)}. Taking f'(s) = I(||s|| < h) with # > 0 in Propositions 2 and 3 gives the
asymptotic properties of the method proposed in Nordhausen et al. (2015).

Remark 1. Propositions 2 and 3 remain valid when the process X is centred by X =
n~! Y i1 X (s;). Indeed, we prove in the Supplementary Material that the difference between

the centred estimator and M (f) is of order Op (n~h.
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For a matrix 4 with rows [{,...,[], let vect(4) = (I],...,[;)" be the row vectorization of 4;
for a matrix 4 of size k x k, let diag(4) = (41,1, ..., Ak )" The next proposition shows the joint

asymptotic normality of the estimators I'( f) and A( .

PROPOSITION 4. Under the same assumptions as in Proposition 2, suppose also that
Assumption 8 holds. For T'(f) and A(f) in Definition 1, let Q, be the distribution of

a1/2 [ VeCt{f(f) - ]
diag{A(f) — A(f)} |

Then we can choose f‘(f) and A(f) in Definition 1 such that as n — oo,
dw{On, N(0,F1)} — 0,
where the matrix F is detailed in the Appendix.

In Proposition 4, as before we consider the sequences of vectors obtained by vectorizing
nl/z{f‘(f) — 7!} and taking the diagonal ofnl/z{f\(f) — A(f)}. Again, we do not show that
the sequence ofjoint distributions of these vectors converges to a fixed distribution, but rather show
that these joint distributions are asymptotically close to Gaussian distributions, with covariance
matrices given by F;. We remark that F; denotes a sequence of (p*> + p) x (p? + p) matrices. We
also remark that in Definition 1, I'(f) is not uniquely defined; it is defined up to the signs of its
rows. Hence, Proposition 4 shows that there exists a choice of the sequence I"(f) in Definition 1
such that asymptotic normality holds as » — oo.

The performance of the estimators I'( f) and A( f) depends on the choice of M( /), which
should be chosen so that A( f) has diagonal elements as distinct as possible. This is similar to
the time series context as described in Miettinen et al. (2012). To avoid this dependency in the
time series context, the joint diagonalization of more than two matrices has been suggested, and
we will apply this same idea to the spatial context in the following section.

4. IMPROVING ESTIMATION BY JOINTLY DIAGONALIZING MORE THAN TWO MATRICES

Spatial blind source separation with more than two kernel functions of the form fy, f1, ..., fk,
with & > 2, can be formulated as

A

k p
I' e arg max ZZ{)/;M(/’;))/J}Z. 3)
L:TM ()T =1, =1 j=1
T" has rows le,...,ypT

We can show that if k = 1, the set of I’ satisfying (3) coincides with the set of f‘(fl) satisfy-
ing Definition 1. From experience in the time series blind source separation context (see, e.g.,
Miettinen et al., 2016), usually the diagonalization of several matrices gives better separation than
diagonalization based on two matrices only. In this paper we show that using £ > 2 is indeed
beneficial both from a theoretical point of view and in practice.

The identifiability notion in Definition 3 and Proposition 1 can be extended to the case of more
than two local covariance matrices. We first remark that the theoretical version of (3) is
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k p
e  argmax Z Z{ijM(f;)yj}z. 4)
F:FM(ff))FTzlp, =1 j=1
I" has rows le,..,,ypT

We then extend Definition 3 and Proposition 1 to the case of more than two local covariance
matrices.

DEFINITION 4. We say that the unmixing problem given by f1, . . ., fx is identifiable if any unmix-
ing functional T satisfying (4) can be written as PS Q~', where P is a permutation matrix and
S is a diagonal matrix with diagonal elements equal to —1 or 1.

PROPOSITION 5. The unmixing problem given by f1,...,fr is identifiable if and only if for
every pair i,j = 1,...,p with i % j, there exists | = 1,...,k such that {Q_IM(ﬁ)Q_T},',i +
QM@ ;.

