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Abstract. As high-dimensional and high-frequency data are being collected
on a large scale, the development of new statistical models is being pushed
forward. Functional data analysis provides the required statistical methods to
deal with large-scale and complex data by assuming that data are continuous
functions, for example, realizations of a continuous process (curves) or con-
tinuous random field (surfaces), and that each curve or surface is considered
as a single observation. Here, we provide an overview of functional data anal-
ysis when data are complex and spatially correlated. We provide definitions
and estimators of the first and second moments of the corresponding func-
tional random variable. We present two main approaches: The first assumes
that data are realizations of a functional random field, that is, each observa-
tion is a curve with a spatial component. We call them spatial functional data.
The second approach assumes that data are continuous deterministic fields
observed over time. In this case, one observation is a surface or manifold,
and we call them surface time series. For these two approaches, we describe
software available for the statistical analysis. We also present a data illustra-
tion, using a high-resolution wind speed simulated dataset, as an example of
the two approaches. The functional data approach offers a new paradigm of
data analysis, where the continuous processes or random fields are consid-
ered as a single entity. We consider this approach to be very valuable in the
context of big data.

1 Introduction

The statistical analysis of large, complex, and high-dimensional data has become a significant
challenging problem. Due to the rapid development of complex, performant technologies,
data can now be collected on a large scale, resulting in high-dimensional and high-frequency
data, sometimes necessitating high-performance computing, which is often a limitation for
practitioners; see Galeano and Peña (2019) for a general view of data science and big data.
Among various approaches, functional data analysis (FDA) provides statistical methods to
handle large-scale and complex data (Chen et al., 2017, Giraldo, Dabo-Niang and Martínez,
2018). For a general introduction to FDA, the reader is referred to Ramsay and Silverman
(2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), and Kokoszka and Reimherr
(2017). FDA assumes that observations (called functional data) have characteristics that vary
along a continuum, for example, curves or surfaces. Thus, FDA deals with data that are
defined on a space that is intrinsically infinite-dimensional.

The approach of FDA has several advantages as a realization of a continuous process or a
continuous random field can be considered as functional data. In this case, the stationarity of
the process (random field) is not needed since FDA treats the whole curve (surface) as a single
entity. Thus, FDA is part of object data analysis (Menafoglio and Secchi, 2017). FDA is use-
ful when the number of variables, p, is bigger than the sample size, n: p � n. In particular,
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FDA can analyze longitudinal data. Smoothness is an important property of functional data,
in contrast with multivariate data analysis, where smoothness has no meaning. Thus, FDA
extracts additional information contained in a continuous function or in its derivative. Al-
though in practice, each continuous functions, say yi(v), is observed on a finite set of points,
the continuity is obtained with smoothing techniques. In the process of smoothing, FDA does
not require observed yi(v) on a regular grid, that is, a sample of yi(v) and yj (v) can be col-
lected on a different set of points; vi = {v1i

, . . . , vni
} and vj = {v1j

, . . . , vnj
}, respectively.

In general, the methods of FDA are essentially nonparametric and can model complex and
spatially correlated data.

Functional data can also have a spatial component, because data are collected somewhere
at some time (Haining, 2003, p. 15). If the functional data are curves with a spatial com-
ponent, we call them spatial functional data (SFD). Thus, a dataset of SFD has the form
y(s1;v), . . . , y(sn;v), where si ∈ D represents the locations in a given region D, and v rep-
resents the continuous parameter of the functional data. For example, y(si;v) can be the daily
wind speed observed at location si , with v indicating the time within a day, or y(si;v) can be
the spectrum of brain activity at location si , with v representing the frequency. If the contin-
uous parameter v represents time, as for the example of wind speed, then SFD can be related
to spatio-temporal data where the temporal dependence is captured through the continuity of
the curve.

The combination of FDA and spatial statistics provides a powerful tool to deal with com-
plex and large spatial data. This combination is attracting interest, and much research is fo-
cused on this topic. Nerini, Monestiez and Manté (2010) proposed a spatial functional linear
model, and they analyzed data in Oceanography. Zhou et al. (2010) proposed mixed effects
models for spatially correlated hierarchical functional data. Ruiz-Medina (2011) extended
the spatial autoregressive processes and the spatial moving average processes to the Hilbert
space. Giraldo, Delicado and Mateu (2012) proposed a methodology for clustering spatially
correlated functional data; see also, Jiang and Serban (2012) and Romano, Balzanella and
Verde (2017). Staicu, Crainiceanu and Carroll (2010) proposed a methodology for functional
models with a hierarchical structure where the functions at the lowest hierarchy level are
spatially correlated. Delicado et al. (2010), Ruiz-Medina (2012), and Mateu and Romano
(2017) provided surveys of SFD. Menafoglio and Secchi (2017) presented a review of com-
plex and spatially dependent data, such as curves and surfaces. Some references to SFD with
a Bayesian perspective are Baladandayuthapani et al. (2008), Zhang et al. (2016), Song and
Mallick (2019), and Rekabdarkolaee et al. (2019).

