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a b s t r a c t

Functional data analysis can be seriously impaired by abnormal observations, which
can be classified as either magnitude or shape outliers based on their way of deviating
from the bulk of data. Identifying magnitude outliers is relatively easy, while detecting
shape outliers is much more challenging. We propose turning the shape outliers into
magnitude outliers through data transformation and detecting them using the functional
boxplot. Besides easing the detection procedure, applying several transformations se-
quentially provides a reasonable taxonomy for the flagged outliers. A joint functional
ranking, which consists of several transformations, is also defined here. Simulation
studies are carried out to evaluate the performance of the proposed method using
different functional depth notions. Interesting results are obtained in several practical
applications.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Functional data analysis is attracting growing attention as data are increasingly recorded as curves, images, or tensors.
Ever since the founding work of Ramsay and Silverman (2005), a large body of literature has emerged on different perspec-
tives of functional data analysis, e.g., nonparametric methods (Ferraty and Vieu, 2006), statistical inference (Horváth and
Kokoszka, 2012), and regression models (Yao et al., 2005). We refer the readers to Wang et al. (2016) for a comprehensive
review.

Functional data analysis can be severely biased if the data are contaminated by abnormal observations. Therefore,
it is necessary to reduce the influence of contamination and to analyze the data robustly. Data ranking is popularly
implemented to provide robust descriptions of point-type data. Univariate data are naturally sorted monotonically;
multivariate data, lacking a natural order, are commonly sorted from the center outward using a measure of statistical
depth or outlyingness. During the past decade, statistical depth was generalized to the functional domain as a tool to
measure the centrality of functional data. Various functional depth notions have been investigated in the literature; see
Section 3.1 for more details. These notions can be divided into two subclasses, integrated and non-integrated, based on
their definitions; regarding the type of utilized information, they can be classified as rank-based or distance-based.
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Fig. 1. Shape outliers can be changed into magnitude outliers through some type of transformation. Top panels: a slope shape outlier (the red line)
is changed into a magnitude outlier by taking the first-order differences of the raw curves; bottom panels: a jump shape outlier (the red curve) is
changed into a magnitude outlier by shifting each raw curve so its mean value becomes zero.

Abnormal observations, called functional outliers, commonly fall into two categories: magnitude outliers and shape
outliers. An observation is regarded as a magnitude outlier if it is outlying in some part or across the whole design domain.
It is viewed as a shape outlier if it has a different shape from the bulk of data, even though it may not be outlying
throughout the entire interval. Magnitude outliers can be detected and visualized well by existing exploratory methods,
e.g., the functional bagplot (Hyndman and Shang, 2010), the functional boxplot (Sun and Genton, 2011, 2012), and the
global envelope (Myllymäki et al., 2017). Shape outliers, on the other hand, are much more challenging to handle (Hubert
et al., 2015; Dai and Genton, 2019; Nagy et al., 2017). To tackle the shape outliers, some researchers proposed decomposing
the overall functional depth (or outlyingness) into just magnitude and shape depth (or outlyingness) in order to capture
the shape outliers more accurately. Examples include the outliergram (Arribas-Gil and Romo, 2014), the functional outlier
map (Rousseeuw et al., 2018), the total variation depth (Huang and Sun, 2019b), and the magnitude-shape plot (Dai and
Genton, 2018b). Researchers also defined depth notions that utilize the local geometric features of the curves (Kuhnt and
Rehage, 2016; Nagy et al., 2017). The distribution of the resulting functional depth values is usually unknown; as a result,
it is difficult to choose an accurate cutoff value for detecting outliers.

In this paper, we show that most commonly encountered functional shape outliers can be transformed into magnitude
outliers, which are easier to recognize with some popular diagnostics tools. For instance, by taking the first-order
differences or derivatives of the raw curve, we may change a shape outlier with an anomalous slope into a magnitude
outlier (see the top panels of Fig. 1). Curve transformation turns out to be an effective way to improve the performance of
outlier detection methods in recognizing shape outliers. Another advantage is that the plot of the transformed curves
together with the type of transformation provides an intuitive graphical interpretation to the specific mechanism of
outlyingness. We also show that the central region not only accurately describes the pattern of data but also visualizes
the location of the detected anomaly, when it is constructed with some specific depth, e.g., L∞ depth (Long and Huang,
2015) and extreme rank length depth (Myllymäki et al., 2017). Moreover, various transformations focus on different
perspectives of curves so we may apply a sequence of transformations in a row and classify the outliers with respect
to the transformations.

To detect magnitude outliers, we choose the functional boxplot (Sun and Genton, 2011), which is a graphical tool
popularly utilized for functional exploratory data analysis, mimicking Tukey’s boxplot for scalars. The functional boxplot
is constructed by ordering a group of univariate curves from the center outward according to the modified band
depth (López-Pintado and Romo, 2009), or any other user-specified depth notions. The envelope of the 50% deepest
curves forms the 50% central region; by inflating this region by F∗ times its vertical range, two fences are obtained for
the detection of outliers. The default value is set to F∗

= 1.5, which can be also adaptively determined by considering the
underlying correlation structure (Sun and Genton, 2012). Eventually, the envelope of the central 50% region, the median
curve, and the maximum non-outlying envelope are used as descriptive statistics; functional outliers, if detected, are also
visualized.
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Besides outlier detection, another problem that could benefit from data transformation is functional testing, e.g., spatial
point process model testing (Myllymäki et al., 2017) and spatial covariance function properties assessment (Huang
and Sun, 2019a), where one curve is examined through functional replicates generated from the model under the
null hypothesis. The testing curve could be abnormal due to either magnitude or shape, which leads to the same
challenge as the outlier detection problem. Myllymäki et al. (2017) proposed a global envelope test, which sorts the
tested curve together with the simulated curves according to their depth values. Hence, an accurate ranking is critical for
the construction of this tool. We illustrate that merging the ranking results from different transformations into a joint
functional order leads to a better ranking overall for the testing problem.