We remark that the identifiability condition in Proposition 5 is weaker than that in Proposition 1,
because if the condition in Proposition 1 holds with f being one of the f1, . . ., f¢, then the condition
in Proposition 5 holds. This is one of the benefits of jointly diagonalizing more than two matrices.

One of the main theoretical contributions of this paper is to provide an asymptotic analysis of
the joint diagonalization of several matrices in the spatial context. Assumption 8, on asymptotic
identifiability, can be replaced by the following weaker assumption.

Assumption 9. A fixed § > 0 and an ng € N exist such that for all » € N with n > ng and
for every pairi,j = 1,...,p with i & j, there exists / = 1,. .., k such that |{Q_1M(ﬁ)Q_T},~,i —
Q7'M =8

In the next proposition we state the consistency of r.

PROPOSITION 6. Suppose that Assumptions 1-6 hold. Let k € N be fixed, and let fi, ..., fi :
]IA{d _— R satisfy Assumption 1. Further, suppose that Assumption 9 holds. Let T' =
T{M(fy), M(f1), ..., M)} satisfy (3). Then we can choose T so that T' — Q! in probability
asn — oo.

We remark that in Proposition 6, I is defined only up to permutation of the rows and multi-
plication of the rows by 1 or —1. Hence, we show that there exists a choice of a sequence I" that
converges to Q. The next proposition provides an asymptotic normality result.

PROPOSITION 7. Under the same assumptions as in Proposition 6, let () neN be any sequence
of p X p matrices such that for any n € N, r,=r {M(fo) M(fl M(fk)} satisfies (3).
Then there exist a sequence of permutation matrices (Py,) and a sequence of diagonal matrices
D) with dlagonal elements in {—1, 1} such that the distribution Q,, of n'/? Vect(F — QY with
I, = D,P,l, satisfies dw{On, N(0, F)} — 0 as n — oo, where the matrix Fy, is detalled in the
Appendiix.

In Proposition 7, for any n € N, the choice of I, satisfying (3) is not unique. The proposition
shows that for any choice of the sequence of matrices f‘n, one can exchange the rows and
multiply them by 1 or —1 to obtain a sequence of matrices I, that converges to Q! as n — oo.
Furthermore, as in Proposition 4, we show that the sequence of distributions of n'/? Vect(f‘n —
Q1) is asymptotically close to a sequence of Gaussian distributions. The sequence of p? x p?
covariance matrices of these Gaussian distributions is F7.
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Fig. 1. Matérn covariance functions of the first (solid red line), second (dashed green line) and third (dotted blue line)
latent fields used in (a) the simulation of § 5.2 and (b) the simulation of § 5.3. The parameter vectors («, ¢) of the
three fields are taken to be (6, 1.2), (1,1.5) and (0.25, 1) in (a) and (2, 1), (1, 1) and (0.25, 1) in (b).

The idea of joint diagonalization is not new in spatial data analysis. For example, in a model-
free context, matrix variograms have been jointly diagonalized in Xie & Myers (1995), Xie et al.
(1995) and De laco et al. (2013). However, the unmixing matrix was restricted to be orthogonal,
which would therefore not solve the spatial blind source separation model.

While two symmetric matrices can always be simultaneously diagonalized, this is usually not
the case for more than two matrices that are estimated based on finite data. Therefore, algorithms
are needed for approximate joint diagonalization. In this paper we use an algorithm based on
Givens rotations (Clarkson, 1988). Other possible algorithms and their effects on the properties
of the estimates are discussed in Illner et al. (2015), for example.

5. SIMULATIONS
5.1. Preliminaries

In this section we use simulated data to verify our asymptotic results and to compare the effi-
ciencies of the different local covariance estimates under various spatial models. All simulations
are performed in R (R Development Core Team, 2020) using the packages geoR (Ribeiro Jr &
Diggle, 2016), JADE (Miettinen etal., 2017) and ReppArmadillo (Eddelbuettel & Sanderson,
2014). To generate the simulation data, we choose particular covariance functions for the latent
fields. However, our proposed methods do not use this information in any way, but operate solely
through the selection of local covariance matrices.