Functional data can also have a complex domain, for example, a two-dimensional Eu-
clidean domain. Spatial data can be considered as functional data with the same domain as
the corresponding random field, for instance if observations are dense over the region or if the
domain is not a subset of the Euclidean space; see, for example, Alfeld, Neamtu and Schu-
maker (1996), Wahba (1981), and Gneiting (2013) for spatial data over complex domains.
With the FDA approach, a realization of a random field is considered as a single point obser-
vation of the functional data. Similarly to the case when data are curves, the continuous sur-
face (or the manifold) needs to be estimated. For that estimation, one can use a tensor product
of univariate B-splines (Eilers and Marx, 1996, Wood, 2006, Qingguo and Longsheng, 2010,
Xiao, Li and Ruppert, 2013). Another way is to approximate the continuous data using finite
elements analysis; see Ramsay (2002), Duchamp and Stuetzle (2003), and Sangalli, Ramsay
and Ramsay (2013). These types of functional data can also be observed over time; they are
then called a functional time series. Functional time series can be related to spatio-temporal
data when observations are dense over the domain. Thus, the approach of functional time
series can be used in complex and large spatio-temporal data.

In this paper, our goal is to provide a review of complex and spatially correlated functional
data, with two approaches using either spatial functional data or surface (manifold) data. In
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both approaches, we focus on covariance functions and modeling. The remainder of our pa-
per is organized as follows: In Section 2, we present basic concepts of functional random
fields that include the mean, the covariance, and other important concepts related to the co-
variance. In this section, we also present different estimators of the various objects defined.
In Section 3, we describe how to model small-scale and large-scale variations of spatial func-
tional data, as well as corresponding methods to estimate the parameters involved. Section 4
(first approach) presents a brief description of the concept of functional kriging. In Section 5,
we describe the second approach based on surface data, which can be considered as an al-
ternative to the analysis of spatio-temporal data, and describe how to model and estimate the
continuous surface. In Section 6, we present some software available for the analysis of spa-
tial functional data and surface (manifold) data. In Section 7, we provide an example of the
two approaches using a high-resolution wind speed simulated dataset in Dumat Al Jandal,
Saudi Arabia. Section 8 ends the paper with some discussions.

2 Functional random fields

2.1 Basic concepts

In this section, we introduce the basic concepts of SFD. Let (�,F,P ) be a probability space.
Without loss of generality, we assume that the domain T of the curves is T = [0,1], and let
H = L2([0,1]) be the Hilbert space of square integrable functions defined on [0,1], equipped
with the inner product 〈f,g〉 = ∫ 1

0 f (v)g(v)dv. We denote by ‖ · ‖H the norm in H induced
by the inner product. A random variable X : � → H taking values in the Hilbert space H is
called a functional random variable (Ramsay and Silverman, 2005, Ferraty and Vieu, 2006,
Horváth and Kokoszka, 2012). Let D ⊂ R

2 be a fixed study area (e.g., a country). A random
field {X(s) : s ∈ D} taking values in H is called a functional random field, that is, for each
location s ∈ D, X(s) : � → H is a functional random variable.

We denote by X(s0;v) the functional random variable at a fixed location s0 and v ∈ [0,1],
and we denote by X(s0;v0) the scalar random variable obtained by evaluating X(s;v) at
s = s0 and v = v0. Lastly, we use f to denote a function in H.

Let X(s;v) be a functional random field with E(‖X(s;v)‖H) < ∞, for all s ∈ D. The
mean μ(s;v) := E{X(s;v)} of X(s;v) is defined as an element of H such that〈

μ(s; ·), f 〉 = E
〈
X(s; ·), f 〉

, ∀f ∈ H,

where the dot in (s; ·) indicates the integrated variable in [0,1]. This implies that E{X(s;
v0)} = μ(s;v0) for almost all v0 ∈ [0,1].

The covariance is one of the most studied objects in spatial statistics, due to its relevance
for prediction. If E{‖X(s;v)‖2

H} < ∞, then the covariance operator at locations s1 and s2 is
defined as an operator C(s1, s2; �) : H → H such that

C(s1, s2;f )(·) = E
[〈
X(s1; ·) − μ(s1; ·), f 〉{

X(s2; ·) − μ(s2; ·)}]
=

∫ 1

0
σ(s1, s2;u, ·)f (u)du, f ∈ H, (2.1)

where σ(s1, s2;u0, v0) := E[{X(s1;u0)−μ(s1;u0)}{X(s2;v0)−μ(s2;v0)}] is the point-wise
covariance, called the kernel of C(s1, s2; �). This definition can be written in terms of a tensor
operation as follows: C(s1, s2;f ) = E[{X(s1; ·) − μ(s1; ·)} ⊗ {X(s2; ·) − μ(s2; ·)}(f )].

A common assumption, in practice, is the stationarity condition of a process, which is
defined as follows.



Complex and spatially correlated functional data 207

Definition 1 (Weak stationarity). A functional random field X(s;v) is said to be (weakly)
stationary if

1. E(‖X(s;v)‖2
H) < ∞,

2. μ(s;v) = μ(v), that is, the mean does not depend on the location s, and
3. C(s1 + h, s2 + h; �) = C(s1, s2; �), for all s1, s2,h ∈ D.

