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• We provide scientific support for the deployment of wind energy infrastructure.• A general methodology to identify optimal wind farm sites is proposed.• A procedure to identify the most suitable wind turbine model/height is illustrated.• A blueprint for achieving Saudi Arabia’s wind energy targets is presented.• Saudi Arabia is well positioned to be an important player in the wind energy sector.

A R T I C L E I N F O

Keywords:
Wind energy
WRF model
Levelized cost of energy
Wind power potential assessment
Energy policy
Saudi Arabia

A B S T R A C T

Policymakers worldwide have set challenging sustainable energy targets to decarbonize their economy. Despite
the ambitious pledges, several emerging countries still lack an actual progress towards the envisioned goals,
often due to the scarcity of accurate data. Here, we propose a practical methodology for bridging the gap
between the wind energy targets and their implementation. We illustrate our new methodology by focusing on
Saudi Arabia, which endeavors to play a leading role in the renewable energy sector and pledges to install 16GW
of wind capacity by 2030. We propose a blueprint for the optimal wind farms buildout, combining novel high-
resolution model simulations, a unique set of observations, land-use restrictions and a thorough cost assessment.
The most suitable technological option is selected among multiple turbine models for each potential site. Our
findings suggest that Saudi Arabia is well positioned to become a role model for wind energy development
within the Middle East, with 26% of the electricity demand that could be met by wind power. The average
levelized cost of energy of the proposed buildout is 39 USD MWh−1, which confirms the competitiveness of wind
resources in Saudi Arabia. We identify the area close to Gulf of Aqaba as the most cost-effective region for wind
harvesting, with turbines characterized by moderate specific rating (350 W m−2) at relatively low hub height
(75 m). The modelling framework proposed in this work can be adopted by other countries aiming to start or
strengthen their wind energy portfolio.

1. Introduction

The adverse impacts of burning fossil fuels on the environment and
human health are well established [1] and call for profound transfor-
mations of current energy systems [2]. To reduce the dependence on
non-renewable fossil fuels and comply with the long-term temperature
goals of the Paris agreement, policymakers worldwide are proposing
mitigating strategies and promoting renewable energy resources [3].

Among these, wind energy has seen the largest global deployment in
terms of power generating capacity, with China and the United States
being the major contributors [4]. Despite a lower total installed capa-
city, several European countries already have a large share of wind
energy in their electricity generation mix. According to the latest Global
Status Report of Renewables [4], at least seven European countries met
15% or more of their annual electricity demand with wind energy in
2018. For the United States, projections show that the electricity

https://doi.org/10.1016/j.apenergy.2020.115085
Received 27 January 2020; Received in revised form 17 April 2020; Accepted 22 April 2020

⁎ Corresponding author at: Department of Civil and Environmental Engineering and Earth Sciences, 267A Fitzpatrick Hall, University of Notre Dame, Notre Dame,
IN 46556, USA.

E-mail address: pgiani@nd.edu (P. Giani).

Applied Energy 269 (2020) 115085

0306-2619/ © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2020.115085
https://doi.org/10.1016/j.apenergy.2020.115085
mailto:pgiani@nd.edu
https://doi.org/10.1016/j.apenergy.2020.115085
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2020.115085&domain=pdf


produced from renewable energy sources will most likely surpass coal
by 2030, with wind playing a central role [5]. On the other hand,
several emerging countries have also pledged ambitious wind energy
targets but an actual progress towards the envisioned goals is often
missing. Some technical limitations, such as lack of standard certifica-
tions [6] and skilled personnel [7], can hinder the implementation of
governments’ policies. However, the major barrier to the deployment of
the wind energy infrastructure is often related to the lack of accurate
data and information, as for instance highlighted by previous studies in
Oman [8] and Pakistan [9], along with social and political matters [10].
Whilst several studies properly quantified wind energy resources in the
developed world, based on different combinations of reanalysis data
[11], numerical weather prediction (NWP) model simulations [12] and
ground observations [13], few detailed studies focused extensively on
emerging countries [14]. Essential information spans from high-re-
solution mapping of wind resources and suitable technologies to the
determination of economic and environmental benefits resulting from
the implementation of wind farms.
Here, we introduce a new modelling framework to provide the ne-

