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ON THE STATIONARY MARGINAL DISTRIBUTIONS OF SUBCLASSES
OF MULTIVARIATE SETAR PROCESSES OF ORDER ONE
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To introduce more flexibility in process-parameters through a regime-switching behavior, the classical autoregressive (AR)
processes have been extended to self-exciting threshold autoregressive (SETAR) processes. However, the stationary marginal
distributions of SETAR processes are usually difficult to obtain in explicit forms and, therefore, they lack appropriate character-
izations. The stationary marginal distribution of a multivariate (d-dimensional) SETAR process of order one

(
MSETARd(1)

)
with multivariate normal innovations is shown to belong to the unified skew-normal ( ) family and characterized under
a fairly broad condition. This article also characterizes the stationary marginal distributions of a subclass of the MSETARd(1)
processes with symmetric multivariate stable innovations. To characterize the stationary marginal distributions of these pro-
cesses, the authors show that they belong to specific skew-distribution families, and for a given skew-distribution from the
corresponding family, an MSETARd(1) process, with stationary marginal distribution identical to the given skew-distribution,
can be associated. Furthermore, this article illustrates a diagnostic of an MSETAR2(1)model using the corresponding stationary
marginal density.
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1. INTRODUCTION

Due essentially to the various limitations of linear autoregressive models in real applications, nonlinear autore-
gressive models and their stationary marginal distributions have been of interest to the time series community for
several decades; see Tong (1978, 1983, 1990, 2011), and references therein. Among different nonlinear autoregres-
sive models, self-exciting threshold autoregressive (SETAR) models have gathered significant attention because
of the simplicity of their definition and, at the same time, enough flexibility of their representation to explain rel-
atively complex time series processes. Following the growing needs of the SETAR models, Arnold and Günther
(2001) extended the idea to the multivariate scenario to define multivariate SETAR (MSETAR) models and dis-
cussed their importance in applications; see also Chan et al. (2004), Baragona and Cucina (2013), Addo (2014),
and Wong et al. (2017).

While there is an extensive study on obtaining explicit forms of the stationary marginal densities of such mod-
els (e.g. Anděl et al., 1984; Anděl and Bartoň, 1986; Chan and Tong, 1986; Loges, 2004), little work has been
done to characterize them. By and large, our current work is intended to link the stationary marginal densities of
certain MSETAR models to the skew-symmetric densities (Genton, 2004; Azzalini and Capitanio, 2014) and to
characterize them under certain additional but fairly broad assumptions.

The main motivation of this article comes from an example provided by Chan and Tong (1986) to illustrate
their general formula, to derive (originally derived by Andel et al., 1984) the stationary marginal densities for a
subclass of MSETAR (d-dimensional) processes of order one

(
MSETARd(1)

)
, that relied on the ‘symmetry’ of
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the autoregressive function. In that example, Chan and Tong (1986) obtained the stationary marginal density, up
to a multiplicative constant, of the MSETARd(1) model,

Xt = −𝛼|Xt−1| + 𝝐t, (1)

with independent and identically distributed (i.i.d.) d(0, I) innovations, as

𝜙d(x
√

1 − 𝛼2)Φd(−𝛼x|I), x ∈ ℝd, (2)

where 𝛼 ∈ (−1, 1) is a nonzero scalar, |x| = (|x1|,… , |xd|)T, 0 denotes a d-dimensional null vector, I is a d × d
identity matrix, 𝜙d(x) represents the probability density function (pdf) of the standard normal distribution, and
Φd(x|𝚺) denotes the cumulative distribution function (cdf) of a normal distribution with mean 0 and positive
definite covariance matrix 𝚺. We observed that (2) is of the form of a multivariate skew-normal density, proposed
by Arellano-Valle and Genton (2005), whereas the general form of that, up to a multiplicative constant, is given by

𝜙d1

{
(𝚿 + 𝚲𝚲T)−1∕2(x − 𝝃)

}
Φd2

{
𝚲T(𝚿 + 𝚲𝚲T)−1(x − 𝝃)|I − 𝚲T(𝚿 + 𝚲𝚲T)−1𝚲

}
, x ∈ ℝd1 , (3)

where 𝝃 denotes a d1-dimensional location vector, 𝚿 is a d1 × d1 symmetric positive definite dispersion matrix,
𝚲 represents a d1 × d2 skewness matrix, and by the square root of a matrix, here and hereafter, we denote the
symmetric positive definite square root of the matrix; see also Sahu et al. (2003) and Arellano-Valle et al. (2018). In
the following year, Arellano-Valle and Azzalini (2006) generalized (3) to define ‘unified skew-normal’ density as

𝜙d1

{
𝚿−1∕2 (x − 𝝃)

}
Φd2

{
𝚲T(x − 𝝃) + 𝝉|𝚪}

Φd2

(
𝝉|𝚪 + 𝚲T𝚿𝚲

) , x ∈ ℝd1 , (4)

where 𝝉 denotes a d2-dimensional extension vector and 𝚪 is a d2×d2 positive definite extension matrix. We refer to
the distribution with multivariate skew-normal density (3) using the notation  d1,d2

(𝝃,𝚿,𝚲) (or  d(𝝃,𝚿,𝚲)
when d1 = d2 = d) and (4) using the notation  d1,d2

(𝝃,𝚿,𝚲, 𝝉 ,𝚪) (or  d(𝝃,𝚿,𝚲, 𝝉 ,𝚪) when d1 = d2 =
d). Thus, clearly, the density (2) is from the  d(0, I,−

𝛼√
1−𝛼2

I) distribution.

While there is an obvious motivation for studying stationary marginal distributions that many authors worked on
them and found interesting properties of the corresponding processes in the limit, we, in the following paragraph,
brief the essence of them.