5.2.  Asymptotic approximation of the unmixing matrix estimator

We start with a simple simulation to establish the validity of the asymptotic approximation of the
unmixing matrix estimator I'( f) for different kernels f and to obtain some preliminary compar-
ative results on the proposed estimators. We consider a centred three-variate spatial blind source
separation model X (s) = 2Z(s), where each of the three independent latent fields has a Matérn
covariance function with shape and range parameters (k,¢) € {(6,1.2), (1,1.5),(0.25, 1)}; see
Fig. 1(a). We recall that the Matérn correlation function is defined by

p(h) =27 T ()™ (h/9)* K (h/¢),
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Fig.2. (a) The location pattern scheme used in § 5.2 with the marker type alternating between the consecutive layers

and only 1% of the locations shown for clarity; (b) a diamond grid of radius 10 having » = 221 locations; and (c) a

rectangular grid of radius 10 having n = 231 locations. The diamond and rectangular grids, with a one-unit distance
between adjacent locations, are used in § 5.3.

where « > 0 is the shape parameter, ¢ > 0 is the range parameter and K, is the modified Bessel
function of the second kind of order «. Our location pattern is constructed in the following way.
The first 200 locations are drawn uniformly and randomly from an origin-centred square S; of
side length 200!/2 units. For the next 200 locations, we scale the side length of the square S| by
the factor 2!/2 to obtain a larger square S», and then draw the points uniformly and randomly from
S> \ 81. Subsequently, we always scale the side length of the previous square S; by 21/2 to obtain
Sj+1, and then draw the same number of locations we already have on §;11 \ S;, thus doubling
the number of points each time. This process is continued until we have obtained a total of 3200
locations. In the simulation we consider the sample sizesn = 100 x 2/ forj = 1, ..., 5, each time
using the first # of the 3200 points, that is, all points inside the jth innermost square in Fig. 2(a).
The six samples then correspond to nested samples of points and represent the increasing-domain
asymptotic scheme implied by Assumption 5.

We expect any successful unmixing estimator I to satisfy ['Q ~ I, up to sign changes and
row permutations. The minimum distance index (Ilmonen et al., 2010) is defined as

Mpi(l) = (p — )™V inf{||CT'Q — L] : C € C},

where C is the set of all matrices with exactly one nonzero element in each row and column and
|| - || is the Frobenius norm. The minimum distance index measures how close ['$2 is to the identity
matrix up to scaling and the order and signs of its rows, and 0 < Mpi(I") < 1 with lower values
indicating more efficient estimation. Moreover, for any [ such that n!/2 Vect(f —1,) - N(0,%)
for some limiting covariance matrix 3, the transformed index n(p — l)MDI(f‘)2 converges to a
limiting distribution Zf.;l S X,~2 where Xlz, ces X ,f are independent chi-squared random variables
with one degree of freedom and §1, . . ., §; are the k nonzero eigenvalues of the matrix

([p2 - Dp,p) X (lp2 - Dp,p)

with D, , = Zle EV ® EV; here EV is the p x p matrix with 1 as its (j,/)th element and the
rest of its elements all equal to zero, and ® is the usual tensor matrix product. In particular, the
expected value of the limiting distribution is the sum of the limiting variances of the off-diagonal
elements of I". This provides us with a useful single-number summary to measure the asymptotic
efficiency of the method, i.e., the mean value of n(p — DMp1(I")? over several replications.
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Fig.3. The solid lines represent the mean values of n(p — l)MDl(f‘)2 in the first simulation and the dashed lines
correspond to the asymptotic approximations of the same quantities. The three local covariance matrices used are B(1)
(blue), R(1,2) (green) and {B(1), R(1,2)} (orange).