cessary scientific support and clear, actionable cost/benefit plans for
the implementation of wind targets envisioned by a country. We
identify Saudi Arabia as an optimal case study given its position as an
emerging country and its recent large commitment to the sustainable
development goals [15]. Despite the abundance of fossil fuels in the
country, in 2012 Saudi Arabia unveiled targets of 25 GW of con-
centrated solar power (CSP), 16 GW of solar photovoltaic (PV) and 9
GW of wind energy by 2032 [16]. More recently, as part of their 'Vision
2030′ reform plan [17], Saudi Arabia upwardly revised targets to 2.7
GW of CSP, 40 GW of solar PV and 16 GW of wind [18], thereby re-
affirming its commitment to transition to renewable energy sources.
Although these measures would place Saudi Arabia not only at the
forefront regionally in terms of capacity, but also as a leading player
worldwide [19], there is still a large gap between the ambitious re-
newable goals and the scientific work to support them. At present, the
first onshore utility-scale wind project has achieved financial close and
is under construction in Dumat Al Jandal, in the North Western pro-
vince of Al Jouf, and it is expected to become operative in the first
quarter of 2022 [20]. Even though Dumat Al Jandal wind farm will be
the largest in the Middle East, with an installed capacity of 400 MW
[21], it will account for only 2.5% of the total installed capacity target
set by ‘Vision 2030’ (16 GW).
Previous studies of wind energy potential over Saudi Arabia have

mostly relied on reanalysis data, given the sparsity and low quality of
observational data sources. For instance, Rehman et al. [22] analyzed
wind speed data for five coastal locations and provided preliminary
energy calculations for different wind turbines. Yip et al. [23] used the
Modern-Era Retrospective analysis for Research and Applications
(MERRA) product to examine the variability and persistence of the
wind resource of the Arabian Peninsula. Chen et al. [24] considered
climate model outputs to identify areas of high wind energy potential
over the western part of the country and to quantify their reliability
under current and future climate. Tagle et al. [25] examined the in-
terannual variability of the wind power density using an ensemble of
simulations based on using 30 simulations from the Large Ensemble
Project (LENS) developed at the National Center for Atmospheric Re-
search [26]. Tagle et al. [27] proposed a spatiotemporal stochastic
generator of wind speeds to properly characterize the uncertainty of the
energy estimates. Although these studies provided significant ad-
vancements in quantifying the wind energy potential over the region,
actionable recommendations to policymakers are still limited due to the
rather coarse resolution of the wind data and the lack of discussion of
technological options.
The novelty of this work lies therefore in its effort to support the

governments’ initiatives by setting forth a practical strategy for im-
plementing wind energy visions. Specifically this study seeks to over-
come limitations of prior research by addressing the following

objectives:

1) Bridging the gap between the wind energy targets and their im-
plementation, by providing a new general methodology for a large-
scale assessment (e.g., nationwide) of wind energy resources which
produces a cost-efficient blueprint for the implementation of the
wind power capacity targets.

2) Overcoming issues of coarse resolution and/or data sparsity by
combining multi-year wind speed observations with the first en-
semble of high-resolution NWP model simulations in Saudi Arabia.

3) Investigating the sensitivity of wind resources estimates on the NWP
setup (e.g., resolution and parameterizations applied) and choice of
wind turbine specifications.

As part of our effort to provide an actionable and cost-efficient
blueprint, we thoroughly discuss land-use restrictions and we identify
the most suitable technological option for the different wind regimes
experienced over the region.

2. Materials and methods

2.1. Wind speed model simulations

We quantify wind energy potential based on hourly high-resolution
simulations of the Weather Research and Forecasting (WRF) model
[28], applied over the Arabian Peninsula during 2013–2016. A set of
WRF runs is generated to identify the optimal setup with respect to the
spatial resolution, the planetary boundary layer (PBL) and surface layer
schemes applied, which play a major role in dictating wind profiles in
the boundary layer [29]. The simulation domain comprises 339 × 299
and 549 × 499 grid cells for the 9 km and 6 km resolution simulations,
respectively (Table S1). The total surface area covered is roughly
8,200,000 km2. WRF simulations include 40 vertical levels with varying
vertical resolution, i.e., spaced closer together near the ground and
becoming coarser as height increases. The layer of the atmosphere re-
levant to wind turbines (up to 200 m) is approximately discretized with
a 20 m step. The WRF model is driven by initial and boundary condi-
tions supplied by the operational high-resolution European Centre for
Medium-Range Weather Forecast model (HRES-ECMWF) [30]. The
boundary conditions are updated every 6 h. The non-hydrostatic dy-
namics equations are integrated without any nudging with a time step
of 40 and 30 s for the simulations at 9 km and 6 km, respectively. For all
the runs presented here, clouds and associated microphysical processes
are represented with the Ferrier new Eta scheme [31], whereas the
scale-aware Grell-Freitas convection scheme [32] represents the sta-
tistical effects of subgrid‐scale convective clouds. Short and longwave
radiation are parametrized with the Rapid Radiative Transfer Model for
GCMs (RRMTG, [33]) and land surface processes are represented with
the Noah land surface model [34]. A summary of the differences be-
tween the different runs in model setup (resolution and PBL schemes) is
included in the Supplementary Information (Table S1).