Largely, stationary marginal distributions, if they exist, can be thought of as the limiting distributions of the
corresponding time series processes with i.i.d. innovations for any given starting distributions. In other words, if
there is enough evidence to believe that the process has been running for a long time, we can reasonably presume
that the observations from that process follow its stationary marginal distribution. Now, if we have data from
such a process and we know the exact form of the distribution from which it came, we can always conduct an
extensive analysis to explore the data. Following this notion of the stationary marginal density, a model diagnostic
is exemplified in Section 4. Moreover, the likelihood function, which may be used to estimate the parameters of a
model, comprises the stationary marginal density of the underlying process as a noteworthy factor

(parameters|x1,… , xn) = fX1
(x1)fX2|X1

(x2|x1) · · · fXn|Xn−1,…,X1
(xn|xn−1,… , x1).

We, with the sole purpose of linking the stationary marginal densities with the skew-symmetric densities, extend
(1) in two directions. First, we generalize the coefficient matrices 1(A) = {A ∶ A = 𝛼I, 𝛼 ∈ (−1, 1), 𝛼 ≠ 0} to
2(A) = {A ∶ 𝜌(A) < 1, A ≠ O}, hence

Xt = −A|Xt−1| + 𝝐t, (5)
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408 S. DAS AND M. G. GENTON

keeping the innovation distribution, d(0,𝚺), unchanged to show that the stationary marginal density of (5) has
the form (4); here O represents a d×d zero matrix and 𝜌(A) denotes the spectral radius of the matrix A, that is, the
maximum magnitude of its eigenvalues. The condition 𝜌(A) < 1 is sufficient for the geometric ergodicity of (5)
(see Addo, 2014) and also needed for the existence of the matrices P =

∑∞
k=0 Ak𝚺(Ak)T and L = AT𝚺−1A + P−1,

which are used later in this article. Furthermore, we show that the resulting stationary marginal density has the
form (3) when A ∈ ̃2(A) = {A ∶ 𝜌(A) < 1, det(A) ≠ 0,L ≽ O} ⊆ 2(A), where L ≽ O means that all the
entries of L are non-negative. In addition, for a given skew-normal density of the form (3) with d1 = d2 = d,
we associate a coefficient matrix A ∈ ̃2(A) to (5) so that its stationary marginal density becomes identical to
the given density. Clearly, these two results jointly characterize the stationary marginal densities of the processes
under consideration.

Second, we generalize the innovation distribution d(0,𝚺) to symmetric multivariate stable distribution to
derive the stationary marginal density as a skew-symmetric multivariate stable density, keeping the coefficient
matrices, 1(A), unchanged. The skew-symmetric multivariate stable density is introduced and briefly studied in
Section 3. Moreover, for a given skew-symmetric multivariate stable density, we confirm that an MSETARd(1)
model of the form (1), with stationary marginal density identical to the given density, can be found. Thus, com-
bining these two results, we characterize the MSETARd(1) models with A ∈ 1(A) and symmetric multivariate
stable innovations. For an extensive study on multivariate stable distributions, see, for example, Press (1972),
Nolan (2003), Fallahgoul et al. (2013), and Teimouri et al. (2017).

The structure of the rest of this article is as follows. Section 2 presents the results on stationary marginal den-
sities of MSETARd(1) processes with A ∈ 2(A) and multivariate normal innovations following a brief review
of the theory proposed by Chan and Tong (1986). Section 3 characterizes the stationary marginal densities of
MSETARd(1) processes with A ∈ 1(A) and symmetric multivariate stable innovations following a brief intro-
duction of multivariate stable and skew-symmetric multivariate stable distributions. We provide a simulation study
for model diagnostic using the corresponding stationary marginal density in Section 4. Section 5 summarizes the
findings of this article, and discusses its significance, limitations, and possible future extensions.

2. STATIONARY MARGINAL DENSITIES OF MSETARd(1) PROCESSES WITH MULTIVARIATE
NORMAL INNOVATIONS

2.1. Preliminaries

Chan and Tong (1986) considered the following difference equation:

Xt = T̂(Xt−1) + 𝝐t, (6)

where 𝝐t’s are i.i.d. with pdf fd; here fd is Borel-measurable and T̂ is a ‘restriction’ on T, where T ∶ ℝd → ℝd

is a Borel-measurable function. To understand the ‘restriction’, consider a subgroup G of all the invertible d × d
matrices with entries over ℝ that contains invertible linear automorphisms on ℝd, and a Borel set  ⊆ ℝd such
that ⋂⟨x⟩ is a singleton set for all x ∈ ℝd. Here ⟨x⟩ denotes the orbit of x under G. Then, T| is the restriction
of T on , and the extension of T| with respect to G is T̂(x) = T|(y), where ⟨y⟩ = ⟨x⟩ and y ∈ .

We know that the stationary marginal density of (6) is the solution to the integral equation in hd,1(⋅)

hd,1(y) = ∫ℝd

fd{y − T̂(x)}hd,1(x) dx. (7)

Under fairly general conditions on G, fd, and T, Chan and Tong (1986) showed that if hd(⋅) is a non-negative
integrable solution to the integral equation in hd,2(⋅)

hd,2(y) = ∫ℝd

fd{y − T(x)}hd,2(x) dx,
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then h̄d(y) = ∫ fd{y−T(x)}hd(x)𝜈(dx) is an integrable solution to (7), where 𝜈 is a measure on . That is, c ⋅ h̄d(⋅)
is the stationary marginal density of (6), c being a suitable normalizing constant. To illustrate the above theory,
Chan and Tong (1986) showed that the stationary marginal density of (1) is (2).