An argument given in the Supplementary Material can be used to show that our spatial blind
source separation estimators are affine equivariant. More precisely, let f‘(lp) be computed from
{Z(si)}i=1,...n according to (3) and recall that [is computed from {X (s;)};=1,..» according to
(3). Then we have I' = lA“(Ip)Q*1 up to sign changes and row permutations. In this sense, re
is invariant with respect to the value of 2. As the minimum distance index depends on r only
through "2, throughout § 5 we may consider without loss of generality only the trivial mixing
case of 2 = I3. Taking different 2 into consideration would give exactly the same results as
described below.

Recall that the ball and ring kernels are defined, respectively, as B(h)(s) = I(||s|| < h) for
fixed h > 0 and R(hy, h2)(s) = I(hy < |Is|| < hp) for fixed hy > hy > 0. We simulate 2000
replications for each sample size n and estimate the unmixing matrix in each case with three
different choices of the local covariance matrix kernels: B(1), R(1,2) and {B(1),R(1,2)}, where
the argument s is dropped and the brackets { } denote the joint diagonalization of the kernels
enclosed. The latent covariance functions in Fig. 1(a) show that the dependencies of the last
two fields die off rather quickly, and we would expect that very local information is already
sufficient to separate the fields. Moreover, out of all one-unit intervals, the magnitudes of the
three covariance functions differ the most from each other in the interval from 1 to 2, and we
may reasonably assume that either R(1,2) or {B(1), R(1,2)} will be the most efficient choice.

The mean values of n(p — l)MDI(f‘)2 over the 2000 replications are shown as solid lines in
Fig. 3, with the dashed lines representing the asymptotic approximated values of the means,
towards which they are expected to converge; see Propositions 4 and 7. As evidenced in Fig. 3,
this is indeed what happens. For the reasons detailed in the previous paragraph, the kernel R(1, 2)
is a considerably more efficient choice than B(1). However, the ball kernel still carries some
additional information over the ring kernel, as their joint diagonalization, {B(1), R(1,2)}, gives
the best results out of the three choices, albeit marginally. As the main purpose of the current
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simulation is to verify the limiting theorems and compare the different choices of kernels, the
estimation accuracy of the sources is considered jointly, through the minimum distance index.
However, as it is possible that some of the individual sources are more difficult to estimate than
others, we have included a simulation study exploring individual component recovery in the
Supplementary Material.

The previous investigation and Fig. 3 used only the expected value of the asymptotic distri-
bution. In the Supplementary Material, we also plot the estimated densities of n(p — 1)mpi(I)2
for all local covariance matrices and a few selected sample sizes, and compare them with the
density of the asymptotic approximation estimated from a sample of 100 000 random variables
drawn from the corresponding distributions. Overall, the two densities match each other rather
well, especially for the local covariance matrices involving the ring kernel. This shows that the
asymptotic approximation to the distribution of n(p — 1)MpI(I")? is good already for small sample
sizes.

5.3. The effect of range on the efficiency

The second simulation explores the effect of the range of the latent fields on the asymptotically
optimal choice of local covariance matrices. The comparisons between the estimators are made
on the basis of the expected values of the asymptotic approximations to the distribution of
n(p — I)MDI(f‘)Z, that is, using the equivalent of the dashed lines in Fig. 3, meaning that no
randomness is involved in this simulation.

We consider three-variate random fields X (s) = QZ(s), where 2 = I3 and the latent fields
have Matérn covariance functions with shape parameters k = 2,1,0.25 and range parameter
¢ € {1.0,1.1,1.2,...,30.0}. The three covariance functions are shown for ¢ = 1 in Fig. 1(b).
The random field is observed at three different point patterns: diamond-shaped, rectangular and
random, which was simulated once and held fixed throughout the study. The diamond-shaped
point pattern has a radius of m = 30 and a total of » = 1861 locations, whereas the rectangular
point pattern has a radius of m = 15 with a total of n = 1891 locations. In both patterns, the
horizontal and vertical distance between adjacent locations is one unit, and examples of the two
pattern types are shown in Figs. 2(b) and (c) with a radius of m = 10. A rectangular pattern with
radius m is defined to have width 2m + 1 and height m + 1. The random point pattern is generated
by simply simulating » = 1861 points uniformly in the rectangle (—30,30) x (—30,30). We
consider a total of eight different local covariance matrices: B(r) and R(r — 1, r) forr = 1,3, 5, as
well as the joint diagonalizations of these sets, {B(1), B(3),B(5)} and {R(0, 1), R(2,3),R(4,5)}.