2.2. Wind speed observations

We use the vertical profiles of wind speed measured at ten sites
within the King Abdullah City for Atomic and Renewable Energy
(K.A.CARE) monitoring network to evaluate model performance. For
each site, P2546A Cup Anemometers were mounted onto a meteor-
ological mast at different heights to measure wind speed at different
heights (40, 60, 80 and 100 m). All K.A.CARE meteorological masts are
100 m high and have the same configuration and type of instruments.
K.A.CARE wind data are aligned to international standards and guide-
lines to ensure data quality [35].
Hourly wind speed observations were collected from September

2013 until November 2016. However, the full time-span is covered by
only a few stations, whereas measurements for all the sites are
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simultaneously available only during 2016. Site-specific data coverage
is reported in Table S2 and Fig. S1. The location of each measurement
site is shown in Fig. 2.

2.3. Model performance evaluation

We evaluate WRF performance by pairing modeled and observed
values in space using the nearest-neighbor approach, which is accom-
plished by identifying the closest grid cell to each observational site.
The following performance indicators are used to assess the perfor-
mance of the model:

=
=

MB
N

W t W t1 ( ( ) ( )),
t

N

m o
1 (1)

=
=

RMSE
N

W t W t1 ( ( ) ( )) ,
t

N

m o
1

2
0.5

(2)

=
+

=

=

IOA
W t W t

W t W W t W
1

( ( ) ( ))
(| ( ) ¯̄ | | ( ) ¯̄ |)

,t
N

m o

t
N

m

1
2

1 0 0 0
2 (3)

where Wm is the sites-averaged modeled wind speed, Wo is the sites-
averaged observed wind speed, W̄̄0 is the sites and time averaged wind
speed, t is the time coordinate and N is the number of observations. All
indicators are computed with hourly data. Mean Bias (MB) aims to
quantify systematic underestimation or overestimation, Root Mean
Square Error (RMSE) is the standard deviation of the residuals and
Index Of Agreement (IOA) is a standardized measure of the degree of
model prediction error [36] and varies between 0 and 1. General
guidelines for assessing the reliability of wind speed predictions in
terms of the above-defined indicators are reported in Emery et al. [37]
and are used as a reference for our model performance evaluation (MB
within ±0.5 m s−1, RMSE lower than 2.0 m s−1 and IOA greater than
0.6).

2.4. Land-use restrictions

To account for the unsuitability of certain areas for wind power
harvesting, we exclude from our analysis all the grid cells that are lo-
cated in close proximity to urban areas, in extreme rugged terrain, in a
wildlife reserve or adjacent to national borders.
In particular, we classify urban areas using the following procedure.

First, we identify grid cells classified as “urban and built-up land” ac-
cording to the USGS 24-categories land use data [38]. To properly
consider the fast urbanization in Saudi Arabia over the past couple of
decades, we also integrate information from the Landscan 2017 popu-
lation dataset [39]. All the grid cells characterized by a population
density higher than a fixed threshold are considered additional urban
areas. We define this threshold as the minimum population density in
the grid cells classified as “urban and built-up land” areas by USGS over
Saudi Arabia (934.9 inhabitants km−2). Besides the 10 urban grid cells
from the USGS classification, 123 additional grid cells are identified as
urban areas based on the population density approach (Fig. S2a).
To account for the unsuitability of rugged areas, we compute the

terrain ruggedness index (TRI) as defined in Riley et al. [40]. This index
provides a quantitative measure of terrain ruggedness and is computed
by summing the absolute values of changes in elevation between a grid
cell and its eight neighboring grid cells. All the grid cells with higher
TRI than a specific threshold are considered too rugged to be suitable
for wind power. The threshold is set to the TRI value relative to a
mountainous grid cell that contains the 117 MW Tafila Wind Farm in
Jordan [41], as there are no wind farms currently built in Saudi Arabia.
Based on this threshold (TRI = 891.2 m), we exclude 1800 grid cells
from the computation for extreme ruggedness (Fig. S2c). As a com-
parison, we calculate that one of the most notorious alpine wind farm
located in Steinriegel (Austria) has a TRI value equal to 708.9 m, which

is lower than our selected threshold. Excluding grid cells in rugged
terrain is also a way to account for the additional installation costs that
building turbines in such areas would entail. The reported values are
specific for our resolution settings (i.e., to the 6 km resolution topo-
graphy used in the WRF simulations) and are not intended to be gen-
eralizable in every context. In particular, for specific countries where
mountainous areas are dominant, a careful selection of the TRI
threshold should be performed before the analysis (based on other ex-
isting wind farms, as in this work, or on more refined criteria).
Furthermore, we identify and exclude wildlife reserves through the

World Database on Protected Areas [42] as well as all the areas within a
50 km distance of national borders to avoid potential geopolitical
concerns. A summary of all excluded areas can be found in the
Supplementary Information (Fig. S2).