2.2. Stationary Marginal Density for the Case of Multivariate Normal Innovations

Theorem 1. The MSETARd(1) process (5), where 𝝐t

i.i.d.∼ d(0,𝚺) and A ∈ 2(A), has the stationary marginal
distribution

 d

(
0, P, − 𝚺−1AL−1, 0, L−1) ,

where P =
∑∞

k=0 Ak𝚺(Ak)T and L = AT𝚺−1A + P−1.

Before going to the proof of Theorem 1, we put two lemmas for convenience.

Lemma 1. The matrix P exists if 𝜌(A) < 1.

Proof of Lemma 1. Consider the following two facts.

1. The geometric series
∑∞

k=0 Mk converges if and only if 𝜌(M) < 1.
2. The eigenvalues of M1⊗M2 are the products of all eigenvalues of M1 with all eigenvalues of M2 (see Schacke,

2004); here ‘⊗’ represents the Kronecker product. Thus, if 𝜌(M1) < 1 and 𝜌(M2) < 1, then 𝜌(M1 ⊗ M2) < 1.

Therefore, since 𝜌(A) < 1, we have

∞∑
k=0

(A ⊗ A)k < ∞.

This implies 𝝈
∑∞

k=0(A ⊗ A)k < ∞, where 𝝈 = vec(𝚺); here vec(𝚺) represents the vectorization of the matrix
𝚺. Lastly, by de-vectorizing, we get P =

∑∞
k=0 Ak𝚺(Ak)T < ∞.

Lemma 2. The matrices P and L are both positive definite.

Proof of Lemma 2. Since 𝚺 is positive definite, we note that, for all x ≠ 0,

xTPx =
∞∑

k=0

xTAk𝚺
(
Ak)T x = xT𝚺x +

∞∑
k=1

(
z(k)
)T 𝚺z(k) > 0,

where z(k) = (Ak)Tx. That is, P is positive definite and, therefore, P−1 is also positive definite. Finally, we have, for
all x ≠ 0,

xTLx = (Ax)T𝚺−1Ax + xTP−1x > 0,

which implies L is also positive definite.

Proof of Theorem 1. The stationary marginal distribution of the multivariate AR(1) process

Xt = −AXt−1 + 𝝐t or Xt = 𝚷(B)−1𝝐t
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410 S. DAS AND M. G. GENTON

is d(0,P), where B is such that BXt = Xt−1 and 𝚷(B) = I + AB denotes the finite lag
operator; see Kasparis (2008). Thus, by virtue of the theorem provided by Chan and Tong (1986)(
take T(x) = −Ax and  = {x ∶ xi ≥ 0, 1 ≤ i ≤ d}

)
, the stationary marginal density of (5), up to a multiplicative

constant, becomes

∫ℝd
+

e−
1
2
(y+Ax)T𝚺−1(y+Ax)− 1

2
xTP−1x dx = e−

1
2

yT𝚺−1y ∫ℝd
+

e−
1
2 (xTLx+2xTAT𝚺−1y) dx [∵ L = AT𝚺−1A + P−1]

= e−
1
2

yT(𝚺−1−𝚺−1AL−1AT𝚺−1)y ∫ℝd
+

e−
1
2 (x+L−1AT𝚺−1y)T

L(x+L−1AT𝚺−1y) dx

∝ 𝜙d

(
P−1∕2y
)
Φd

(
−L−1AT𝚺−1y|L−1) , (8)

where ℝd
+ denotes the set of all d-tuples of positive real numbers and the first factor of (8) is obtained by exploiting

the Woodbury matrix identity

𝚺−1 − P−1 =
{
𝚺 + 𝚺 (P − 𝚺)−1 𝚺

}−1 =
{
𝚺 + 𝚺
(
APAT)−1 𝚺

}−1
= 𝚺−1AL−1AT𝚺−1.

We can find the multiplicative constant of the stationary marginal density using Lemma 2.1 of Arellano-Valle and
Genton (2005). Furthermore, we note that when A = O, the stationary marginal density (8) reduces to the density
of the innovation distribution, d(0,𝚺), as one may expect.

2.3. Characterization for a Subclass

Theorem 2. The stationary marginal density (8) of the process (5), with additional assumptions det(A) ≠ 0 and
L ≽ O, can be rewritten as the density of

 d

(
0,𝚺,−AP1∕2) .

Proof. Let 𝚫 = 𝚺−1AL−1AT𝚺−1 and, note that, by virtue of the additional condition, L ≽ O, we can rewrite (8) as

𝜙d

{(
𝚺−1 − 𝚫

)1∕2
y
}
Φd

(
−L−1∕2AT𝚺−1y|I) . (9)

To get (9) from (8), we use the result that for any matrix M ≽ O and vectors x1 and x2 such that x1 > x2, the
inequality Mx1 ≥ Mx2 holds (see Karlin, 2014, p. 475). Now, to write (9) in the form of (3) with d1 = d2 = d, we
need to identify the dispersion matrix 𝚿 and the skewness matrix 𝚲 of (9). To accomplish this, we further assume
det(𝚲) ≠ 0, I − 𝚲T(𝚿 + 𝚲𝚲T)−1𝚲 ≽ O, and 𝝃 = 0 of (3); we may assume so as long as we can solve for 𝚿 and 𝚲
under these additional restrictions. Thus (3) with d1 = d2 = d can also be rewritten as

𝜙d

{
(𝚿 + 𝚲𝚲T)−1∕2x

}
Φd

[{
I − 𝚲T(𝚿 + 𝚲𝚲T)−1𝚲

}−1∕2 𝚲T(𝚿 + 𝚲𝚲T)−1x|I] . (10)

Now, to write (9) in the form of (10), we compare the arguments of 𝜙d and Φd from (9) with (10) to get(
𝚺−1 − 𝚫