The last condition is equivalent to the property that the covariance operator depends only
on the increments s1 − s2. This means, there exists a covariance operator C̃(s; �) : H → H
such that

C(s1, s2;f ) = C̃(s1 − s2;f ), f ∈H,

and so the variance operator can be written as Var{X(s;v)} = C(s, s; �) = C̃(0; �). Thus, for
convenience, we write C(0; �) to denote the variance operator C(s, s;f ) of the stationary
functional random field X(s;v).

Now, we define the concept of isotropy for SFD.

Definition 2 (Isotropy). A stationary functional random field X(s;v) is said to be isotropic
if there exists a covariance operator C̃0(h; �) :H → H such that

C(s1, s2;f ) = C̃0(h;f ), f ∈ H,

where h = ‖s1 − s2‖, for all s1, s2 ∈ D.

In spatial statistics, the variogram plays an important role to make inference. The ex-
tension of this concept to functional random fields is as follows: The variogram opera-
tor � is defined as the variance operator of the difference between the functional ran-
dom field at two locations s1, s2, that is, �(s1, s2; �) := 1

2Var{X(s1;v) − X(s2;v)}. If the
functional random field X(s;v) has a finite second moment, then we have 2�(s1, s2;f ) =
C(s1, s1;f ) + C(s2, s2;f ) − C(s1, s2;f ) − C(s2, s1;f ), for f ∈ H. Thus, if the functional
random field is stationary, then there exists a variogram operator �̃(s; �) : H → H such that it
satisfies

�(s1, s2;f ) = �̃(s1 − s2;f ) = C(0;f ) − C(s1 − s2;f ), f ∈ H, (2.2)

where the corresponding kernel is γ (s1 − s2;u, v) = σ(0;u, v) − σ(s1 − s2;u, v). Further-
more, if X(s;v) is isotropic, then there exists �̃0(h; �) :H →H such that

�(s1, s2;f ) = �̃0(h;f ), f ∈H,

where h = ‖s1 − s2‖, for all s1, s2 ∈ D.

Remark 1. Unlike the finite dimensional case (multivariate random field) where the covari-
ance is composed of matrices, here, the covariance is composed of operators, since the space
of functional data is intrinsically infinite-dimensional.

Another way to describe the second-order spatial dependence of the functional random
field is by using a “global” measure. This global measure is the trace-covariogram σtr : D ×
D → R (Giraldo, Delicado and Mateu, 2011, Menafoglio, Secchi and Dalla Rosa, 2013)
defined as

σtr(s1, s2) = E
{〈
X(s1; ·) − μ(s1; ·),X(s2; ·) − μ(s2; ·)〉} =

∫ 1

0
σ(s1, s2;v, v)dv. (2.3)

The trace-covariogram computes the covariance of the inner product of the functional random
field at two locations. Thus, it summarizes the covariance on the diagonal, and so, in general,
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it depends only on the locations. If the functional random field is stationary, then there exists
σ̃tr : D →R such that it depends only on the separation vector s1 − s2, that is,

σtr(s1, s2) = σ̃tr(s1 − s2).

In addition, if the functional random field is isotropic, then there exists σ̃tr,0 : R → R such
that

σtr(s1, s2) = σ̃tr,0(h),

where h = ‖s1 − s2‖.
Similarly, the trace-variogram is defined in terms of the inner product of the difference,

that is,

γtr(s1 − s2) = 1

2
E

{〈
X(s1; ·) − X(s2; ·),X(s1; ·) − X(s2; ·)〉} − 1

2

∥∥μ(s1; ·) − μ(s2; ·)
∥∥2
H.

We observe that, if X(s;v) is stationary, then σ(s;u, v) = σ(0;u, v) − γ (s;u, v). Thus, the
trace-variogram satisfies

γtr(s1 − s2) = σtr(0) − σtr(s1 − s2).

Trace-covariogram and trace-variogram are also important for optimization problems. Es-
pecially if we want to use the criterion of minimizing equations of the form E(〈X,Y 〉), as in
(2.7) below.

2.2 Estimation

Now, we describe estimators of the mean μ, the covariance C, and the variogram �. For
this purpose, we assume that X(s;v) is an isotropic (stationary) functional random field with
mean μ(v) and covariance operator C. Let x(s1;v), . . . , x(sn;v) be observations of the func-
tional random field X(s;v). We assume that the observations x(si;v) are given in the func-
tional form. Although in real data, x(si;v) are observed on a finite set of points vi1, . . . , vim,
the continuous curves should be estimated (see Ramsay and Silverman, 2005).

The main feature of spatial data is that “nearby” data look similar, and an estimator must
take into account such spatial dependence. Otherwise, it will not have desirable properties,
such as consistency.

2.2.1 Mean estimation. We describe two different approaches to obtain an estimator of the
mean μ(v) (Gromenko et al., 2012). A model of the mean can be written as

X(s;v) = μ(v) + ε(s;v), (2.4)

where ε(s;v) is an isotropic functional random field with zero mean and covariance opera-
tor C.