2.5. LCOE computation

LCOE is a measure of the total cost of building and operating a
certain energy asset, divided by its total energy output over its entire
lifetime, and is thus a crucial metric for assessing the cost-effectiveness
of energy projects [43]. In this work, we calculate the LCOE for each
grid cell and each possible combination of turbine model/hub height,
following a recently published methodology specific for wind power
potential assessments [44].
The total energy output (Ek) in grid cell k depends on the assump-

tion of the turbine model and hub height, and it can be computed as the
product of the installation potential ( k), the annual capacity factor of
that grid cell (CFk) and the hours of operation of the wind turbines
(8760):

= ×E CF 8760.k k k (4)

The installation potential (MW) depends on the power density (MW
km−2), i.e., how much power can be installed per unit surface.
Following previous studies [45], the power density ( ) is assumed to be:

=
×
P

D D7 5
, (5)

where P is the maximum rated power output and D is the rotor dia-
meter. Given a certain grid cell size (Ak), the installation potential can
be computed as:

= A .k k (6)

The capacity factor at a grid cell k, CFk, is computed as the annual
average of the hourly wind power attainable for a given turbine model
divided by the maximum rated power of the turbine. Turbine-specific
power curves, as provided by the manufacturers, are used to convert
hourly wind speed data given by the WRF model into hourly wind
power, even though multiple other environmental factors may influ-
ence the actual power output [46]. However, a detailed assessment of
the degree of uncertainty related to power curves, as well as the in-
fluence of extended wind farms [47], exceeds the scope of this work.
Manufacturer power curves for each turbine are retrieved from The
Wind Power Database [48]. Wind speed at hub height is computed by
linearly interpolating the wind speed between the two closest WRF
vertical levels.
In our assessment, we consider several wind turbines from different

manufacturers, in order to (i) investigate the sensitivity of capacity
factors to the chosen wind turbine and (ii) identify the most suitable
wind turbines for the different wind regimes. We choose turbine models
from leading manufacturers designed for different wind classes and
whose power curves are available [48]. Technical details about the
wind turbines considered in this work are reported in Table 1. The
corresponding power curves are presented in Fig. S3.
Different sources are used to quantify the total lifetime costs of the

potential wind energy projects. The total cost is estimated as the sum of
the installation costs (Ik) and the operation and maintenance costs.
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Installation costs include the turbine costs, which depend on the hub
height (h) and the turbine specific rating (s), and all the costs related to
new transmission lines and road construction to connect the turbine to
the existing power grid (Gk). We adopt a linear relationship for turbine
price (Tk, EUR kW−1) based on European and US data, following Rinne
et al. [44]:

= + +T h s Clog( ) ,k 1 2 (7)

where 1 = 620, =2 −1.68, C = 1005. We use the most recent five-
year average USD EUR-1 exchange rate of 1.15 for currency conversion.
To compute G ,k we calculate the minimum distance to the existing
electricity grid [49] for each grid cell and multiply the distance by the
average costs of building transmission lines and roads per unit distance.
The total installation cost is therefore:

= + = + + +I T G h s C G( log( ) ) .k k k k k k1 2 (8)

The average cost of building roads per unit distance is assumed to be
100 kUSD km−1, following Saudi Arabia-specific literature [50],
whereas transmission lines cost per unit distance is estimated to be 437
kUSD km−1, based on a double circuit alternate current transmission
[51]. As an example, applying Equation (8) to the planned wind farm in
Dumat al Jandal (99 units of Vestas V150-4.2 MW featuring 250 m-high
towers) would result in an estimated installation cost of ~$800 million,
which is similar in magnitude to the planned cost (i.e., $500 million
[52]). The discrepancy between the installation costs might be due to
the contingent agreement between the country and the contractors, as
well as because Tk is based on US and European data. We finally com-
pute LCOE as follows, for each grid cell k:
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where Ik and Ek are the installation costs and the annual energy

production computed above, respectively, O represents the operation
and maintenance costs per year per unit of energy, r is a suitable dis-
count rate and T is the expected lifetime of the turbines. Following
Rinne et al. [44], we fixed r = 5% and T = 20 years. As there are no
wind farms currently operating in Saudi Arabia, we use operation and
maintenance costs from the United States (53 USD kW−1 year−1 or,
equivalently, 12.1 USD MWh−1, assuming a 0.5 capacity factor).

2.6. Optimal buildout calculation

To calculate the optimal wind farms buildout, we select grid cells
with the minimum LCOE until the total installed capacity required by
the wind target (16GW) is reached. We exclude from the analysis all the
grid cells that are unsuitable for wind power generation due to (i)
proximity to an urban area, (ii) presence of a wildlife reserve, (iii) ex-
treme rugged terrain, and (iv) proximity to national borders, as detailed
in Section 2.4 (Fig. S2). In our case study, we subdivide the total wind
power capacity into the four main administrative regions of Saudi
Arabia, proportionally to their electricity demand [49]. To account for
the uncertainty of the costs (e.g., because they could vary considerably
by country [53]), we perform a sensitivity analysis by simultaneously
perturbing r , O and Gk in the range −75%, +75% with a 5% step size
(i.e., in total 31×31×31 different cost configurations were im-
plemented). For each combination of the perturbed costs, the optimal
configuration of wind farms is recalculated as well as the average LCOE
of the selected grid cells. Finally, Fig. 1 summarizes the overall work-
flow of the methodology presented throughout Section 2.1 to 2.6.