)1∕2 = (𝚿 + 𝚲𝚲T)−1∕2 and (11)

−L−1∕2AT𝚺−1 =
{

I − 𝚲T(𝚿 + 𝚲𝚲T)−1𝚲
}−1∕2 𝚲T(𝚿 + 𝚲𝚲T)−1. (12)

From (12), we have (while noting that this step introduces multiple solutions, which we will discard as we
proceed)

(𝚿 + 𝚲𝚲T)−1𝚲
{

I − 𝚲T(𝚿 + 𝚲𝚲T)−1𝚲
}−1 𝚲T(𝚿 + 𝚲𝚲T)−1 = 𝚺−1AL−1AT𝚺−1,

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 41: 406–420 (2020)
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which implies

𝚫 = (𝚿 + 𝚲𝚲T)−1
{
(𝚿 + 𝚲𝚲T)(𝚲𝚲T)−1 − I

}−1 = (𝚿 + 𝚲𝚲T)−1𝚲𝚲T𝚿−1.

Putting the expression of 𝚫 back into (11) gives 𝚺−1 − (𝚿+𝚲𝚲T)−1𝚲𝚲T𝚿−1 = (𝚿+𝚲𝚲T)−1, as both sides of the
equation are positive definite. Hence, we have 𝚺−1 = (𝚿 + 𝚲𝚲T)−1(I + 𝚲𝚲T𝚿−1) = 𝚿−1; that is, 𝚿 = 𝚺.

Furthermore, we have 𝚺−1AL−1AT𝚺−1 = 𝚫 = (𝚿 + 𝚲𝚲T)−1𝚲𝚲T𝚿−1, which implies

𝚺−1AL−1AT = (𝚿 + 𝚲𝚲T)−1𝚲𝚲T =
{
(𝚲𝚲T)−1𝚿 + I

}−1
.

Hence,

(𝚲𝚲T)−1𝚿 + I =
(
AT)−1

LA−1𝚺 =
(
AT)−1 (

AT𝚺−1A + P−1)A−1𝚺 = I +
(
APAT)−1 𝚺.

Therefore, 𝚲𝚲T = APAT; this implies

𝚲 = AP1∕2U, (13)

where U is a unitary matrix. That is, UU∗ = U∗U = I, where ‘∗’ denotes the conjugate transpose of the matrix.
As the matrix U is constant with respect to both A and 𝚺 and the equation (13) shall hold for all plausible A and
𝚺, we consider specific choices of A and 𝚺 to get U = −I, which implies 𝚲 = −AP1∕2.

Next, we present two corollaries, which exhibit some specific cases of Theorem 2.

Corollary 1. The process (5) with A = diag(𝛼1,… , 𝛼d) and 𝚺 = diag(𝜎2
1 ,… , 𝜎2

d ) has the stationary marginal
distribution

 d

(
0,𝚺,−A

{
(I − A2)−1𝚺

}1∕2
)
.

Proof. In this particular case, P =
∑∞

k=0 Ak𝚺(Ak)T = 𝚺[I + A2 + · · ·] = 𝚺(I − A2)−1. Substituting P in Theorem 2
results in the expression above.

Corollary 2. The process (5) with A = 𝛼I has the stationary marginal distribution

 d

(
0,𝚺, −𝛼√

1 − 𝛼2
𝚺1∕2

)
.

The following theorem, along with Theorem 2, characterizes the stationary marginal densities of the
MSETARd(1) processes with A ∈ ̃2(A) and multivariate normal innovations.

Theorem 3. For a given multivariate skew-normal density of the form (3) from  d1,d2
(𝝃,𝚿,𝚲) with d1 = d2 =

d, 𝝃 = 0, det(𝚲) ≠ 0, and I−𝚲T(𝚿+𝚲𝚲T)−1𝚲 ≽ O, one can associate the following MSETARd(1) process, which
has stationary marginal density identical to the given density,

Xt = −𝚲(𝚿 + 𝚲𝚲T)−1∕2|Xt−1| + 𝝐t,

where 𝝐t

i.i.d.∼ d(0,𝚿).

J. Time Ser. Anal. 41: 406–420 (2020) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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412 S. DAS AND M. G. GENTON

Proof. To prove Theorem 3, we assume det(A) ≠ 0 and L ≽ O of the process (5); we may assume so as long as
we can find a solution to equations (11) and (12) for A and 𝚺 under these additional conditions. From the proof of
Theorem 2, it is clear that 𝚺 = 𝚿. Therefore, it only remains to solve the equation

∞∑
k=1

Ak𝚺(Ak)T = 𝚲𝚲T (14)

for A. Equation (14), along with the constraint 𝚺 = 𝚿, implies
∑∞

k=1 Ak𝚿(Ak)T = 𝚲𝚲T. Vectorizing both
sides of (14) produces

∑∞
k=1 Qk𝝍 = v, where Q = A ⊗ A, 𝝍 = vec(𝚿), and v = vec(𝚲𝚲T). Thus, we have{

(I − Q)−1 − I
}
𝝍 = v; that is,

Q(𝝍 + v) = v. (15)

By de-vectorizing both sides of (15), we get A(𝚿 + 𝚲𝚲T)AT = 𝚲𝚲T. Therefore,

A = 𝚲V(𝚿 + 𝚲𝚲T)−1∕2,

where V is a unitary matrix. We take V = −I after investigating some particular choices of 𝚿 and 𝚲.

Remark 1. If the following partial MSETARd1×d2
(1) process

Xt = −A1|X(1)
t−1| + 𝝐t, (16)

where 𝝐t

i.i.d.∼ d1
(0,𝚺), A1 is a d1 × d2 non-null rectangular matrix with d1 > d2, and X(1)

t−1 denotes a vector
comprising first d2 components of the d1-dimensional vector Xt−1, is of interest, then the stationary marginal
density of that can be shown to have the form (4) using Theorem 1 above by choosing Ad1×d1

=
(
A1 Od1×(d1−d2)

)
.