The remainder of the paper is organized as follows. In Section 2, we systematically explain the procedure of shape
outlier detection based on data transformation and the functional boxplot, and provide some simple and effective transfor-
mations according to our numerical studies. In Sections 3 and 4, we evaluate the effectiveness of the transformations, and
search for the proper depth notions to construct the functional boxplot, with two typical outlier detection problems, using
Monte Carlo simulations. In Section 5, we apply the proposed method to several datasets and follow with a conclusion in
Section 6.

2. Curve transformations

2.1. Sequential transformations for functional outlier detection

We consider a group of functional observations, Xi ∈ C(I), i = 1, . . . , n, where I is an interval in R, and C(I) denotes
the space of continuous functions defined on I. Assume that Xi follows a distribution defined on C(I), denoted by FX . For
each fixed design point t0 in I, the marginal distribution of Xi(t0) is denoted by FX(t0).

As aforementioned, we propose to turn shape outliers into magnitude outliers through some curve-transformation in
order to identify the outliers more easily. Denote with G a transformation defined on C(I) and with Xso a shape outlier
with respect to FX . For a clean dataset, {Xi}

n
i=1, from the distribution FX , {G(Xi)}ni=1 follows an identical distribution denoted

by FG(X). In the presence of Xso, G(Xso) may be a magnitude outlier rather than a shape outlier with respect to FG(X). We
formalize the whole outlier detection procedure in Algorithm 1.

Algorithm 1:
Functional Outlier Detection via Sequential Data Transformation

0. Identify outliers from {Xi}
n
i=1 using an effective method, e.g., the functional boxplot constructed with some depth

notion d; the detected outliers, denoted by S0, are called G0–outliers (magnitude outliers);

1. Apply a transformation, G1, to {Xi}
n
i=1 and get {G1(Xi)}ni=1;

2. Repeat Step 0 on {G1(Xi)}ni=1; the detected outliers are denoted by S1; S1 \ S0 are called G1–shape outliers;

3. Apply another transformation, G2, to {G1(Xi)}ni=1 when a sequence of transformations is considered and get {G2 ◦

G1(Xi)}ni=1;

4. Repeat Step 0 on {G2 ◦ G1(Xi)}ni=1; the detected outliers are denoted by S2; S2 \ (S0 ∪ S1) are called G2 ◦ G1–shape
outliers;

5. Repeat Steps 3 and 4 recursively if more types of transformations are considered.

The transformation G can be quite general, involving various types of transforms. For example, it can be transforming
a curve into a scalar (functional depth/outlyingness), shifting each curve by its mean value so that the curves achieve
the same level, or representing the curves in the frequency domain. Hereafter, we restrict the curve transformation to
be similar to the second type, i.e., mappings from C(I) to C(I). More examples of transformations are introduced in
Section 2.3. As described, if multiple transformations are applied sequentially, we may simultaneously detect not only
the magnitude and shape outliers, but also get the taxonomy of the detected outliers.

2.2. Sequential transformations for functional testing

Other than detecting outliers from a given dataset, the data transformations mentioned above are also useful for
functional testing problems such as those mentioned in Section 1. For a hypothesis test based on data transformation, we
formalize the procedure in Algorithm 2. Note that Steps 2, 3, and 4 define a joint functional ranking, according to which
the global envelope test is performed.

Transforming the shape outliers into magnitude outliers is the most critical step of the proposed procedures. It is also
important to choose an appropriate depth notion to rank the functional data and, hence, construct the global envelope
(or the functional boxplot) that detects the magnitude outliers effectively.
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Algorithm 2:
Functional Testing via Sequential Data Transformation

0. Generate replicates of the data under the null hypothesis;

1. Apply a sequence of transformations, {Gk}, k = 0, 1, 2, . . . , to the raw data;

2. Sort the raw and transformed data, respectively, and get the vector of ranks for each observation as ri =

(ri,0, ri,1, ri,2, . . . )T, i = 1, . . . , n, where ri,k is the rank of Gk(Xi) among {Gk(Xi)}ni=1, k = 0, 1, 2, . . .

3. Sort the vectors of rank according to a one-side depth notion, e.g., extreme rank length depth or directional quantile,
which will be introduced in Sections 3.1.5 and 3.1.6;

4. Construct the global envelope test using the ranking results from Step 3.

2.3. Examples of transformations

Here, we mention a sequence of simple transformations that are very effective according to our numerical studies. The
preliminary step, T0, is to apply the functional boxplot to the raw curves and define the T0-outliers as magnitude outliers.
The first transformation, denoted by T1, shifts each curve X(t) to its center:

T1(X)(t) = X(t) −
1

λ(I)

∫
I
X(t)dt,

where λ(I) is the Lebesgue measure of the interval I. T1 vertically aligns the curves so that their mean values all become
zero. After the T1 transformation, the outliers detected by the functional boxplot usually reveal either local or global
abnormal amplitudes. Therefore, T1-shape outliers can be regarded as amplitude outliers. The second transformation,
denoted by T2, normalizes the centered curves from T1 with their L2 norms, i.e.,

T2(X)(t) = T1(X)(t)∥T1(X)∥−1
2 ,

where ∥T1(X)∥2 =
[∫

I {T1(X)(t)}2 dt
]1/2

. T2 filters out the information about both the magnitude and amplitude, leaving
only pure information about the pattern of the raw curves. Thus, T2 ◦ T1-shape outliers are called pattern outliers.

Another possible sequence of transformations involves taking derivatives or differences of the raw curves. In this
sequence, the preliminary step of applying the functional boxplot to the raw curves is the same, denoted here as D0. The
D0-outliers are also magnitude outliers. As the first step, D1, we take the first-order derivative or differences of the raw
curves and the D1-shape outliers are called first-order outliers, which indicate abnormal slopes. For the second step, D2,
we take the second-order derivative or differences of the raw curves. These D2◦D1-shape outliers are called second-order
outliers and indicate abnormal curvature.