The results of the simulation are displayed in Fig. 4, where the two joint diagonalizations are
represented by the parameter » having value J. Recall that the lower the value on the vertical axis,
the better that particular method is at estimating the three latent fields. The relative ordering of the
different curves is very similar across all three plots, and it seems that the choice of location pattern
does not have a large effect on the results. For all three patterns, the local covariance matrices
with either » = 1 or » = 3 are the best choices for small values of ¢, but their performance
quickly deteriorates as ¢ increases. The opposite happens for the local covariance matrices with
r = 5; they are among the worst-performing for small ¢, but exhibit relative improvement
with increasing ¢. The joint diagonalization-based choices fall somewhere in-between and are
never the best or the worst choice. However, they yield performance very close to the best
choice in the right end of the ¢ range and are close to optimal in the left end. Thus, their use
could be justified in practice as the safe choice. Comparing the two types of local covariance
matrices, balls and rings, we observe that in the majority of cases the rings prove superior to the
balls.
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Fig. 4. Asymptotic approximate mean values of n(p — 1mpi(1)2 plotted as a function of the range of the latent Matérn

random fields for the different choices of local covariance matrices in the second simulation. The solid and the dashed

lines correspond to, respectively, the ball and ring kernels, and the value of the parameter r is indicated by the colour
of the line: 1 (red), 3 (green), 5 (blue) and J (purple). The y-axis has a logarithmic scale.

(a) Uniform (b) Skew

Fig. 5. The two fixed location patterns on a map of Finland: (a) uniform pattern; (b) skew pattern.

5.4. Efficiency comparison

To compare a larger number of local covariance matrices and their combinations, we simulate
three-variate random fields X (s) = QZ(s), where Q = I3 and the latent fields have Matérn
covariance functions with shape parameters x = 6,1,0.25 and range parameter ¢ = 20, in
kilometres. We consider two different fixed-location patterns fitted inside the map of Finland; see
Fig. 5. The first pattern has the locations drawn uniformly from the map and the second pattern
is drawn from a west-skew distribution. Both patterns have a total of » = 1000 locations, and to
better distinguish the scale we have added three concentric circles with radii of 10, 20, and 30
kilometres in the empty area of the skew map.

We simulate a total of 2000 replications of the above scheme with the fixed maps. In each case
we compute the minimum distance index values of the estimates obtained with the local covariance
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Fig. 6. Results of the efficiency study for (a) the uniform sampling design and (b) the skew design.

matrix kernels B(r), R(r—10, r) and G(r), where r = 10, 20, 30 and 100, and the joint diagonaliza-
tion of each of the three quadruplets {B(10), B(20), B(30), B(100}, {R(10), R(20), R(30), R(100}
and {G(10), G(20), G(30), G(100}, making a total of 15 estimators. The Gaussian kernel is param-
eterized as G(r) = exp[—0.5{®~(0.95)s/r}*], where s is the distance and &~ (x) is the quantile
function of the standard normal distribution, so that G () has 90% of its total mass in the ball of
radius 7 around its centre. Thus, G(r) can be considered a smooth approximation of B(r). The
larger-radius kernels B(100), R(90, 100) and G(100) are included in the simulation to investi-
gate what happens when we overestimate the dependency radius. The mean minimum distance
index values for the 15 estimators are plotted in Fig. 6, and show that for both maps and all
local covariance types, increasing the radius yields more accurate separation results all the way
up to » = 30, but for » = 100 the results again worsen. This observation indicates that when
a single local covariance matrix is used, the choice of the type and the radius are especially
important, most likely requiring some expert knowledge about the study. However, this prob-
lem can be completely avoided if we use the joint diagonalization of several matrices. For both
maps and all local covariance types, the joint diagonalization produces results comparable to the
best individual matrices, even though the joint diagonalizations also include the bad choices of
r = 10,20, 100. We observe similar behaviour to that in the first and second simulation studies,
where, in the absence of knowledge about the optimal choice, the joint diagonalization either is
the most efficient choice or yields performance very close to that of the most efficient choice.
Therefore, we recommend use of the joint diagonalization of scatter matrices with a sufficiently
large variation of radii for the kernels.