Remark 2 (A note on the measure of shape of the stationary marginal densities). One of the most celebrated
tools for quantifying the shape (i.e. skewness and kurtosis) of a multivariate distribution is Mardia’s measures of
multivariate skewness and kurtosis (Mardia, 1970; 1974), which are defined as 𝛾1,d = E[(X − 𝝁)T𝚯−1(X̃ − 𝝁)]3

and 𝛾2,d = E[(X − 𝝁)T𝚯−1(X − 𝝁)]2 respectively, where X̃ is an independent copy of X, 𝝁 = E[X], and 𝚯 =
E[(X − 𝝁)(X − 𝝁)T].

Azzalini et al. (2016) derived the measures of skewness and kurtosis of the multivariate skew-normal density
of Sahu et al. (2003), i.e., of the form (3) with d1 = d2 = d and 𝚲 = diag(𝜆1,… , 𝜆d) as

𝛾1,d =
(4 − 𝜋

2

)2 (
𝜿(3))T 𝚯(−3)𝜿(3)

and

𝛾2,d = 2(𝜋 − 3)
(
𝜿(2))T (I ⊙𝚯−1)2𝜿(2),

where 𝜿(l) = (𝜅 l
1,… , 𝜅 l

d)
T with 𝜅j =

√
2

𝜋
𝜆j, 𝚯(−3) denotes the element-wise cube of 𝚯−1, and ‘⊙’ represents the

Hadamard (component-wise) product.
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In our case, when the skewness matrix is diagonal (see Corollary 1), 𝜅j = −
√

2

𝜋

𝛼j𝜎j√
1−𝛼2

j

for j = 1,… , d and

𝚯 = 𝚺 +
(

1 − 2

𝜋

)
A2(I − A2)−1𝚺. Thus, the two measures above reduce to

𝛾1,d =
(4 − 𝜋

2

)2 ( 2
𝜋

)3 d∑
j=1

𝛼3
j 𝜎

3
j

(1 − 𝛼2
j )3∕2

⋅
(1 − 𝛼2

j )
3

𝜎6
j

(
1 − 2

𝜋
𝛼2

j

)−3

⋅
𝛼3

j 𝜎
3
j

(1 − 𝛼2
j )3∕2

= 2(4 − 𝜋)2

𝜋3

d∑
j=1

𝛼6
j

(
1 − 2

𝜋
𝛼2

j

)−3

(17)

and

𝛾2,d = 2(𝜋 − 3)
( 2
𝜋

)2 d∑
j=1

𝛼2
j 𝜎

2
j

(1 − 𝛼2
j )

⋅
(1 − 𝛼2

j )
2

𝜎4
j

(
1 − 2

𝜋
𝛼2

j

)−2

⋅
𝛼2

j 𝜎
2
j

(1 − 𝛼2
j )

= 8(𝜋 − 3)
𝜋2

d∑
j=1

𝛼4
j

(
1 − 2

𝜋
𝛼2

j

)−2

. (18)

We note that, in this particular case, 𝛾1,d and 𝛾2,d do not depend on 𝚺.

Now, to illustrate the shape of the stationary marginal density of (1) with 𝝐t

i.i.d.∼ d(0, I), we choose d = 2 and
𝛼1 = 𝛼2 = 𝛼. Therefore, the Mardia’s measures (17) and (18) simplify to

𝛾1,2 =
4(4 − 𝜋)2

𝜋3
𝛼6
(

1 − 2
𝜋
𝛼2
)−3

and 𝛾2,2 =
16(𝜋 − 3)

𝜋2
𝛼4
(

1 − 2
𝜋
𝛼2
)−2

.

Figure 1 displays the contour plots of the bivariate stationary marginal densities of (1) for (a) 𝛼 = −0.9 (upper
left), (b) 𝛼 = −0.5 (upper right), (c) 𝛼 = 0.5 (lower left), and (d) 𝛼 = 0.9 (lower right) and, Figure 2 plots 𝛾1,2

and 𝛾2,2 against 𝛼 which varies from −1 to 1 excluding the boundary values. From Figure 1, we observe that as
𝛼 increases the stationary marginal density turns from positively (right) skewed into negatively (left) skewed. On
the other hand, in Figure 2, the magnitudes of Mardia’s measures of multivariate skewness and kurtosis increase
as 𝛼 departs from 0. As 𝛼 → ±1, 𝛾1,2 → 1.981132 and 𝛾2,2 → 1.73836 independently of the choice of 𝚺 as long
as that is diagonal. These are the maximum attainable values of 𝛾1,2 and 𝛾2,2 for a density of the form (3) with
d1 = d2 = d and diagonal 𝚲; see Azzalini et al. (2016). Going back to Figure 1, we note that the contour plots
in panels (a) and (d) correspond to stationary marginal densities, which have the same values for 𝛾1,2 and 𝛾2,2; on
the other hand, the contour plots in the panels (b) and (c) correspond to the stationary marginal densities with the
same values for 𝛾1,2 and 𝛾2,2.