The first approach is similar to the kriging method. Specifically, this is defined as a weight-
ing of the observed curves:

μ̂(v) =
n∑

i=1

wix(si;v), (2.5)

where the weights wi are estimated by solving the optimization problem

min
w1,...,wn

E
{〈μ̂ − μ, μ̂ − μ〉} = min

w1,...,wn
E

{∥∥∥∥∥
n∑

i=1

wix(si; ·) − μ

∥∥∥∥∥
2

H

}
, (2.6)
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subject to the condition
∑n

i=1 wi = 1. Using the Lagrange multiplier method, this leads to
solve

n∑
i=1

wi = 1,

n∑
i=1

wi σtr,ε(si , sj ) − λ = 0, j = 1, . . . , n, (2.7)

where σtr,ε(s1, s2) is the trace-covariogram of ε(s;v). Thus, the estimation problem (2.6)
becomes estimating the matrix {σtr,ε(si , sj )}ni,j=1. Since the functional random field ε(s;v)

is unobserved, a common approach is to use an iterative procedure. At the first iteration,
an initial estimator of μ(v) is obtained by assuming that ε(s;v) is spatially uncorrelated,
i.e., μ̂0(v) = 1

n

∑n
i=1 x(si;v). Next, μ̂0(v) is subtracted from the data x(si;v), then an initial

estimator of σtr,ε(si , sj ) is obtained as described below in (2.11). At the second iteration, the
mean is re-estimated by solving (2.7), with the initial information of σtr,ε(si , sj ). This process
is repeated until convergence.

The second approach uses finite basis functions similarly to the cokriging method on the
coefficients of the basis functions, see Goulard and Voltz (1993), Nerini, Monestiez and
Manté (2010), and Giraldo, Delicado and Mateu (2011). Let {η1(v), . . . , ηK(v)} be basis
functions, for example, Fourier basis functions or B-spline basis functions. Then, the ob-
served curves are approximated as

x(si;v) ≈
K∑

k=1

zk(si )ηk(v), i = 1, . . . , n, (2.8)

where zk(si ) = 〈x(si; ·), ηk〉, which is a scalar for each i and k. Let Zk(s) be the correspond-
ing scalar random field with realization {zk(si )}ni=1. Then, by using (2.4), the mean can be
approximated as

μ(v) ≈
K∑

k=1

E
{
Zk(s)

}
ηk(v),

and E{Zk(s)} should be estimated. For this, from (2.4) we have that

Zk(si) = μz
k + εk(si), i = 1, . . . , n,

where μz
k = 〈μ,ηk〉 = E{Zk(s)}, and εk(si ) = 〈ε(si; ·), ηk〉, for each k = 1, . . . ,K . Thus,

Zk(si ) is an isotropic (stationary) scalar random field, for k = 1, . . . ,K . Once μz
k is estimated,

we obtain the estimator of the mean

μ̂(v) =
K∑

k=1

μ̂z
kηk(v).

To estimate μz
k , we can use the ordinary least squares (OLS) estimator, by minimizing

n∑
i=1

{
zk(si) − wiμ

z
k

}2
,

with wi = 1 for all i = 1, . . . , n, or a weighted least squares (WLS) estimator, that is, wi

are estimated with the information of the covariance matrix of εk(s). Also, we can use a
generalized least squares (GLS) estimator, which can perform better than OLS or WLS; see
Schabenberger and Gotway (2005) and Cressie (2015) for the development of these estima-
tors.

Another way to estimate μz
k is by using Maximum Likelihood Estimators (MLEs). For

this, assume that, for each i, X(si;v) is a Gaussian process in [0,1]. Then, for each k,
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zk = {zk(s1), . . . , zk(sn)}T is a realization of Zk ∼ Nn(μ
z
k1,�(θ)), where �(θ) is the covari-

ance of εk(s) described by some valid parametric covariance model, for example, Matérn,
exponential, or spherical. Then, the log likelihood is

l
(
θ ,μz

k

) = −n

2
log(2π) − n

2
log det

{
�(θ)

} − 1

2

(
zk − μz

k1
)T

�(θ)−1(
zk − μz

k1
)
. (2.9)

To read more details of this estimator, see Stein (1999).
The coefficients in estimator (2.5) can be also considered as operators ωi : H → H. In

this case the estimator of the mean takes the form μ̂(v) = ∑n
i=1 ωi{x(si; ·)}(v), where the

coefficients, which are operators, need to be estimated under a certain constraint on
∑n

i=1 ωi ,
see Nerini, Monestiez and Manté (2010). This approach takes into account the information
of the whole curve to define a specific weight for each point v ∈ [0,1]. Thus, it is expected to
obtain better results than estimator (2.5), but the estimation procedure can be complicated.

In the context of a nonstationary functional random field, the mean can depend on the lo-
cation s, in this case, μ(s;v) can be represented by a linear model μ(s;v) = ∑L

l=0 al(s)fl(v),
where fl(v), l = 0, . . . ,L, are elements of H independent of the spatial location s, and
a0(s) = 1 (Menafoglio, Secchi and Dalla Rosa, 2013, Caballero, Giraldo and Mateu, 2013).
The latter approach is described with more details in Section 3.1.