Finally, a comparison of the two maps reveals that the relative behaviour of the estimators is
roughly the same in both maps, but the estimation is generally more difficult in the skew map,
reflected by the on-average higher minimum distance index values. This can be explained by
the large number of isolated points that contribute no information to the estimation of the local
covariance matrices, making the sample size essentially smaller than n = 1000.

6. DATA APPLICATION

To illustrate the benefit of jointly diagonalizing more than two scatter matrices from a practical
point of view, we reconsider the moss data from the Kola project, available in the R package
StatDa (Filzmoser, 2015) and described in Reimann et al. (2008), for example. The data consist
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Table 1. Maximal absolute correlations of different estimators with respect to the gold standard;
all estimators used the empirical covariance matrix, and the distances for the scatters are given
in kilometres

Est Scatters IC1 IC2 1C3 IC4 IC5 IC6
1 B(25) 0.96 0.93 0.91 0.68 0.64 0.77
2 B(75) 0.98 0.98 0.92 0.96 0.91 0.63
3 B(100) 0.76 0.80 0.77 0.96 0.60 0.53
4 R(0,25), R(25,50), R(50,75), R(75, 100) 0.97 0.98 0.92 0.97 0.83 0.80
5 R(0,10),R(10,20), R(20,30), R(30, 40), 0.96 0.97 0.91 0.97 0.78 0.77

R(40,50), R(50,60), R(60,70), R(70, 80)

Est, estimator; IC, independent component.

of 594 samples of terrestrial moss collected at different sites in northern Europe on the borders
of Norway, Finland and Russia. The corresponding map with sampling locations is shown in
the Supplementary Material. The amounts of 31 chemical elements found in the moss samples
have already been used as a spatial blind source separation example in Nordhausen et al. (2015),
where the covariance matrix and B(50) were simultaneously diagonalized. The goal of that
analysis was to reveal interpretable components exhibiting clear spatial patterns. In Nordhausen
et al. (2015), the radius of 50 km was carefully chosen by an expert and considered to be best
among several choices of radius. The analysis found six meaningful components which could be
used to distinguish underlying natural geological patterns from environmental pollution patterns.
These six components had the six largest eigenvalues and are visualized in the Supplementary
Material.

We show that the gold-standard components can be stably estimated without subject knowl-
edge of the optimal radius by simply jointly diagonalizing a large enough collection of local
covariance matrices. To address the compositional nature of the data, we follow the same data
preparation steps as in Nordhausen et al. (2015) and then compute five competing spatial blind
source separation estimates. The scatters we used in addition to the covariance matrix are detailed
in Table 1. Using this approach, we identify the six components having the highest correlations,
in absolute value, with the six main components identified in Nordhausen et al. (2015). Table 1
also gives the correlations of the six components.