3. CHARACTERIZATION OF THE STATIONARY MARGINAL DENSITIES OF MSETARd(1)
PROCESSES WITH SYMMETRIC MULTIVARIATE STABLE INNOVATIONS

We start by recalling the notion of multivariate stable distributions; for a more detailed review, readers are referred
to Nolan (2003) and Teimouri et al. (2017). Let X1 and X2 be independent copies of a d × 1 random vector X.
Then, X is said to be multivariate stable in ℝd if

a1X1 + a2X2

D
= aX + b (19)

J. Time Ser. Anal. 41: 406–420 (2020) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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Figure 1. Contour plots of the stationary marginal densities of (1) with d(0, I) innovations. The first and second coordinates
of the arguments of the bivariate stationary marginal densities are plotted along the x and y axes respectively. The contours
(smallest to largest) cover approximately 25% (red), 50% (blue), 75% (green), and 95% (purple) of the stationary marginal
densities. In panel (a): 𝛼 = −0.9; in (b): 𝛼 = −0.5; in (c): 𝛼 = 0.5; and in (d): 𝛼 = 0.9 [Color figure can be viewed at

wileyonlinelibrary.com]
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Figure 2. Plot of Mardia’s measures of bivariate skewness (solid blue curve) and kurtosis (dashed red curve) of the stationary
marginal densities of (1) with d(0, I) innovations, against the coefficient 𝛼 (from −1 to 1, excluding the boundary values) of

the model

[Color figure can be viewed at wileyonlinelibrary.com]
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for any positive scalars a1 and a2, some positive scalar a = (a𝛽

1 + a𝛽

2)
1∕𝛽 , and some real vector b; here ‘

D
=’ means

equal in distribution. The distribution is said to be strictly multivariate stable if (19) holds with b = 0. Here, the
parameter 𝛽 ∈ (0, 2] is called the index of stability or characteristic exponent; see Nolan (2003).

In most scenarios, we expect the innovations to have a distribution that is centrally symmetric about 0. Therefore,
hereafter we limit our study to symmetric (about 0), strictly multivariate stable distributions and omit the term
‘strictly’ for convenience.

Before introducing the skew-symmetric multivariate stable distributions, we pause to note a construction of
skew-symmetric distributions; see Section 4.2 of Arellano-Valle et al. (2006). Consider two univariate (for sim-

plicity) i.i.d. random variables, X and Y , with a symmetric density function 1

𝜎
f
(

⋅
𝜎

)
and define Z

D
= (X−kY|Y > 0).

Then, the pdf of Z,

g(z; 𝜎2, k) = d
dz

P[X − kY ≤ z|Y > 0],

where k is a scalar, introduces skewness. Clearly, as k increases from negative values to positive values, the
distribution of Z turns from positively (right) skewed into negatively (left) skewed; when k = 0, the density func-

tion g(z; 𝜎2, k) reduces to 1

𝜎
f
(

⋅
𝜎

)
. Furthermore, g(z; 𝜎2, k), with the aid of Lebesgue’s dominated convergence

theorem, simplifies to

g(z; 𝜎2, k) = d
dz

P[X − kY ≤ z|Y > 0]

= 2
𝜎2

d
dz ∫

∞

0 ∫
z+ky

−∞
f
( x
𝜎

)
dx f
( y

𝜎

)
dy

= 2
𝜎2 ∫

∞

0
f

(
z + ky

𝜎

)
f
( y

𝜎

)
dy.

As we generalize this construction to the multivariate (d-dimensional) case by taking |𝚺|−1∕2fd(𝚺−1∕2x) to be the
pdf of a symmetric multivariate stable distribution with location parameter 0 and scale (or dispersion) parameter 𝚺,
d(0,𝚺), we introduce the pdf of skew-symmetric multivariate stable distribution

(
skew-d(0,𝚺, k)

)
as

gd(z;𝚺, k) =
2d|𝚺|∫ℝd

+

fd

{
𝚺−1∕2(z + ky)

}
fd(𝚺−1∕2y) dy. (20)

Some immediate properties of the skew- distribution are as follows:

1. gd(z;𝚺, 0) = |𝚺|−1∕2fd(𝚺−1∕2z) for all z;
2. If Z ∼ skew-d(0,𝚺, k), then −Z ∼ skew-d(0,𝚺,−k);
3. If Z1 ∼ skew-d(0,𝚺, k) and Z2 ∼ d(0,𝚺) are independent random vectors, then Z = Z1 + Z2 ∼

21∕𝛽skew-d(0,𝚺, 2−1∕𝛽k).

Proof of Property 3. The cdf of the random vector Z is

P(Z ≤ z) = c∫z1

P(Z2 ≤ z − z1)

[
∫ℝd

+

fd

{
𝚺−1∕2(z1 + ky)

}
fd(𝚺−1∕2y) dy

]
dz1,
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where c is a suitable normalizing constant. Thus, the pdf of Z becomes

c |𝚺|−1∕2 ∫z1

fd{𝚺−1∕2(z − z1)}

[
∫ℝd

+

fd

{
𝚺−1∕2(z1 + ky)

}
fd(𝚺−1∕2y) dy

]
dz1

= c |𝚺|−1∕2 ∫ℝd
+

fd(𝚺−1∕2y)
[
∫z1

fd{𝚺−1∕2(z − z1)}fd

{
𝚺−1∕2(z1 + ky)

}
dz1

]
dy

∝ |𝚺|−1∕2 ∫ℝd
+

fd(𝚺−1∕2y)fd,W{𝚺−1∕2(z + ky)} dy, (21)

where |𝚺|−1∕2fd,W(𝚺−1∕2w) is the density function of W ≡ W1 + W2, with W1 and W2 being independent

copies of Z2. Furthermore, using (19), we have W1 + W2

D
= 21∕𝛽Z2. Therefore, the density of W becomes

2−d∕𝛽|𝚺|−1∕2fd(2−1∕𝛽𝚺−1∕2w), which proves the desired property when substituted into (21).