Besides the above sequences, we found several other single-step transformations that are useful in some special
scenarios. For example, aligning the important features of curves eliminates the phase variation so that the shape outliers
can be detected more effectively. This transformation, denoted by R, is expressed as

R(X)(t) = X(r(t)),

where r(t) is the warping function on the design interval I.
When the response at each point is multi-dimensional, i.e., multivariate functional data, the abnormal interactions

among responses other than the marginal outliers are also interesting to investigate (Claeskens et al., 2014). To tackle
this challenge, we could calculate the outlyingness of the multivariate functional data at each time point to obtain a
univariate curve of outlyingness. This transformation, denoted by O, is expressed as:

O(X)(t) = O(X)(t),

where O(X) denotes the curve of outlyingness. Then, we can investigate the abnormal interaction by detecting the
anomalies from these univariate curves.

To apply the above algorithms, the users should specify the types of outliers that are of interest to be detected based on
the practical background, and hence determine the corresponding sequence of transformations, which naturally gives an
end to these recursive procedures. According to our numerical results, we suggest applying the series of transformations
T0, T1, and T2 in the first stage of exploratory analysis, which could handle most of the realistic functional outliers discussed
and classified by Hubert et al. (2015) and Arribas-Gil and Romo (2015). Changing the order of this sequence may lead
to different detection results. For example, applying T2 before T1 could turn a magnitude outlier into a shape outlier or
even a non-outlying sample. The current order provides more interpretable results than the alternatives. For some other
combinations, e.g., T0, T1, and D1, it causes nearly no differences to the detection results if we reverse their order.
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3. Simulation study design

We conduct simulation studies with the following two purposes in mind: to find a proper depth notion for the
functional boxplot and to assess the possible improvement in outlier detection gained by the curve transformation. First,
we introduce the investigated depth notions and the representative models contaminated with typical shape outliers.
Then, we present the two scenarios used in the numerical experiments: contamination by one single shape outlier and
contamination by multiple shape outliers.

3.1. Existing depth notions

There exist various depth notions for ranking functional data in the literature; see Nieto-Reyes and Battey (2016) and
the references therein for more details. We investigate the following representative functional depth notions, which are
sensitive to shape outliers, to search for the proper notion to describe the centrality of curves when constructing the
functional boxplot.

3.1.1. Modified band depth
López-Pintado and Romo (2009) proposed the idea of band depth, where the curves are ranked according to the

number of envelopes formed by a fixed number of curves in the dataset, which completely contains each curve. The
band depth may lead to multiple ties or even a degenerate distribution of depth values (Chakraborty and Chaudhuri,
2014). So, López-Pintado and Romo (2009) provided the modified band depth as an alternative, which is a special case of
the Fraiman–Muniz depth (Fraiman and Muniz, 2001). The version based on two-curve bands is most commonly used in
the literature, and it can be rapidly calculated with the following simple form (Sun et al., 2012):

MBD(2)
n (X) = λ(I)−1

∫
t∈I

2
{
nRi(t) − R2

i (t) + Ri(t) − 1
}

n(n + 1)
dt,

where Ri(t) is the rank of Xi(t) in the set {X1(t), . . . , Xn(t)}, and λ(I) denotes the Lebesgue measure on I. From this
perspective, the MBD of X is determined by its rank at each design point.

3.1.2. Jth-order integrated depth
Nagy et al. (2017) defined the Jth-order integrated depth as

FDJ (X, FX ) =

∫ 1

0
· · ·

∫ 1

0
D
{
(X(t1), . . . , X(tJ )), F(X(t1),...,X(tJ ))T

}
dtJ · · · dt1,

where F(X(t1),...,X(tJ ))T denotes the joint distribution of (X(t1), . . . , X(tJ )), (t1, . . . , tJ ) ∈ [0, 1]J such that 0 ≤ tJ ≤ · · · ≤ t1 ≤ 1,
and D is the multivariate data depth notion decided by the users. Besides, the Jth-order infimal depth was defined to take
the minimum value of D

{
(X(t1), . . . , X(tJ )), F(X(t1),...,X(tJ ))T

}
instead of the average. Since the infimal depth suffers from

the generation of multiple ties in the ranking result, we only consider the integrated depth in this paper. Specifically, we
consider the integrated depth with an order of 2, denoted by FD2, in our numerical studies.

3.1.3. L∞ Depth
Long and Huang (2015) defined the L∞ depth for functional data by generalizing the Lp depth of multivariate data (Zuo

and Serfling, 2000). Specifically, for X ∼ FX , the L∞ depth has the form

L∞D(X, FX ) = {1 + E∥X − X̃∥∞}
−1,

where ∥X∥∞ = supt∈I |X(t)|. The L∞ depth depends on the average distance between X and X̃ ∼ FX .

3.1.4. Functional directional outlyingness
Functional directional outlyingness (Dai and Genton, 2019) is a measure that accounts for the direction of an underlying

observation’s point-wise deviation from the bulk of a dataset, thereby revealing both the magnitude and the shape of that
observation’s outlyingness. Concretely, Dai and Genton (2019) defined directional outlyingness for point-wise data as

O(Y, FY) = SDO(Y, FY) · v,

where FY denotes the distribution of a random vector Y, and v is the unit vector pointing from the deepest point of FY to
Y. The Stahel–Donoho outlyingness (SDO) (Stahel, 1981; Donoho, 1982) has the form

SDO(X(t), FX(t)) = sup
∥u∥=1

∥uTX(t) − median(uTX(t))∥
MAD(uTX(t))

,

where u is a unit vector and MAD denotes the median absolute deviation. Then, another two quantities are defined to
measure the magnitude and shape outlyingness, respectively, of a curve

MO(X, FX) =

∫
I
O(t)dt and VO(X, FX) =

∫
I
{O(t) − MO}

T
{O(t) − MO}dt.
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A robust Mahalanobis distance (RMD) is calculated for each pair of (MOT,VO)T, where the covariance matrix is estimated
by the minimum covariance determinant (MCD) estimator (Rousseeuw, 1985). RMD can be treated as a two-step
outlyingness and, hence, used to sort a group of functional data from the center outward.

3.1.5. Extreme rank length depth
The idea of the extreme rank length depth (ERLD) or extremal depth was independently introduced by Myllymäki et al.