3. Results

3.1. Numerical model simulations

Previous studies of wind energy potential over Saudi Arabia have

Table 1
Technical features of the turbines considered in our study.

Turbine model Maximum rated power (kW) Rotor diameter (m) Rotor swept area (m2) Specific rating (W m−2) Feasible hub heights (m)

Vestas V110-2000 2000 110 9503 210 75, 80, 95, 110, 120, 125
Vestas V126-3450 3450 126 12,469 277 87, 117, 137, 147, 149, 166
GE 2.75–100 2750 100 7854 350 75, 85, 98.3, 123.5
GE 2.75–120 2780 120 11,310 243 90
GE 3.4–137 3500 137 14,741 230 85, 110, 131.4, 134, 164.5
Nordex N100-2500 2500 100 7823 318 75, 80, 100
Nordex N131-3300 3300 131 13,478 245 84, 106, 112, 114, 120, 134

Fig. 1. General workflow for the methodology outlined from Section 2.1 to Section 2.6.
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mostly relied either on measurements at individual selected locations
(e.g., five coastal locations [22] and the Rafha area [54]) or on coarse
global/regional model simulations [25] and reanalysis data [23], given
the sparsity of observational data sources. Here, we develop a novel set
of high-resolution model simulations that we use to investigate wind
dynamics, as detailed in the Methods section. In the following discus-
sion, we present results for the simulation that most accurately re-
produces the observed wind dynamics at the ten measurement sites
(04–6 km-MYJ run at 6 km resolution; Table S1), and in the
Supplementary Information we report the sensitivity of the results
against the WRF setup.
Fig. 2 displays the spatial distribution of wind speed at a typical hub

height (80 m). The highest mean wind speeds are found along the
western mountain ranges, which is in agreement with previous studies
based on coarser resolution data [23]. Nonetheless, our high-resolution
simulations identify new promising regions with high wind speeds in
northwest Saudi Arabia, in close proximity to the borders with Jordan
and Egypt, and near the Persian Gulf on the east coast. Resolving local
scale physical phenomena (e.g., sea and land breezes) is thus critical to
accurately characterize the spatial distribution of wind speed.
Minor changes across the four years of simulation are observed.

Annual average wind speeds at 80 m across Saudi Arabia ranges from
6.3 m s−1 and 6.1 m s−1 in 2013 and 2016, respectively, and the spatial
distribution remains almost unchanged throughout the domain (Fig.
S4). Although our analysis is limited to four years, other studies based
on output from the Middle East North Africa Coordinated Regional
Climate Downscaling Experiment (MENA CORDEX) confirmed that
wind speed interannual variability is low in the Arabian Peninsula [24].
We evaluate the performance of WRF in reproducing actual wind

speeds by comparing the model results with observed wind speed data
collected at different heights (40, 60, 80 and 100 m) at ten measure-
ment sites (see Figs. S4-S7 for a comprehensive model performance
evaluation). Fig. 3 shows the average daily 80 m wind speed during
2016, according to both the model and the observations. We select
2016 as the reference year for our evaluation because the entire set of
data from all the measurement sites is available (Fig. S1). According to
the performance metrics considered in this work – Mean Bias (MB),
Root Mean Square Error (RMSE) and Index of Agreement (IOA), as
detailed in the Methods section – the model accurately reproduces daily
wind speeds and variability for all ten measurement sites, at every
different altitude. Indeed, the model values are largely within the

bounds deemed acceptable for traditional wind speed performance
evaluations [37], i.e., MB is in the range ±0.5 m s−1, RMSE is well
below 2.0 m s−1 and IOA is well above 0.6. Furthermore, simulated
diurnal profiles agree well with the observations for both inland and
coastal locations, which is an indication that even at finer temporal
resolution (i.e., hourly), WRF is able to capture the key wind speed
characteristics (Figs. S5-S6).