Remark 3. The proof above changes the order of the integration using Tonelli’s theorem (see Tonelli, 1909);
we briefly summarize the theorem here. Consider two 𝜎-finite measure spaces, (Ω1,1, 𝜇) and (Ω2,2, 𝜈), and a
non-negative measurable function, hd ∶ (Ω1 × Ω2) → [0,∞]. Then,

∫Ω1

{
∫Ω2

hd(x, y)d𝜈(x)
}

d𝜇(y) = ∫Ω2

{
∫Ω1

hd(x, y)d𝜇(y)
}

d𝜈(x)

holds.

Remark 4. Similarly to the generalization (4) by Arellano-Valle and Azzalini (2006), (20) can also be further
generalized, up to a multiplicative constant, as

gd1,d2
(z; 𝝃,𝚺,𝚲, 𝝉 ,𝚪) = ∫ℝd2

+

fd1
{z + 𝚲y|𝝃,𝚺} fd2

(y + 𝝉|𝚪) dy,

and the corresponding distribution can be denoted by skew-d1,d2
(𝝃,𝚺,𝚲, 𝝉 ,𝚪). Here, 𝝃 denotes a

d1-dimensional location vector, 𝚺 is a d1 × d1 symmetric positive definite dispersion matrix, 𝚲 represents a d1 × d2

skewness matrix, 𝝉 denotes a d2-dimensional extension vector, and 𝚪 is a d2×d2 positive definite extension matrix.

Theorem 4. The MSETARd(1) process (1), where 𝝐t

i.i.d.∼ d(0,𝚺) and 𝛼 ∈ (−1, 1) is a nonzero scalar, has
stationary marginal distribution

skew-d

(
0,𝚺, 𝛼(1 − |𝛼|𝛽)−1∕𝛽) .

Proof. We note that the multivariate autoregressive model

Xt = −𝛼Xt−1 + 𝝐t (22)

can be expressed as Xt = (I + 𝛼B)−1𝝐t. Thus, if 𝝐t

i.i.d.∼ d(0,𝚺), then, using the definition of multivariate
stable distribution as in (19), we have

Xt = (I + 𝛼B)−1𝝐t = 𝝐t − 𝛼𝝐t−1 − 𝛼2𝝐t−2 − · · ·
D
= g(𝛼)𝝐1,
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where g(𝛼) = (1 + |𝛼|𝛽 + |𝛼|2𝛽 + · · ·)1∕𝛽 = (1 − |𝛼|𝛽)−1∕𝛽 . Therefore, (22) has the stationary marginal density
{g(𝛼)}−d|𝚺|−1∕2fd

[
{g(𝛼)}−1𝚺−1∕2x

]
. Hence, using the theorem provided by Chan and Tong (1986), the stationary

marginal density, up to a multiplicative constant, of (1) reduces to the form of a skew- density:

{g(𝛼)}−d|𝚺|−1∕2 ∫ℝd
+

fd{𝚺−1∕2(y + 𝛼x)}fd

[
{g(𝛼)}−1 𝚺−1∕2x

]
dx

= |𝚺|−1∕2 ∫ℝd
+

fd

[
𝚺−1∕2{y + 𝛼g(𝛼)x}

]
fd

(
𝚺−1∕2x
)

dx. (23)

We note that when 𝛼 = 0, the stationary marginal density (23) reduces to the density of the innovation distribution
d(0,𝚺).

Theorem 5 below, along with Theorem 4, characterizes the stationary marginal densities of MSETARd(1)
processes with A ∈ 1(A) and  innovations.

Theorem 5. For a given density from skew-d (0,𝚺, k) with nonzero scalar k, one can associate the
following MSETARd(1) process, which has stationary marginal density identical to the given density,

Xt = −k

(
1

1 + |k|𝛽
)1∕𝛽 |Xt−1| + 𝝐t,

where 𝝐t

i.i.d.∼ d(0,𝚺).

Proof. From (23), it is clear that having a solution to the equation 𝛼g(𝛼) = k of 𝛼 suffices to prove the theorem. A

simple calculation shows that 𝛼 = k
(

1

1+|k|𝛽
)1∕𝛽

satisfies the equation 𝛼
1

(1−|𝛼|𝛽 )1∕𝛽 = k.

Remark 5. The multivariate Cauchy distribution with location parameter 0 (𝛽 = 1) and the multivariate normal
distribution with mean vector 0 (𝛽 = 2) are two examples of  distributions with closed-form expressions
of their densities. For the multivariate normal case, the stationary marginal density of (1) obtained in Theorem 4
coincides with the form obtained in Corollary 2 of Section 2.

4. SIMULATION STUDY FOR MODEL DIAGNOSTIC USING STATIONARY MARGINAL DENSITY

We simulate n = 5000 data points {x1,… , xn} from (5) with 𝝐t

i.i.d.∼ d(0,𝚺), where

A =
[

0.9 0.2

0.1 0.5

]
and 𝚺 =

[
4 2

2 10

]
,

and ‘burned-in’ an initial l = 500 of them. We note that A is non-null, 𝜌(A) < 1, and 𝚺 is positive definite. Now,
to estimate the parameters of (5), we maximize the likelihood,

(A,𝚺|xl+1,… , xn) = fXl+1
(xl+1)fXl+2|Xl+1

(xl+2|xl+1) · · · fXn|Xn−1
(xn|xn−1)

=
𝜙d(P

−1∕2xl+1)Φd(−L−1AT𝚺−1xl+1|L−1)
Φd

(
0|L−1 + L−1AT𝚺−1P𝚺−1AL−1) n∏

j=l+2

|𝚺|−1∕2𝜙d

{
𝚺−1∕2(xj + A|xj−1|)} ,
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Figure 3. Scatter plot (magenta) of the simulated data and the contour plots of the stationary marginal densities corresponding
to (5) (left) and (24) (right). The first and second coordinates of the arguments of the bivariate stationary marginal densities
are plotted along the x and y axes respectively. The contours (smallest to largest) cover approximately 25% (black), 50%
(blue), 75% (dark green), and 95% (purple) of the corresponding stationary marginal densities. [Color figure can be viewed at

wileyonlinelibrary.com]

with respect to A and 𝚺 to get the respective maximum likelihood estimates as

Â =
[

0.89 0.18

0.09 0.49

]
and 𝚺̂ =

[
3.91 2.03

2.03 10.40

]
.