(2017) and Narisetty and Nair (2016). Whereas Narisetty and Nair (2016) concentrated on the theoretical depth properties
and the functional confidence intervals, Myllymäki et al. (2017) focused on Monte Carlo testing based on this functional
depth. For a group of Xi discretely observed on the common design points t1, . . . , tm, Xij denotes the ith observation on
the jth design point. Let r1j, r2j, . . . , rmj be the raw ranks of X1j, X2j, . . . , Xmj, such that the smallest Xij has rank 1. In the
case of ties, the raw ranks are averaged. The resulting pointwise ranks are calculated as

Rij =

⎧⎨⎩
rij, one-sided test, small value is considered extreme,
n + 1 − rij, one-sided test, large value is considered extreme,
min(rij, n + 1 − rij), two-sided test.

(1)

Consider the vectors of pointwise ordered ranks Ri = (Ri[1], Ri[2], . . . , Ri[m])T, where {Ri[1], . . . , Ri[m]} = {Ri1, . . . , Rim} and
Ri[j] ≤ Ri[j′] whenever j ≤ j′. The ERLD of the vector Ri is equal to

ERLDi =
1
n

n∑
i′=1

I(Ri′ ≺ Ri),

where I denotes the indicator function and

Ri′ ≺ Ri ⇐⇒ ∃ d ≤ m : Ri[j] = Ri′[j] ∀j < d, Ri′[d] < Ri[d].

Simply speaking, ERLD is the left-tail stochastic ordering of the depth distributions.

3.1.6. Directional quantile
The precision of ERLD for finding the most extremal functions can be affected by ties which appear when m and n are

both small. To address this drawback, Myllymäki et al. (2017) gave an approximation, the directional quantile (DQ), of
the two-sided ERLD as

DQi = max
j

(
I(Xij ≥ X.j)

Xij − X.j

|X .j − X.j|
+ I(Xij < X.j)

Xij − X.j

|X .j − X.j|

)
, (2)

where X.j is the pointwise mean, and X .j and X .j denote the point-wise 2.5% upper and lower quantiles, respectively, of
the distribution of X at the design point tj. The quantities X.j, X .j, and X .j are usually estimated from the observed values
if they are not known analytically. The one-sided DQ can be defined similarly according to (1) and (2). Essentially, DQ is
the largest pointwise outlyingness of the observation Xi(t).

3.1.7. Depth/outlyingness taxonomy
FD2 is the second-order extension of MBD, and both are integrated notions based on pointwise ranks. As mentioned

above, RMD is a two-step functional outlyingness that uses the information about distance. ERLD is based on the left-tail
stochastic ordering of pointwise ranks, and L∞D and DQ rely on the maximum pointwise (scaled) distance. In practice,
if both the sample size n and the number of design points m are small, then the rank-based depth notions suffer from a
large number of ties, whereas the distance-based notion produces nearly zero ties regardless of the sizes of n and m. RMD
applies to both univariate and multivariate functional data; the other five depth notions are applicable only to univariate
functional data.

3.2. Shape outlier models

We consider six types of shape outliers to comprehensively assess the performance of various notions in handling
shape outliers. The models are described below:
Model 0 (Clean Model): X(t) = 4t +e0(t), t ∈ [0, 1] and e0(t) is a centered Gaussian process with the covariance function
γ0(s, t) = cov{e0(s), e0(t)} = exp (−|s − t|).
Model 1 (Jump): Main model: Model 0; contaminating model: X(t) = 4t + 3I(t > U)+ e0(t), where U follows a uniform
distribution on [0, 1] and I is an indicator function.
Model 2 (Peak): Main model: Model 0; contaminating model: X(t) = 4t + 3I(U ≤ t ≤ U + 0.04) + e0(t).
Model 3 (Covariance Function): Main model: X(t) = 4t + e1(t), where e1(t) is a centered Gaussian process with the
covariance function γ1(s, t) = cov{e1(s), e1(t)} = exp{−(s − t)2}; contaminating model: X(t) = 4t + ẽ1(t), where ẽ1(t) is
a centered Gaussian process with covariance function: γ̃1(s, t) = cov{ẽ1(s), ẽ1(t)} = exp{−(s − t)0.2}.
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Fig. 2. Realizations of the six investigated models contaminated by a single outlier. Gray curves: non-outlying; red curves: outlying.

Model 4 (Phase): Main model: X(t) = 30t(1− t)3/2+e2(t), where e2(t) is a centered Gaussian process with the covariance
function γ2(s, t) = 0.3 exp{−|t − s|/0.3}; contaminating model: X(t) = 30(1 − t)t3/2 + e2(t).
Model 5 (Slope): Main model: X(t) = A+B arctan(t)+e3(t), where A follows a centered normal distribution with variance
4, B follows an exponential distribution with mean 1, and e3(t) is a centered Gaussian process with the covariance function
γ3(s, t) = 0.1 exp{−|t − s|/0.3}; contaminating model: X(t) = 1 − 2 arctan(t) + e3(t).
Model 6 (Oscillation): Main model: X(t) = U11 cos(2π t)+U12 sin(2π t), where U11 and U12 independently follow a uniform
distribution on [0, 0.1]; contaminating model: X(t) = U21 cos(2π t)+U22 sin(2π t), where U21 and U22 independently follow
a uniform distribution on [0.1, 0.12].

Models similar to Models 1 and 2 were considered by López-Pintado and Romo (2009) and Long and Huang (2015). We
reduced the magnitude of the jump or peak to change the outlying curve to look more like a shape outlier. Model 3 was
also introduced by López-Pintado and Romo (2009) and Long and Huang (2015), Model 4 was utilized by Arribas-Gil and
Romo (2014), Model 5 (with a larger residual variance) was proposed by Nagy et al. (2017), and Model 6 was considered
by Hyndman and Shang (2010) and Sun and Genton (2011). We provide a realization of each contaminated model in
Fig. 2.

4. Simulation study results

4.1. Contamination with one shape outlier

First, we evaluate the depth notions in terms of the functional data ranking when one single shape outlier appears.
Specifically, we generate 49 non-outlying curves from the main model and one outlier from the contaminating model for
each case. The design points are 30 equidistant points on the interval [0, 1].