2.2.2 Covariance estimation. Now, we describe how to estimate the covariance. We assume
that E{X(s;v)} = 0. Let N(h) be a set of pairs of indexes defined as N(h) = {(i, j) : ‖si −
sj‖ = h}, and let |N(h)| be the cardinality of N(h). The empirical covariance operator of the
functional random field is defined as

Ĉ(h;f ) = 1

|N(h)|
∑

(i,j)∈N(h)

x(si ) ⊗ x(sj )(f ).

In practice, the distance between si and sj is not considered to be exactly h, instead ‖si −
sj‖ ∈ (h − δ, h + δ), with δ > 0. Also, since it is almost impossible to obtain Ĉ(h;f ) for all
h, discretized values of h, h1, . . . , hm, are computed.

The usual approach in the scalar (multivariate) random field case is to fit a valid parametric
model to the empirical covariance by least squares methods (Cressie, 2015). However, in
spatial functional data, for each h, Ĉ(h; �) is an operator. Thus, it requires new mathematical
developments to define a “covariance model” in this context. Finite basis functions have
been used to overcome the modeling of the covariance function in H (Nerini, Monestiez and
Manté, 2010). Recall that C(h; �) is represented by its kernel σ(h;u, v) (see (2.1)). Now, we
assume that x(si;v) is approximated by a finite set of basis functions, as in (2.8). Then, we
obtain

σ(h;u, v) = E
{
X(s + h)X(s)

} = ηT(u)E
{
Z(s + h)ZT(s)

}
η(v),

where η(v) = {η1(v), . . . , ηK(v)}T, Z(s) = {Z1(s), . . . ,ZK(s)}T, and Zk(s) = 〈X(s; ·), ηk〉
is the scalar random field with mean zero, and so Z(s) is a multivariate random field with
covariance

�(h) = Cov
{
Z(s + h),Z(s)

} = {
�kl(h)

}K
k,l=1,

where �kl(h) = Cov{Zk(s + h),Zl(s)} for k, l = 1, . . . ,K , h = ‖h‖. Thus, estimating the
covariance operator C is equivalent to estimating the covariance of a multivariate random
field Z(s), which can be modeled with a valid covariance function �(h; θ) (Genton and
Kleiber, 2015).

If η(v) is a set of orthogonal basis functions, then we can estimate each marginal-
covariance functions �kk(h), for k = 1, . . . ,K , separately. In addition, if X(s;v) is assumed
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to be a Gaussian process, we can use the log likelihood (2.9) with μz
k = 0, that is, maximizing

l(θ ,0) as function of θ . Also, the restricted maximum likelihood (REML) estimation can be
used in this case, see Stein (1999).

Once the estimator �̂(h; θ) is obtained, then we define an estimator of σ(h;u, v) as fol-
lows,

σ̂ (h;u, v) = ηT(u)�̂(h; θ)η(v) (2.10)

and then, Ĉ(h;f )(·) = ∫ 1
0 σ̂ (h;u, ·)f (u)du.

In the estimation of the covariance of Zk , we can also use a nonparametric approach (Hall,
Fisher and Hoffmann, 1994, Hall and Patil, 1994). Bayesian approaches can be found in, for
example, Banerjee, Carlin and Gelfand (2015) and Diggle and Ribeiro (2007).

As mentioned before, the trace-covariogram is a measure that describes dependence glob-
ally, in the sense that it integrates the kernel σ(s;u, v) on the diagonal. Also, the trace-
covariogram appears in several optimization problems (Delicado et al., 2010, Giraldo, Deli-
cado and Mateu, 2011, Menafoglio, Secchi and Dalla Rosa, 2013), that make its estimation
important. The empirical trace-covariogram is defined as

σ̂tr(h) = 1

|N(h)|
∑

(si ,sj )∈N(h)

∫ 1

0
x(si;v)x(sj ;v)dv. (2.11)

This empirical estimator is computed on discrete values h1, . . . , hm of h. Then, we can fit any
covariance model by least squares methods to the empirical estimates σ̂tr(h1), . . . , σ̂tr(hm).

We observe that estimating the trace-covariogram is much easier than estimating the co-
variance C, where the inner products 〈x(si; ·), x(sj ; ·)〉 = ∫ 1

0 x(si;v)x(sj ;v)dv can be com-
puted using the R (R Core Team, 2019) package fda (Ramsay et al., 2018).

2.2.3 Variogram estimation. One of the advantages of using the variogram is the robust-
ness under misspecification of the mean. Also, the variogram can be used to estimate the
covariance. The empirical variogram operator of the functional random field is defined as

�̂(h;f ) = 1

2|N(h)|
∑

(i,j)∈N(h)

{
x(si) − x(sj )

} ⊗ {
x(si ) − x(sj )

}
(f ), f ∈ H.

Similarly to the estimator of the covariance operator, if a basis function η(v) is assumed, then
the corresponding kernel γ is obtained as

2γ (h;u, v) = E
[{

X(s + h) − X(s)
}2]

= ηT(u)E
[{

Z(s + h) − Z(s)
}{

Z(s + h) − Z(s)
}T]

η(v),

where h = ‖h‖. Thus, we need to estimate the variogram of the multivariate random field
Z(s) = {Z1(s), . . . ,ZK(s)}T, to obtain the estimator of the kernel γ (h;u, v).