3.2. Capacity factors

We compute the annual capacity factors for each combination of
wind turbine and feasible hub heights. Fig. 4 shows the spatial dis-
tribution of four-year capacity factors for both low-rated and high-rated
power Nordex turbines [48] (N100-2500 and N131-3300), at their re-
spective lowest and highest hub heights, aiming to represent the whole
spectrum of variability of the capacity factors. Previous attempts to
estimate the wind power potential [23] have relied on extrapolations of
10 m wind speeds to the hub height, using the traditional logarithmic
profile law [55]. No logarithmic extrapolation is needed in our work
because the wind vertical profile is directly computed within the WRF
model at a fine resolution (approximately 20 m) in the lowest portion of
the planetary boundary layer. We obtain considerably different results
when the capacity factors are computed using WRF output compared to
the extrapolation method (Fig. S9), underlining that the commonly
used power law approach is not an acceptable assumption in our case.
As expected, the spatial distribution of capacity factors across Saudi

Arabia resembles the wind speed patterns at 80 m shown in Fig. 2.
However, we identify considerable discrepancies between different
combinations of turbine models and hub heights, highlighting the im-
portance of employing a range of turbines suitable for different condi-
tions, rather than using a single model only. As illustrated in Fig. 4, the
capacity factor increases significantly from a 2.5 MW to a 3.3 MW
turbine (average capacity factor from 0.288 to 0.375) because of an
increase in turbine efficiency (i.e., the power curve shifts to the left for
larger turbines). Due to larger wind speed available at higher altitudes,
increasing the hub height also enhances capacity factors, although the
rated power of the turbine seems to influence the capacity factors to a
greater extent. Questions remain on whether the extra cost of building
larger or taller wind turbines would be offset by the increase in energy
produced. To this end, we include in our analysis a thorough cost as-
sessment and we combine the two sets of information (i.e., potential
energy and costs) through the LCOE indicator.

3.3. Optimal wind farms buildout

The optimal buildout can be calculated under two different sce-
narios. Firstly, we can assume one fixed combination of model turbine/
height to calculate the LCOE and select the grid cells with minimum
LCOE required to cover the wind target. Alternatively, we can identify
the most suitable turbine for each grid cell across all possible combi-
nations of turbine models and hub heights (i.e., the one characterized
by the lowest LCOE, Fig. 5a), and then select the optimal grid cells to
achieve the desired wind power capacity. The first calculation is clearly
suboptimal, as it does not allow the selection of different turbine
models and hub heights in different part of the country, which might
experience different wind regimes. However, we expect a practical
scenario to fall in between these two cases, as the installation of the new
turbines would be highly dependent on the contingent agreement be-
tween the country and the contractors. As we find a limited variability
in the optimal buildout across our four modelling simulations (Fig.
S10), here we present only results for the most accurate simulation
(04–6 km-MYJ run).
The comparison between these two approaches is shown in Fig. 6, in

terms of the average LCOE for the selected grid cells and Saudi Arabia’s
annual electricity demand coverage, which was equal to 288.7 TWh in
2017 [49]. Each selected grid cell (36 km2) should be regarded as a

Fig. 2. Four-year average of wind speeds (m s−1) at 80 m for the entire WRF
domain (04–6 km-MYJ run). The black triangles indicate the locations of the
K.A.CARE monitoring sites.
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single wind farm project, as the installed capacity per grid cell ranges
between 198 and 283 MW, depending on the turbine model. The
average LCOE for the optimal configuration of wind farms is ~ 39 USD
MWh−1, which is remarkably lower than the global average of 56.0
USD MWh−1 for 2018 wind energy projects [56]. As a comparison, the

most competitive bids submitted for Dumat Al Jandal wind project
range from 21.3 to 33.9 USD MWh−1, values in line with the average
LCOE for the optimal configuration. Interestingly, our independent
assessment provides results in accordance with the government’s in-
vestment on the first wind project siting, as we also identify Dumat Al

Fig. 3. Comparison between observed and modeled wind speeds for 2016 (04–6 km-MYJ run) at 80 m. Solid lines represent the site average and the shadings indicate
the full variability (min–max) across the ten measurement sites.

Fig. 4. Spatial distribution of capacity factors for different turbine models and hub heights, computed from data during the entire simulation period. Capacity factors
refer to (a) Nordex N100-2500 at 75 m, (b) Nordex N100-2500 at 100 m, (c) Nordex N131-3300 at 84 m and (d) Nordex N131-3300 at 134 m.
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Jandal as one of the most cost-effective areas where wind projects
should be tendered (Fig. 5b).
Our calculations show that approximately 26% of the 2017 Saudi

Arabia’s electricity demand could be met by optimally installing 16GW
of wind power, assuming no wind energy curtailment. As expected, the
second approach (all-combined in Fig. 6) attains the lowest average
LCOE. Nevertheless, the benefits of using different turbines in each grid
are rather limited, as only a few combinations of turbines and hub
heights are consistently the most suitable for Saudi Arabia’s wind re-
gimes (as also highlighted by Fig. 5). The high-rated power Nordex
turbine (Nordex-N131-3300) outperforms all other turbine models for
most of Saudi Arabia’s territory. Although larger turbines imply addi-
tional installation costs, we find that the benefits of having larger swept
areas in terms of efficiency outweigh the additional costs. For the same
reason, increasing the hub heights of wind turbines is optimal for lo-
cations characterized by very low wind speeds, where there is a con-
siderable advantage in increasing the turbine height. The technological
options selected by the optimization procedure indicate the main
characteristics (e.g., specific rating, diameter, hub height, etc.) that a
turbine should have for every wind regime experienced by each grid
cell. Different turbines with similar characteristics are likely to have