To the raw curves, we apply the six depth notions and six joint depth notions computed according to Algorithm 2 with
transformations T0, D1, and T1. We perform two types of transformations on the raw curves: one where we shift each curve
towards its center, and one where we take the first-order differences. We calculate the rank of each sample with respect
to the raw curves and two groups of transformed curves using the same depth notion; thus, we get a three-dimensional
vector of ranks. Finally, we sort these vectors using the one-sided DQ. These methods are denoted by MBDb, FD2,b, RMDb,
L∞Db, ERLDb, and DQb. In total, we evaluate 12 methods during each simulation and record the resulting ranks of the
outlier. We present the average ranks given by each method over 500 replicates in Table 1.

When using only the raw curves, the distance-based notions (RMD, L∞D, and DQ) assign overall lower ranks to
the outlier than the rank-based notions, which indicates that the distance-based depth notions are more effective in
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Table 1
The average ranks of the single outlier assigned by different methods. A smaller value indicates that the outlier
is recognized as more outlying. Bold font indicates the best results. MBD: the modified band depth; FD2: the
second-order integrated depth; RMD: the directional functional outlyingness; L∞D: the L∞ depth; ERLD: the
extreme rank length depth; DQ: the directional quantile.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

MBD 7.47 18.33 23.19 1.18 36.50 1.00
FD2 6.74 17.78 18.15 1.08 12.04 1.915
RMD 1.36 2.49 4.44 1.00 3.51 1.42
L∞D 1.66 2.08 4.06 1.01 20.08 1.04
ERLD 3.04 7.27 10.78 1.02 32.4 1.00
DQ 1.88 2.24 7.70 1.05 31.2 1.03

MBDb 3.12 13.71 2.28 1.01 3.70 1.00
FD2,b 2.72 13.6 2.29 1.01 3.26 1.77
RMDb 1.08 1.25 1.22 1.00 3.04 1.38
L∞Db 1.02 1.02 1.28 1.00 4.07 1.04
ERLDb 1.79 6.41 1.75 1.00 2.79 1.00
DQb 1.01 1.01 1.00 1.00 2.14 1.03

Table 2
The correct and false detection rates of different methods for the six models. Bold font indicates the best results.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

pc pf pc pf pc pf pc pf pc pf pc pf
MBD 0.31 0.00 0.16 0.00 0.03 0.00 0.35 0.00 0.00 0.05 0.00 0.00
FD2 0.30 0.00 0.17 0.00 0.01 0.00 0.35 0.00 0.00 0.02 0.00 0.00
RMD 0.23 0.00 0.13 0.00 0.01 0.00 0.32 0.00 0.00 0.01 0.00 0.00
L∞D 0.31 0.00 0.17 0.00 0.01 0.00 0.42 0.00 0.00 0.03 0.00 0.00
ERLD 0.22 0.00 0.17 0.00 0.02 0.00 0.19 0.00 0.00 0.04 0.00 0.00
DQ 0.19 0.00 0.14 0.00 0.01 0.00 0.18 0.00 0.00 0.03 0.00 0.00

MBDc 0.81 0.01 0.89 0.00 1.00 0.02 0.76 0.00 0.80 0.16 0.00 0.00
FD2,c 0.79 0.00 0.90 0.01 1.00 0.00 0.73 0.00 0.78 0.12 0.00 0.00
RMDc 0.99 0.00 1.00 0.00 1.00 0.00 0.73 0.00 0.72 0.12 0.01 0.00
L∞Dc 1.00 0.00 1.00 0.00 1.00 0.01 0.77 0.00 0.80 0.15 0.00 0.00
ERLDc 0.86 0.00 0.98 0.00 1.00 0.00 0.50 0.00 0.15 0.06 0.00 0.00
DQc 1.00 0.00 1.00 0.00 1.00 0.00 0.51 0.00 0.07 0.04 0.00 0.00

recognizing the single outlying function. Note that all the methods produce smaller ranks for Models 4 and 6, since the
outlier in these two models achieves either the largest or smallest value across a large portion of the interval.

All the methods are significantly improved by using the raw curves together with the transformed ones since the
shape outlier becomes a magnitude outlier after the transformation. Overall, DQb performs the best out of all the methods,
almost always recognizing the outlier as the most extremal observation. Among the six contaminated models, the outlier
in Model 5 is the hardest to detect for all the depth notions; the curve transformations are still helpful but not as ideal
as with the other models because the signal of outlyingness is partially covered by random noise.

4.2. Contamination with multiple shape outliers

Next, we evaluate each method based on their outlier detection performance when a group of outliers contaminate
the observations. The simulation settings are the same as in Section 3.2, except that the number of outliers is changed
from 1 to 5. We perform the same two transformations of the raw curves. For the first six methods, we detect outliers
using the functional boxplot constructed from the raw curves ranked by each of the depth notions. For the combination
methods, we detect the outliers by applying the functional boxplots constructed with different depth notions to the raw
and transformed curves separately, and collect all the detected outliers as the final result. The methods are denoted by
MBDc, FD2,c, RMDc, L∞Dc, ERLDc, and DQc. We calculate the correct and false detection rates, pc and pf , for each run. We
define pc as the ratio of the number of correctly detected outliers over the number of true outliers, and pf as the ratio
of the number of falsely detected outliers over the number of non-outlying samples. The average performances from 500
replicates are presented in Table 2. In addition to that, we provide the Rand index as an overall summary of these results
in Table 3.