The corresponding empirical trace-variogram is defined as

γ̂tr(h) = 1

2|N(h)|
∑

(i,j)∈N(h)

∫ 1

0

{
x(si;v) − x(sj ;v)

}2 dv. (2.12)

Then, following the common method used in spatial statistics, a variogram model is fitted to
γ̂tr(h1), . . . , γ̂tr(hm).

The principal component analysis is generally important in statistics because of its ap-
plicability to dimensional reduction techniques. In the context of functional data, a function
ζ ∈ H is called eigenfunction of the operator C(s, s; �), if C(s, s; ζ ) = λζ with λ a positive
real number. The estimation of eigenfunctions can be obtained from the estimated covariance
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operator Ĉ(s, s; �). If we are only interested in the eigenfunctions, we can obtain the esti-
mators without estimating the covariance operator, which allows us to reduce computational
costs (Zhou et al., 2010, Gromenko et al., 2012). Also see Liu, Ray and Hooker (2017) for
functional principal component analysis of spatial functional data.

3 Modeling functional random fields

Spatial statistics studies the variations among the observed data at different locations. The
spatial variation is generally described through the mean and the covariance (Haining, 2003).
The mean represents the large-scale variations, and the covariance represents the small-scale
variations.

In this section, we describe the statistical models for spatial functional data. We denote the
observed functional data as y(s1;v), . . . , y(sn;v), and we denote by Y(s;v) the correspond-
ing functional random field with realization y(si;v), i = 1, . . . , n. The functional random
field X(s;v) denotes a stationary functional random field with covariance function CX , and
ε(s;v) denotes a functional white noise, that is, E{ε(s, v)} = 0, with a covariance such that
Cε(s1, s2; �) = 0, if s1 �= s2.

3.1 Large-scale variation

Regression models with covariates in terms of the locations can be used to model large-scale
spatial variations. Such regression models must account for spatial dependence. In general,
estimators obtained from regression models are smooth functions defined in D. In the con-
text of spatial functional data, functional regression models in H extend models of finite-
dimensional data to model large-scale variations. In Caballero, Giraldo and Mateu (2013),
Menafoglio, Secchi and Dalla Rosa (2013), and Reyes, Giraldo and Mateu (2015), covariates
are assumed to be separable in the spatial component and the continuity of the data. In this
case, the model for large-scale variations is

Y(s;v) =
L∑

l=0

al(s)fl(v) + ε(s;v), (3.1)

where fl ∈ H are independent of s, a0(s) := 1, {al(s)}Ll=1 are known scalar regressors, and
ε(s;v) is the functional white noise. For example, with L = 5, we could specify the scalar
regressors al(s) as

a1(s) = s1, a2(s) = s2, a3(s) = s1s2, a4(s) = s2
1 , and a5(s) = s2

2 ,

where s = (s1, s2) denotes the coordinates of a spatial location. In this example, f0(v), . . . ,

f5(v) need to be estimated. Thus, model (3.1) is a functional regression model with scalar
covariates al(s), l = 0,1, . . . ,L.

The mean of the functional random field Y(s;v) in (3.1) is

E
{
Y(s;v)

} = μ(s;v) =
L∑

l=0

al(s)fl(v),

and the covariance CY of Y(s;v) is CY = Cε , which is zero at (si , sj ) if i �= j . Then, the
spatial variation is described through the mean of the functional random field Y(s;v). The
covariates al(s) capture the spatial dependence, and the set of functions {fl(v)}Ll=0 carries the
continuity of the functional data.

The estimators of fl(v) in model (3.1) can be obtained using the OLS method. The matrix
form of the model can then be written as

y(v) = Af(v) + ε(v),
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where y(v) = {y(s1;v), . . . , y(sn;v)}T, A = {al(si )}i,l , i = 1, . . . , n, l = 0,1, . . . ,L, is the
design matrix, f(v) = {f0(v), . . . , fL(v)}T, and ε(v) = {ε(s1;v), . . . , ε(sn;v)}T. Then, the
OLS estimator is obtained by solving the optimization problem

min
f0,...,fL∈H

n∑
i=1

∥∥∥∥∥y(si; ·) −
L∑

l=0

al(si )fl

∥∥∥∥∥
2

H
. (3.2)

Under some conditions (Menafoglio, Secchi and Dalla Rosa, 2013), (3.2) admits a unique
solution

f̂(v) = (
ATA

)−1ATy(v).

Thus, the drift estimator is obtained as

μ̂(v) = A
(
ATA

)−1ATy(v). (3.3)

Since the estimator μ̂(v) in (3.3) is a linear combination of the observed curves, μ̂(v) inherits
the continuity property of y(v).