similar performances in terms of LCOE, as illustrated by the sensitivity
analysis presented in Figs. S11-S12. If the second (third) best combi-
nations of turbine/hub height were chosen instead of the optimal one,
the average LCOE for the entire Saudi Arabia would increase by around
0.46% (1.01%), respectively (Fig. S11). However, if the least suitable
combinations were systematically chosen, the average LCOE over the
entire domain would increase by 22.3%, which would clearly entail a
suboptimal choice. Some regions appear to be more sensitive to the
optimal choice with the increase in LCOE ranging from 21.7% to
142.9% when the least suitable turbine configurations are selected (Fig.
S12). Overall, our results give indications on the main characteristics of
the optimal turbines, but the final selection of the specific contractor
may also depend on other factors (e.g., negotiations between parties),
as the sensitivity of LCOE to similar turbines is rather small.
Fig. 6 also illustrates how the LCOE and the total annual energy

produced are conflicting objectives, given a predefined amount of wind
power capacity. Increasing the hub heights leads to higher annual de-
mand coverages, but it negatively affects the average LCOE of the wind
farms. We believe that the optimal configuration is the one that ensures
minimum LCOE, as higher demand coverage could be most effectively
reached in terms of cost by simply installing more capacity. Going be-
yond the 16GW target would not considerably affect the cost-effec-
tiveness of the buildout, as illustrated in Fig. S13. As clear from the
cumulative distribution function of optimal LCOE values, competitive
LCOE values are achieved by approximately 6% of the total grid cells
(Fig. S13), which correspond to installed capacities of around 400 GW
(well above the 16GW target). The optimal characteristics of the se-
lected 75 grid cells that are needed to achieve the 16GW target, for the
all-combined approach, are reported in Table 2. Only two combinations
of wind turbine and hub height are selected for the optimal 16GW
configuration. The northwestern part of Saudi Arabia near the Gulf of
Aqaba appears to be suitable for relatively small turbines at low hub
height (GE-Energy-2.75-100) because of persistent high wind speeds
even at low altitudes. Incidentally, the Gulf of Aqaba is also currently of
high national interest because of the developing NEOM project, which
is an envisioned new sustainable city that is intended to be pollution
free and served entirely by renewable energy [57]. Larger turbines
(Nordex-N131-3300) at low hub heights are instead more suitable in all
the remaining optimal areas, which are mostly located along the power
grid.
We assess the robustness of our results to the different cost config-

urations by repeating the analysis with simultaneously perturbed in-
terest rate, O&M and road & transmission lines building costs from

Fig. 5. (a) Optimal turbine model and hub height for each grid cell (04–6 km-MYJ run) and (b) optimal wind farms configuration obtained by employing different
turbine models across the domain. The color scale indicate the altitude in meters above sea level. White areas in panel (a) are excluded from the calculations, either
because they are outside Saudi Arabia’s borders or because of unsuitability constraints (urban areas, wildlife reserves, rugged terrain or proximity to country
borders).

Fig. 6. Average LCOE (USD MWh−1) and annual demand coverage (%) for each
specific combination of turbine model and hub height. The black star (all-
combined) refers to the optimal build-out obtained by allowing different tur-
bines and hub heights for each simulated grid cell.
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−75% to +75% of their initial value, with a 5% step size (see the
Methods for assumptions on the cost estimates). This sensitivity ana-
lysis shows that the average LCOE of the resulting buildouts ranges
between 22.1 and 57.3 USD MWh−1. Thus, competitive energy costs
are reached even in the worst-case scenario (i.e., +75% of interest rate,
O&M and road & transmission costs). The average LCOE is more sen-
sitive to O&M costs and interest rate than to the road and transmission
costs (Fig. S14), as the majority of the selected grid cells are located
very close to the existing power grid. Furthermore, the optimal con-
figuration of selected grid cells appears to be very robust for all the
different possible cost alternatives (Fig. S15), which strongly indicates
that the optimal areas identified in this work are not affected con-
siderably by our cost assumptions.