When using only the raw curves, the correct outlier detection rates from all six models are quite poor because the
functional boxplot is more sensitive to the magnitude outliers than to the shape outliers that these underlying models
are mostly contaminated by. In Models 1, 2, and 4, the outliers sometimes reach the maximum or minimum values at
some part of the design interval; therefore, they are detected with higher rates. In Models 3 and 5, the outliers are shape
outliers deeply buried in the bulk of the dataset, and are rarely detected. The failure to detect the outliers in Model 6 is
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Table 3
The Rand index of different methods for the six models. Bold font indicates the best results.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

RI RI RI RI RI RI

MBD 0.87 0.83 0.82 0.87 0.74 0.82
FD2 0.86 0.84 0.82 0.87 0.78 0.82
RMD 0.85 0.83 0.82 0.87 0.80 0.82
L∞D 0.87 0.84 0.82 0.88 0.76 0.82
ERLD 0.85 0.84 0.82 0.84 0.75 0.82
DQ 0.84 0.83 0.82 0.83 0.76 0.82

MBDc 0.96 0.98 0.96 0.95 0.74 0.82
FD2,c 0.96 0.98 1.00 0.94 0.76 0.82
RMDc 0.99 1.00 1.00 0.94 0.74 0.82
L∞Dc 1.00 1.00 1.00 0.95 0.75 0.82
ERLDc 0.97 0.99 0.98 0.90 0.75 0.82
DQc 1.00 1.00 1.00 0.90 0.77 0.82

Table 4
The average ranks of the single outlier assigned by DQ and L∞D under different combinations of transformations. A smaller
value indicates that the outlier is recognized as more outlying. Bold font indicates the best results.
Transformations Depth Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

{T0}
L∞D 1.83 2.44 4.04 1.01 21.90 1.01
DQ 2.17 3.04 7.49 1.04 31.93 1.04

{T0,T1,D1}
L∞D 1.02 1.01 1.26 1.00 5.60 1.01
DQ 1.01 1.01 1.00 1.00 3.56 1.04

{T0,T1,T2}
L∞D 1.29 1.15 1.41 1.00 4.04 1.03
DQ 1.24 1.14 1.04 1.00 3.69 1.07

{T0,D1,D2}
L∞D 1.00 1.00 1.00 1.15 22.04 1.01
DQ 1.00 1.00 1.00 1.25 16.57 1.04

{T0,T1,T2,D1,D2}
L∞D 1.02 1.00 1.06 1.00 5.65 1.02
DQ 1.01 1.00 1.00 1.00 4.58 1.07

due to the coefficients generated from two adjacent uniform distributions, which can be viewed as the same distribution.
Consequently, the level of outlyingness throughout the whole interval is never substantial enough to be recognized.

As above, the performances of all the methods improve substantially when the raw curves are combined with
the transformed curves. This indicates that the shape outliers are effectively changed into magnitude outliers by the
transformations. Again, the distance-based depth notions perform better than the rank-based ones. Among the distance-
based notions, L∞Dc provides the best results and RMDc is quite comparable. MBDc and FD2,c perform the worst for
Models 1 and 2, while ERLDc and DQc perform the worst for Models 4 and 5.

4.3. Comparison of transformations

Finally, we make a comparison of the commonly used transformations mentioned in Section 2.3. Specifically, we
consider five sets of transformations: {T0}, {T0, T1,D1}, {T0, T1, T2}, {T0,D1,D2}, and {T0, T1, T2,D1,D2}. The comparison
is carried out under the same setting as in Section 4.1 and we report the results for two depth notions, DQ and L∞, which
performed best in the previous studies. We summary the results in Table 4.

Through transformation, the average ranks are significantly reduced, as in Section 4.1. Among different combinations,
{T0,D1,D2} basically fails in Model 5 although it handles the first three models quite well. {T0, T1,D1} provides the best
performance, and {T0, T1, T2} is quite comparable except for Model 1. Moreover, {T0, T1, T2} leads to more interpretable
classification of outliers as we discussed in Section 2.3. {T0, T1, T2,D1,D2} does not lead to significant improvement over
{T0, T1,D1} or {T0, T1, T2}. Considering its simplicity and interpretability, we recommend the sequence, {T0, T1, T2}, for
the first step of exploratory functional data analysis.

Nevertheless, in the simulation studies, we did not cover all the possible cases of contamination, e.g., multivariate
functional outliers or outliers due to warping. Under these cases, other transformations such as O and R should also help
detect potential outliers. We address these two specific scenarios with two applications in the next section.

5. Examples of functional outlier detection and taxonomy

In this section, we assess the practical performance of changing shape outliers to magnitude outliers through data
transformation in several applications. We find that this method not only provides a simple way to handle shape outliers,
but also leads to new findings.
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Fig. 3. The population (in thousand) curves of 105 countries from 1950 to 2010.

Table 5
Outlier detection results for the population dataset using the L∞ depth.
Magnitude outliers Amplitude outliers Shape outliers

Mozambique, Uganda, Sudan,
Ghana, Afghanistan, Nepal,
Malaysia, Iraq, Saudi Arabia

Madagascar, Angola,
Cameroon, Côte d’Ivoire,
Kazakhstan, Syrian Arab
Republic, Yemen

Rwanda, Armenia, Georgia,
Belarus, Bulgaria, Czech
Republic, Hungary, Republic
of Moldova, Estonia, Latvia,
Lithuania, Bosnia and
Herzegovina, Croatia

5.1. World population data

First, we consider the world population data (United Nations 2016), which was analyzed by Nagy et al. (2017). This
dataset (Total Population-Both Sexes) includes estimates of the total population in 233 countries, areas, or regions in
July, 1950–2010. We follow Nagy et al. (2017)’s preprocessing of the dataset by selecting those samples that represent
populations numbering between one million and fifteen million on July 1, 1980. In total, 105 observations are included
in our analysis; the curves are shown in Fig. 3.

We apply Algorithm 1 with the transformations, T0, T1, and T2, to this dataset and construct the functional boxplots
with the L∞ depth as suggested by our simulation study. The results are visualized in Fig. 4, and the countries detected as
outliers are provided in Table 5. Since the raw curves are transformed twice sequentially, the detected outliers are divided
into three categories: magnitude outliers, amplitude outliers, and pattern outliers, according to our taxonomy described
in Section 2.

The magnitude outliers (see Fig. 4(e)) achieve relatively large populations at the end of the investigated period. For
example, the largest population, about 36 million, among the 105 countries included in our analysis is in Sudan, 2010.
It was previously suggested that magnitude outliers could be detected simply with a boxplot of the means/medians of
curves (Xie et al., 2017). However, the functional boxplot makes use of the whole curve, which is more comprehensive
and, hence, captures more details about the dataset.