The basis functions approach offers another alternative to obtain estimators of {fl(v)}
(Reyes, Giraldo and Mateu, 2015). Each component of the model (3.1) can be assumed to be
in the space generated by finite basis functions, i.e.,

y(si;v) =
K∑

k=1

zikηk(v), fl(v) =
K∑

k=1

blkηk(v), and ε(si;v) =
K∑

k=1

eikηk(v),

for i = 1, . . . , n, and l = 0,1, . . . ,L, where η(v) = {η1(v), . . . , ηK(v)}T is the basis function.
In this case, the matrix form of the model (3.1) is

Zη(v) = ABη(v) + Eη(v),

where Z = {zik}, B = {blk}, and E = {eik}, i = 1, . . . , n, l = 0,1, . . . ,L, and k = 1, . . . ,K .
The corresponding normal equation is

ATZJη = ATABJη,

where Jη = ∫
η(v)ηT(v)dv. The solution for B is found by vectorizing the normal equation,

that is

vec(B̂) = (
JT
η ⊗ ATA

)−1vec
(
ATZJη

)
. (3.4)

Consequently, μ̂(v) = AB̂η(v).
In the context of explicative modeling, we can use other spatial functional data as covari-

ates to describe the mean μ(s;v) (Ignaccolo, Mateu and Giraldo, 2014). For example, the
mean can be modeled as μ(s;v) = β0(v) + ∑P

p=1 βp(v)Up(s;v), where {Up(s;v)}Pp=1 are
the functional covariates, and β0(v), β1(v), . . . , βP (v) are the functional parameters to be
estimated.

3.2 Small-scale variation

Small-scale variations are usually represented through the covariance structure. The modeling
of covariance is one of the most studied subjects in spatial statistics (Stein, 1999, Cressie,
2015, Genton and Kleiber, 2015). For finite-dimensional data, the exponential, the Gaussian,
and the Matérn are examples of parametric covariance function models.

In this section, we assume that the mean is constant over locations, and without loss of
generality set to be zero. A model to describe the small-scale variations is

Y(s;v) = X(s;v) + ε(s;v), (3.5)



214 I. Martínez-Hernández and M. G. Genton

where ε(s;v) represents the functional white noise, and is assumed to be uncorrelated with
X(s;v).

The mean of Y(s;v) in model (3.5) is zero, and the covariance is such that

CY (si , sj ;f ) = CX(si , sj ;f ) + 1(i = j)Cε(si , sj ;f ), f ∈ H, (3.6)

where 1(·) is the indicator function. Thus, we need to consider the additional term Cε(s, s; �)
in the estimation. Similarly, as in Section 2.2, a basis function approach can be used to obtain
the estimators.

Let Z(s) = {Z1(s), . . . ,ZK(s)}T be the multivariate random field obtained from the pro-
jection of Y(s;v) onto the basis functions {ηk}Kk=1, that is, each component of Z(s) is defined
as Zk(s) = 〈Y(s; ·), ηk〉, which are scalar random fields with mean zero. From (3.5), for each
k = 1, . . . ,K , we have that the process Zk(s) is such that

Zk(s) = 〈
X(s), ηk

〉 + 〈
ε(s), ηk

〉
.

The variance of Zk(s) is

E
{〈
Y(s; ·), ηk

〉〈
Y(s; ·), ηk

〉} = 〈
CY (s, s;ηk), ηk

〉
= 〈

CX(s, s;ηk), ηk

〉 + 〈
Cε(s, s;ηk), ηk

〉
,

where the last equality is obtained using (3.6). This implies that the random field Zk(s) has
a nugget effect 〈Cε(s, s;ηk), ηk〉 that should be considered when fitting a covariance (vari-
ogram) model.

The covariance estimator of Y(s;v) is obtained from (2.10), after estimating the covariance
�(h) = Cov{Z(s1),Z(s2)}, h = ‖s1 − s2‖, from the data {〈y(si; ·), ηk〉}ni=1, k = 1, . . . ,K .
These ideas are extended to estimating the variogram of Y(s;v) by estimating the matrix-
variogram of Z(s).

In the case of the trace-variogram of Y(s;v), from (3.5) we have that the mean of the inner
product satisfies E{〈Y(si; ·), Y (sj ; ·)〉} = E{〈X(si; ·),X(sj ; ·)〉}+E{〈ε(si; ·), ε(sj ; ·)〉}. That
is, the trace-covariogram of Y(s;v) is such that

σtr,Y(s1, s2) = σtr,X(s1, s2) + 1(s1 = s2)σtr,ε(s1, s2).

Then, when estimating σtr,Y(s1, s2) using {〈y(si; ·), y(sj ; ·)〉}i,j , as described in Sec-
tion 2.2.2, one should consider the nugget effect σtr,ε(s, s). The same is true in the case
of the trace-variogram.

3.3 Large-scale and small-scale variations

Datasets often have both a trend component (large-scale variation) and a spatial variability
(small-scale variation), for example, temperature data show an increasing tendency and a
small variability around this tendency. In the context of functional data correlated only in
time, Martínez-Hernández and Genton (2020) proposed a method to estimate trend using
tensor product surfaces.

A model for spatial functional data can be written as

Y(s;v) = μ(s;v) + X(s;v) + ε(s;v).