The normalizing constant of the stationary marginal density fXl+1
(xl+1), Φd

(
0|L−1 + L−1AT𝚺−1P𝚺−1AL−1), is

derived using Lemma 2.1 of Arellano-Valle and Genton (2005). Next, we estimate the stationary marginal density
by plugging in Â and 𝚺̂ to get f̂ (⋅).

Finally, we recall the understanding from Section 1 that if a model fits a data significantly well, then the data
can be assumed to be drawn from the corresponding stationary marginal distribution. That is, the contour plot of
the estimated stationary marginal density shall reasonably approximate the scatter plot of the data. So, we present
the scatter plot of the simulated data and the contour plot of f̂ (⋅) in the same frame to diagnose the underlying
model; see the left panel of Figure 3. As, in the current scenario, we have simulated the data from (5) itself, the
contour plot approximates the scatter plot reasonably well.

In a data application framework, if the chosen model does not describe the data well, we would get a significantly
different contour plot of the estimated stationary marginal density compared to the scatter plot of the data. For
example, if instead we had fitted the classical vector autoregressive model

Xt = −ÃXt−1 + 𝝐t, (24)

where 𝝐t

i.i.d.∼ d(0, 𝚺̃), to the data simulated above, we needed to maximize the likelihood

(Ã, 𝚺̃|xl+1,… , xn) = fXl+1
(xl+1)fXl+2|Xl+1

(xl+2|xl+1) · · · fXn|Xn−1
(xn|xn−1)

= |P̃|−1∕2𝜙d

(
P̃
−1∕2

xl+1

) n∏
j=l+2

|𝚺̃|−1∕2𝜙d

{
𝚺̃
−1∕2

(xj + Ãxj−1)
}
,

where P̃ =
∑∞

k=0 Ã
k
𝚺̃
(

Ã
k
)T

, with respect to the parameters Ã and 𝚺̃, and to estimate the stationary marginal

density similarly as for the model (5). But, for this scenario, the contour plot of the estimated stationary marginal
density does not approximate the scatter plot of the data well; see the right panel of Figure 3.
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5. DISCUSSION

In this study, we derived, explicitly, the stationary marginal density of an MSETARd(1) process with coefficient
matrix A ∈ 2(A) and normal innovations. We also characterized the stationary marginal densities of Xt =
−A|Xt−1| + 𝝐t with {𝝐t

i.i.d.∼ d(0,𝚺) & A ∈ ̃2(A)}
⋃

{𝝐t

i.i.d.∼ d(0,𝚺) & A ∈ 1(A)}.
Currently, threshold models are widely implemented in various fields, such as actuarial science, ecology, eco-

nomics, epidemiology, and finance; see, for more details, Tong (2011). Many authors also studied processes with
 innovations (see Maleki and Arellano-Valle, 2017), mixture of scale mixtures of Gaussian innovations
(see Maleki and Nematollahi, 2017), and mixture of scale-mixtures of skew-normal innovations (see Zarrin et al.,
2019), which allowed them to fit a flexible model to accommodate skewness, heavy tails, multimodality, and sta-
tionarity simultaneously. Therefore, characterizing the stationary marginal density of (1) adds one more feather
in the cap while noting the enormity of the progress in the class of multivariate stable distributions and the likeli-
hood of encountering such distributions in practical situations. The stationary marginal density of (5) reduces to
the form of a multivariate skew-normal density, which is a well-established class of densities; various properties,
measures, and testing procedures for this class are studied by recent authors (e.g. Sahu et al., 2003; Arellano-Valle
and Azzalini, 2006; Azzalini et al., 2016). Also, we note that, for d = 1, the multivariate stable distributions reduce
to univariate stable (or sum stable) distributions (see Nolan, 2003). Besides the trivial example of the normal dis-
tribution, two examples of this univariate class of distributions that have closed form expressions are the Cauchy
and the Lévy distributions. Thus, the stationary marginal densities of MSETAR1(1) (or SETAR(1)) processes with
these as the innovation-distributions can easily be characterized following the results provided in this article. Fur-
thermore, we remarked that the stationary marginal density of (16) has the form (4). Such models can be used by
statisticians to reduce effort, time, and cost as these models predict the future Xt using only partial information of
the present Xt−1; in some situations, the trajectory {Xt} may be transformed using a linear transformation to get the
principal components {Yt} of {Xt}, and the first d2 components of Yt−1, which include a satisfactory percentage
of the total variation, may be considered to minimize the loss of information.

Though we did not study them here, similar characterizations for other ‘symmetric’ autoregressive functions
and higher order MSETAR processes may be discovered. Furthermore, we could extend the norming terms of
the multivariate stable law to matrices. That is, we might consider the distribution of the random vector X ∈
{X ∶ E1X1 + E2X2

D
= EX + f ; X1

D
= X2

D
= X}, with certain conditions on the d × d matrices E1,E2, and E, as

the distribution of the innovations, and call this new class of distributions as ‘matrix stable’ distributions. Thus,
having constructed the class of ‘matrix stable’ distributions, the stationary marginal density of (5) with ‘matrix
stable’ innovations could be characterized following similar steps. Apart from the main theories, we also defined
a skew-symmetric multivariate stable distribution in this article; the properties of this new class of distributions
may be studied in the future.
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