The table shows that when using only two scatters, as in estimators 1, 2 and 3, some components
cannot be easily found. However, if one jointly diagonalizes more than two scatters, the results
are more stable and less dependent on the chosen distances of the scatters, as can be seen with
estimators 4 and 5. This is illustrated using the gold standard and estimators 3 and 4 in Fig. A1 in the
Appendix for the first two components. For completeness, the Supplementary Material presents
all six components for the three estimators. The first two components represent, according to
Nordhausen et al. (2015), areas with different types of industrial contamination, and Fig. Al
shows that the gold standard and estimator 4 agree quite well on these, but estimator 3 yields a
different map. More precisely, the first component obtained from the gold standard and estimator
4 highlights a cluster of negative scores around the Monchegorsk and Apatity region, which
reflects the mining and processing of alkaline deposits. This cluster is not revealed by estimator 3.
Similarly, the second components are similar between the gold standard and estimator 4, but the
component from estimator 3 differs from these two, especially for the sampling locations in
Finland. Thus, using several scatters gives a more stable impression, whereas the maps can vary
considerably when only two scatters are used, in which case subject-matter expertise becomes
more important.
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7. DISCUSSION

The proposed method can be extended in multiple directions. The assumptions of Gaussian or
stationary fields could be relaxed. The spatial and temporal blind source separation methods could
be combined to obtain spatiotemporal blind source separation. If used for dimension reduction,
estimators for the number of latent non-noise fields could be devised using strategies similar
to those in Virta & Nordhausen (2020). Additionally, the combination of spatial blind source
separation with univariate kriging and univariate modelling warrants investigation.

How to choose the local covariance matrices optimally is also of interest. This is still an open
problem for temporal blind source separation methods, such as second-order blind identification
(Belouchrani et al., 1997). Several strategies have been suggested (see, e.g., Tang et al., 2005),
and many of them could be useful also in selecting the kernels in spatial blind source separation.
The estimation accuracy of our proposed method is based on how well separated the eigenvalues
of the matrices M (fo)~'/>M ()M (fo)~'/?> (I = 1,...,k) are. Since the connection between
the eigenvalues and the unknown covariance functions is complicated, our suggestion, backed
up also by the simulations, is to stay on the safe side and use a large number of ring kernels
jointly. However, including large numbers of unnecessary kernels can have the drawback of
inducing some noise in the estimates. One way to remove the unneeded kernels would be to first
obtain preliminary estimates for the latent fields using a large number of kernels jointly; then
our asymptotic results could be used to select from a large collection of sets of kernels, the one
which achieves the smallest value of §; + - - - 4 8; see § 5.2. The final estimates could then be
computed with this asymptotically optimal choice of kernels. A similar technique was used by
Taskinen et al. (2016) in the context of temporal blind source separation.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of all theoretical
results, an auxiliary simulation, and additional figures for the simulations and the data application.

APPENDIX
Notation

Let y and z be the np x 1 vectors defined by y_1),4; = Y;(s;) and z_1yp4; = Zi(s;) fori = 1,...,n
andj = 1,...,p. Let R = cov(y) and R, = cov(z). Let e,(p) be the bth base column vector of R” for
b=1,...,p.Forf :RY — Rand b,/ = 1,...,p, let T;,;(f) be the np x np block matrix composed of n*
blocks of size p?, with block (i, ) equal to /' (s; — 5;)(1/2){es(P)ei(p)" + e1(P)es(p)"}.

Forb e NletDb) ={1+ @G- 1)(b+1):i=1,...,b}. We remark that {vect(M); : i € D(b)} =
{M;; :i=1,...,b} for a b x b matrix M. Let D, = {1,...,b*}\D,. We remark that {vect(M); : i €
D)} = {M;;:i,j=1,...,b,i%j}forab x bmatrix M. Fora € (1,...,b%), let I,(a) and J,(a) be the

020z 1snbny 0z uo sesn ABojouyos | pue souslog Jo AlsieAlun ye|inpay buiy Aq 8/16€26/229/€/201/81011eA8WO0Iq/Wo09"dnoolwsepede//:sdly woly papeojumoq


https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz079#supplementary-data

644 F. BACHOC ET AL.

unique i and j from {1,...,b} suchthata = b(i — 1) +j. Fori e {1,...,b},letd,()) =14+ (G—1)(b+ 1)
and note that {vect(M) g, :i =1,...,b} = {M;; :i=1,...,b} forabh x b matrix M. For a matrix M of
size b x b, recall that diag(M) = (M, 1, ..., M,;)" and that tr (M) denotes the trace of M.