4. Discussion

The presented WRF ensemble improves the characterization of wind
speed patterns in Saudi Arabia compared to prior studies, and makes
policy recommendations more actionable. The fine horizontal grid
spacing (6 km) allows resolving local scale phenomena in the mean
flow, thus identifying new promising locations for wind energy har-
vesting (e.g., the Gulf of Aqaba region has the lowest LCOE). These
areas were not clearly highlighted by studies based on MERRA-2 re-
analysis [23], MENA-CORDEX [24] and LENS [25] simulations due to
their considerably coarser resolution. Furthermore, our high-resolution
simulations provide a detailed characterization of the wind speed ver-
tical profile within the planetary boundary layer (i.e., 9 model levels
are present in the first 200 m above the ground), which facilitates the
comparison and the selection of the optimal turbine model and hub
height.
Sources of uncertainty that require further investigation (beyond

the scope of this work) include turbine degradation [58], the role of
dust [59] and the wake effect [60] on real wind turbine operation and
energy production. Sand storms are particularly frequent in Saudi
Arabia [61] and more experimental [62] and modelling studies [63] are
needed to quantify the possible impact of sand storms on turbine op-
eration. Wind power production may be also affected by wind farm
design and the location of individual turbines. The wake effect has been
the focus of several recent studies that have indicated minor downwind
impacts on weather and climate features [64] and thus on capacity
factors [65]. The proximity of several wind farms to each other, as
proposed by the optimal buildout here, may generate a sequence of
wakes [60] whose impact should be investigated and quantified in
subsequent modelling studies. As a result, capacity factors calculated in
this work are likely to be greater than the real ones, which entails that
the overall LCOE values are presumably slightly underestimated (i.e.,
they represent a theoretical value assuming no energy losses due to
wake effect and no decay in turbine performances during their life-
times). Nonetheless, the optimal configuration of wind farms would not
be affected by such assumptions, since the relative differences in LCOE
between different locations do not depend on spatially uniform energy
losses.
Even more wind power generation could be achieved by expanding

the installed power capacity in nearby areas. Indeed, approximately
40% of Saudi Arabia’s 2017 electricity demand could be met by in-
stalling 25GW of wind power (see Fig. S16 for optimal wind farm

configuration), without significantly affecting the cost-effectiveness of
the buildout (Fig. S13). As both population and electricity demand are
on the rise in Saudi Arabia [16], higher installed capacity would be
required to meet the excess demand and keep the annual demand
coverage by wind power steady. We foresee that investments beyond
the Vision 2030 will be physically achievable as the projected wind
spatial patterns in future climates are coherent with the current one
[24].
The present study only focuses on harvesting renewable energy

from wind, but a more thorough plan for sustainable and clean energy
development should consider deployment of offshore wind turbines or
incorporate other energy resources, such as solar power. Abundant
solar resources are indeed available in Saudi Arabia, given its location
in the sun belt [66]. As shown in Fig. S17, the highest wind power is
attainable during nighttime for our proposed buildout, whereas solar
power peaks during daytime. These diurnal variations could comple-
ment each other if both wind and solar power systems are effectively
integrated. Future studies will be thus devoted to investigating ways to
integrate these two key resources, with the final aim of understanding if
only wind and solar energy could meet the hourly demand at least for
specific regions of Saudi Arabia.
The presented framework relies on high-resolution and detailed

NWP simulations for turbine/hub heights selection and proper identi-
fication of the most suitable areas. Although we acknowledge that such
simulations are not yet available worldwide, recent efforts in global
model simulations have achieved unprecedented horizontal resolution
[67], and computational resources have become increasingly more
available. Moreover, ongoing research is devoted to developing im-
proved techniques for the vertical extrapolation of surface wind speeds
[68] which may lead in the near future to an improved characterization
of the wind vertical profiles without requiring expensive regional high-
resolution NWP simulations.

5. Conclusions

In this work we set forth a practical and general modelling frame-
work to bridge the gap between wind energy policy targets and their
implementation. We exemplify such methodology for Saudi Arabia’s
ambitious wind energy investment plans. By using novel high-resolu-
tion numerical weather prediction model simulations, we identify the
optimal locations for wind farms and the most suitable combination of
turbine models and hub heights across the country. Coastal areas along
the Gulf of Aqaba, in the northwestern part of the country, offer the
most cost-effective wind resource potential. The optimal distribution of
wind farms could generate up to 26% of Saudi Arabia’s electricity de-
mand (based on 2017 levels of energy consumption). Our results de-
monstrate for the first time that Saudi Arabia can achieve its renewable
wind energy targets at a very competitive levelized cost of energy. We
argue that Saudi Arabia is well positioned to be a role model for wind
energy development within the Middle East and other emerging coun-
tries, shall the wind energy blueprint outlined here be implemented.
The modelling framework presented here can prove useful for other
countries aiming to strengthen their wind energy infrastructure.

Table 2
Summary of the optimal configuration of wind farms across all Saudi Arabia.

Turbine model Number of wind farms
(–)

Number of turbines per wind
farm (–)

Total installed capacity
(GW)

Total covered surface
(km2)

Annual energy production
(TWh)

Nordex-N131-3300 57 60 11.3 2052 58.7
GE-Energy-2.75–100 18 103 5.10 648 16.1
Total 75 – 16.4 2700 74.8
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