Amplitude outliers are curves with unusual oscillation levels. In this study, as shown in Fig. 4(b) and (f), most of these
countries’ populations have a higher increment. Some magnitude outliers are also flagged as abnormal in terms of the
amplitude, but we prefer to classify these curves solely as magnitude outliers to get distinct sets for different categories.
In Fig. 4(h), the green curves represent the amplitude outliers, and they are not outlying at all in terms of the magnitude.
Here, the Syrian Arab Republic, which has the ninth largest population increment at about 18 million from 1950 to 2010,
represents an amplitude outlier. Six other countries with higher increments than the Syrian Arab Republic have already
been flagged as magnitude outliers in the first step. These countries in the above two categories are located at either
Middle East or Africa, hence, share similar local economic and political environments.

The curves detected as outliers in the final step are called pattern outliers because they reveal significantly different
patterns relative to the rest of the dataset after centering and normalizing. As shown in Fig. 4(g), most pattern outliers
(cyan) achieve peaks during 1980–1990, and drop rapidly afterwards. All these countries, except for Rwanda, are located
in Eastern Europe and share some common historical and economic background.

From Fig. 4(h), it is quite difficult to locate the anomalies in the amplitude outliers (green) or the pattern outliers
(cyan). However, these anomalous curves are turned into magnitude outliers by the transformations. Also, our taxonomy
interprets the detected outliers well. Our procedure extracts much more information from the dataset than that of Nagy
et al. (2017).
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Fig. 4. Outlier detection results from the population dataset obtained by combining the curve transformation and the functional boxplot. Left panels:
the functional boxplots for the raw and transformed curves. Right panels: comparisons of outlying curves (color) with non-outlying curves (gray). First
row: magnitude outliers (red) detected in the raw curves; second row: amplitude outliers (green) detected in the centered curves; third row: pattern
outliers (cyan) detected in the centered and standardized curves; last row: overall description of the result. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

5.2. Annual sea surface temperature data

Sea surface temperature (SST) data can be utilized to monitor El Niño phenomena, a fundamental measure of global
climate change. Such data have been analyzed by Hyndman and Shang (2010), Sun and Genton (2011), and Xie et al.
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Fig. 5. The functional boxplots constructed using the raw and three transformed SST curves. From left to right: functional boxplots based on the
raw curves, the aligned curves, the centered-aligned curves, and the normalized-centered-aligned curves. Detected outliers are presented as dashed
curves: 1957 (black), 1982 (red), 1983 (green), 1997 (cyan), and 1998 (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(2017). We consider the dataset used by Xie et al. (2017) from the Climate Prediction Center. The dataset consists of
observations from multiple regions, January 1950 to December 2014; we focus on the records from the Niño 1+2 regions.

We applied Algorithm 1 with transformations T0, R, T1, and T2 to the dataset. Note that we align the curves in the first
step, since Xie et al. (2017) showed that this dataset contains natural phase variability. After three types of transformations,
we obtain four groups of curves. Then, we apply the functional boxplot based on the L∞ depth to each group, and combine
the detected outliers as the final result. The functional boxplots constructed using the four groups of curves are illustrated
in Fig. 5. In the first plot, 1983 and 1997 are detected as outliers because they achieve the highest temperatures during
several months. Specifically, 1983 provided the highest records for April to June, and 1997 provided the highest records
for July to December. After alignment, 1998 turned out to be the warmest year from January to May and, hence, is detected
as an outlier in the second plot. In the last plot, 1957 was outlying due to the sharp temperature increase from January
to February. 1982 was also outlying due to the rapid increase from October to December.

Fig. 6 shows our result, as well as the outliers detected by the other two methods, the original functional boxplot
based on the modified band depth (Sun and Genton, 2011) and the phase–amplitude decomposition (Xie et al., 2017).

http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
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http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.81-10.ascii
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Fig. 6. Left panels: outlier detection results from the sea surface temperature dataset using different methods: the original functional boxplot (top),
phase–amplitude decomposition (middle), and a combination of the functional boxplot and curve transformation (bottom). Right panels: the detected
outliers’ locations in the plot of annual sea surface temperature anomalies. Dashed curves: 1957 (black), 1982 (red), 1983 (green), 1997 (cyan), 1998
(blue), and 2007 (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

According to a National Climatic Data Center report, two of the strongest El Niño events happened during 1982–1983 and
1997–1998, which are completely detected by our methods but not by the two alternative methods. After those fours
years, 1957 achieves the next highest temperatures. This is because we used the L∞ depth to construct the functional
boxplot, and this depth notion puts more weight on extremal events, which matches well with El Niño studies.

5.3. Global envelope test for spatial point processes

The features of spatial point processes are usually summarized by a function of distance, r . The most commonly used
characteristic of point processes is the centralized L-function, which is the transformation of Ripley’s K -function (Illian
et al., 2008). Myllymäki et al. (2017) proposed a global envelope test to assess the goodness-of-fit of point process models.
Specifically, they assumed that a group of curves follows an identical distribution, e.g., L-functions of simulations from
the same spatial point process model, and then they constructed the global envelope with the curves sorted according to
ERLD or DQ. This envelope test provides not only an exact p-value, but also a graphical interpretation of the reason for
rejection.
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Fig. 7. The global envelope test based on the directional quantile of the Gaussian Poisson model against the Matérn cluster model. The extreme
rank length depth p-value of the Monte Carlo test is 0.0005. The shaded area is the 95% global envelope.