Expression for the matrix V (f , fo) in Proposition 3

Letf,g : RY — R. Using the notation above, let £ (f) and X (f, g) be the p*> x p? matrices defined, for
i=@E—Dp+tandj=@w—1p+vwiths,t,u,ve{l,...,p}, by

E(f)i,/' = 2n71tr{RT(f)s,tRT(f)u,v}a Z(f9g)i,/’ = 2n7ltr{RT(f)s,tRT(g)u,v}' (Al)

Let

(=) (e
V(f’g)‘{z(g,f) (g) }

Then V (f,fy) is equal to V (f, g) for g = fo.

Expression for the matrix F\ in Proposition 4

From Assumption 8, there exists ny € N such that for n > n, the diagonal elements of Q~'M (/)Q"
are strictly decreasing. Write these diagonal elements as A; > - -- > A,. Using the notation defined at the
beginning of this Appendix, for n > n, let 4, B, C and D be, respectively, the p> x p?, p* x p?, p x p? and
p x p* matrices defined by

—-1/2, | =j € D(p),
/ . l ] ®) Ao — )LJp(i)}719 i=j¢DQp),
Ai,/' = —)\-Ip(i){)\-lp(i) - )"Jp(i)} 5 1=] ¢ D(p)a BiJ = 0 otherwise
0, otherwise, ’ ’
o | i=d. oo i=d0.
N 0, otherwise, Y 0, otherwise.

Let

A B
(¢ )
Let M1 and M1 be, respectively, the p? x p? and (p* + p) x (p* + p) matrices defined by

_ (Qfl)Jp(b),/p(a), 1,(a) = 1,(D), - . (MQ1 0>
Mg-1)ap = {0’ 1@ % 1,5, Mo =" L) (A2)

Let V/( 1) be defined as V' (fy,f), but with R replaced by R,. Then for n > ny, F is defined as

Fi = Mg GV ()G'M, .

Expression for the matrix F). in Proposition 7

Let D(f) = Q7'M (f)Q7". For a diagonal matrix A, let A, = A,,.. With the notation of Assumption 9,
let Ay, Ay, ...,A; and B be p? x p? matrices defined, for n > ng, by

—1,2, i=jeDp),
Aoij = =S DWW — Dy DIpws i =j € D),

0 otherwise,
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Gold standard Estimator 3 Estimator 4

= 13210082
W -216t0-132

Gold standard Estimator 3 Estimator 4

2 1C2 (cor = 0.80) X 1C2 (cor = 098)
A Ll40153 A SN A 13410198 g SRS A L1610 160
40740114 - 407410134 - A 407810116
4 4 et - 05710074 L 3 e

- ~0.55100.74 - 06210078

® 21310055

. LA A -0, D/ " -19910-0.62
W -38410-213 . A W 3550199 AT

W 35510-1.99

_ D),y — D()s,» i =7 & Dp),

Al,i,] .
0, otherwise
forl=1,...,k, and
1, i=j€Dp),
-1 ..
Bij = [Zle{D(ﬁ)fp(i) - D(fl)Jp(i)}z] , =] ¢Dp),
0, otherwise.

Let G be the p? x (k + 1)p? matrix defined by G = B(dy, 4y, ... A;) for n > ny. Let Mg-1 be as in (A2).
Let V(fi,....fi) be the (k + 1)p* x (k + 1)p* matrix composed of (k + 1)? blocks of size p* x p? with
block ((i + 1), (j + 1)) defined similarly to X(f;,f;) in (A1), but with R replaced by R.. Then for n > ny,
F} is defined as

Fy = Mo 1GV(fi,....0G™M}_,.

Map for data application
The map for the data example in § 6 is shown in Fig. Al.
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