The differences among the L-functions are usually represented by the magnitude anomalies but there are functions that
differ only in shape. We consider the Gaussian-Poisson model (H1) with parameters κ = 400, r0 = 0.04, p2 = 0.2, where
κ is the intensity of the Poisson process of the cluster centers, r0 is the diameter of each cluster that consists of exactly two
points, and p2 is the probability that a cluster contains exactly two points. The L-function of this model contains a jump
in the distance r0. We test whether this model is a Matérn cluster process (H0). In our example, we simulate the point
process under H1 in an area [0, 1]2, and compute its L-function L0(r). We calculate all the functions in this section at 500
equally spaced design points. The parameters of the tested H0 model are estimated and s simulations of point processes
are drawn from H0. We set s = 1999. The associated L1(r), . . . , Ls(r) are computed. Further, we choose the directional
quantile (DQ) to construct the envelope as suggested by the simulation results in Section 4.1. We compute DQ for every
L-function and apply the Monte Carlo test at a significance level of 0.05 in order to check if the chosen depth distinguishes
L0 as an outlier or not. One realization of the L-function from the H1 model, together with the 95% global envelopes of
the null model, is shown in Fig. 7. We repeat these procedures 500 times and record the ratio of the positively detected
outliers.

As shown in Fig. 7, we apply Algorithm 2 with transformations D0 and D1. Using only the raw curves, the rejection
ratio is zero. However, the jump anomaly in the tested curve is clearly observed after taking the first-order differences of
the raw curves; the second plot in Fig. 7. Thus, the ratio was greatly improved to 100% when we apply the global envelope
test to the bound raw curves and the first-order differences. This confirms that the data transformation indeed improves
the spatial point process test by providing more comprehensive perspectives about the data.

5.4. Multivariate weather data

We use a Spanish weather dataset from the R package fda.usc (Febrero-Bande and Oviedo de la Fuente, 2012) to
demonstrate the curve-transformation analysis of multivariate functional data. This dataset contains averaged daily
temperature, log precipitation, and wind speed records from 1980 to 2009 at 73 weather stations in Spain. The three-
dimensional coordinates, longitude, latitude, and altitude, of these stations are also provided. The raw data are discretely
observed and have been smoothed with 11 order-4 B-spline basis functions.

Our goal here is to find those stations that reveal significantly different weather patterns from the majority and, further,
to identify the reasons behind their anomalies. We apply a functional boxplot with RMD to each type of curves to detect
the marginal outliers. Since we are also interested in the potential joint outliers that are outlying not for any single
marginal index but for some combination of marginal indexes, we apply Algorithm 1 with transformations, T0 and O.
We calculate the pointwise SDO of the bivariate curves from each combination and get a group of univariate curves with
the outlyingness as responses. Next, we detect the joint outliers using these outlyingness curves. However, unlike the
common case where both the remarkably small and large values are treated as anomalies, here only the larger values of the
outlyingness curve are considered abnormal. Thus, we use the one-sided DQ to rank the curves from the bottom up. Unlike
the two-stage functional boxplot (Dai and Genton, 2018a) that detects the joint anomalies using vectors of descriptive
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Fig. 8. Outlier detection results from the Spain weather dataset obtained by combining the curve transformation and the functional boxplot. Each
row represents a bivariate combination of the three indexes. First column: the first index; second column: the second index; third column: the
bivariate combinations; fourth column: the locations of the stations. Green curves: outliers detected in the first index and the combination; blue
curves: outliers detected in the second index and the combinations; red curves: outliers detected only by the combinations; cyan curves: outliers
detected by all three cases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

statistics, this proposed procedure utilizes the whole curves of outlyingness and provides more concrete explanations for
the detected anomalies. The detection results from the three marginal and combinational cases are illustrated in Fig. 8.

In the first row of Fig. 8, the magnitude outlyingness in one index helps to identify the possible shape outlyingness in
the other index. Specifically, the blue curves in the bottom of the log precipitation plot are detected as magnitude outliers.
Referring to the locations of the stations, we find that these curves are recorded on the Canary Islands, which are far away
from the mainland Spain. At the stations with low altitudes in this area, the winter is warmer and the annual temperature
variations are smaller than at most of the other stations, which means that the temperature curves are outlying in terms
of shape. However, these shape outliers are missed when using only the temperature curves. We manage to identify their
anomalies by borrowing information from the log precipitation curves. For the other two combinations, we also obtain
such benefits from the outlyingness-curves.

In the second row of Fig. 8, the magnitude outliers in the curves of outlyingness reveal abnormal interactions among
the marginal indexes. We present in Fig. 9 all the five joint outliers that are not identified as magnitude outliers by any
marginal index. The purple one is a typical example of this category. The purple weather station is located on the side of
Mount Teide at an altitude of 632 m. It reveals no significant anomalies for any marginal index and, hence, we infer that
its outlyingness is due to abnormal interactions among the three indexes.

6. Conclusion

Turning shape outliers to magnitude outliers, which are well handled by the functional boxplot, dramatically simplifies
the outlier detection procedure. Simulation studies indicate that distance-based depth notions are appropriate for
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Fig. 9. Joint outliers that are not detected as outlying by any single marginal index.

constructing the functional boxplot. The proposed outlier detection procedure is based on the whole curve rather than
some scalars extracted from the curves. Thus, it provides more details about why a curve has been identified as an outlier.
Applying several curve transformations sequentially provides a natural classification of the functional outliers; hence, the
anomalies of these curves are easier to interpret. Data transformation also fortifies the global envelope test against more
types of alternatives. As a practical suggestion, we recommend the combination of T0, T1, and T2 as the first step when
carrying out the exploratory analysis, which could handle most of the realistic functional outliers discussed and classified
by Hubert et al. (2015) and Arribas-Gil and Romo (2015) as demonstrated in our numerical studies with both simulated
data and real applications.

The proposed procedure is readily extended to image or surface data, where we may replace the functional boxplot
with the surface boxplot (Genton et al., 2014). We have ignored possible dependencies among the trajectories for outlier
detection problems throughout the current paper. For dependent functional data, the adjusted functional boxplot (Sun and
Genton, 2012) with the inflating factor F∗ chosen by a data-driven procedure can be employed. Applying transformations is
an intuitive and simple way to evaluate functional data from different perspectives. This is somewhat similar to measuring
the dissimilarity of curves using different metrics, e.g., L2, L∞ and semimetric of the derivatives (Ferraty and Vieu, 2006),
except that one can get the graphical interpretation of the transformed curves using our method. Further investigation is
necessary to explore the connection between the transformations and metrics from a more theoretical point of view.
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