As before, the mean can be expressed as μ(s;v) = ∑L
l=0 al(s)fl(v). Similarly to (3.1), the

model to estimate the parameters of the mean can be written as

Y(s;v) =
L∑

l=0

al(s)fl(v) + ε(s;v), (3.7)



Complex and spatially correlated functional data 215

where the residual ε(s;v) := X(s;v) + ε(s;v) is now a functional random field with mean
zero and covariance Cε(s1, s2; �). Thus, unlike model (3.1), in which the residuals are not
correlated, model (3.7) has spatially correlated residuals. Because of this correlation, we can
use the GLS method instead of the OLS method (Menafoglio, Secchi and Dalla Rosa, 2013).
Let � be the trace-variogram matrix of ε(si;v) at different distances of the locations si . Then,
the GLS estimator of μ(si;v) is

μ̂(v) = A
(
AT�−1A

)−1AT�−1y(v), (3.8)

where A is the design matrix, and y(v) the evaluation of y(s;v) at n locations, both defined
in Section 3.1.

The trace-variogram matrix � cannot be estimated directly from ε(si;v), because we do
not observe them. The approach commonly used, to solve this problem, is to use the following
iterative procedure:

1. Compute the initial estimator μ̂0(si;v) as in (3.3), assuming that {ε(si;v)}ni=1 are not
spatially correlated.

2. Compute the residuals ε̂(si;v) = y(si;v) − μ̂0(si;v), for i = 1, . . . , n.
3. Estimate the initial empirical trace-variogram γ̂tr,0(h) as in (2.12), using {ε̂(si;v)}ni=1, and

then, obtain an estimator �̂0 of � by fitting a parametric model with a nugget effect.
4. Re-estimate the mean to get μ̂1(si;v) by using (3.8) with �̂0.
5. Repeat steps 2–4 until convergence.

Once the mean μ(s;v) is estimated, it is removed from the data. Then, the covariance is
estimated as in Section 3.2, using the spatial functional data {y(si;v) − μ̂(si;v)}ni=1.

The iterative procedure can also be performed with the finite basis function η(v). In Step 1,
we can use (3.4), and in Step 4, use the estimator vec(B̂) = (JT

η ⊗ AT�̂0A)−1vec(AT�̂0ZJη)

to obtain μ̂1.

4 Kriging for functional random fields

In spatial statistics, the concept of kriging (co-kriging for the multivariate setting) is a syn-
onym of optimal interpolation. The main goal is to be able to predict at locations where data
are not observed. This predictor is a linear combination of the observed data, such that it is
the best linear unbiased predictor under squared loss. Here, we briefly mention the concept
of kriging and we redirect readers to the references provided.

Let s0 ∈ D be the location at which the curve will be predicted. Let {�1, . . . ,�n} be linear
operators from H to H. In general, kriging can be defined as

x̂(s0;v) =
n∑

i=1

�i

{
x(si;v)

}
, (4.1)

where the coefficients �i are obtained by minimizing the square norm of the error prediction,
x̂(s0;v) − X(s0;v), with an additional constraint of unbiasedness. That is,

min
�1,...,�n

E
{〈
x̂(s0; ·) − X(s0; ·), x̂(s0; ·) − X(s0; ·)〉}

s.t. E
{
x̂(s0;v)

} = E
{
X(s0;v)

}
.

A particular case of the coefficients operators �i in (4.1) is the so-called kernel operators,
which are defined as �i(f )(v) = ∫ 1

0 λi(v,u)f (u)du, f ∈ H. In this case, the estimation is
through functions λi(v, u). Other cases are �i(f )(v) = λi(v)f (v) and �i(f )(v) = wif (v),
with wi scalars. The latter corresponds to a simple ponderation of the observed curves, that is,
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x̂(s0;v) = ∑n
i=1 wix(si;v). All these cases can be fitted into ordinary or universal kriging.

For ordinary kriging, see Goulard and Voltz (1993), Nerini, Monestiez and Manté (2010),
Giraldo, Delicado and Mateu (2010), and Giraldo, Delicado and Mateu (2011), as well as the
review paper by Delicado et al. (2010). For universal kriging, see Menafoglio, Secchi and
Dalla Rosa (2013), Caballero, Giraldo and Mateu (2013), Reyes, Giraldo and Mateu (2015),
and Menafoglio, Grujic and Caers (2016). For co-kriging (multivariate functional random
fields), see Bohorquez, Giraldo and Mateu (2017) and Grujic et al. (2018). An alternative
approach to kriging, which is based on a tensor function space, can be found in Aguilera-
Morillo, Durbán and Aguilera (2017).

5 Surface time series

In many phenomena, data can be collected in the form of a surface, called surface data
in our case, or manifold data for more complex structures. For example, we can have data
arising from neuroimaging (Lila, Aston and Sangalli, 2016), from two-dimensional time-
frequency domains (Aston, Pigoli and Tavakoli, 2017), from satellite images (Zhang, Clayton
and Townsend, 2011), and functional data with two-dimensional domain (Crainiceanu et al.,
2011, Morris et al., 2011). Here, we consider surface data as functional, that is, the atoms
of the functional random variable are continuous surfaces. Surface data provide an alterna-
tive approach to analyzing spatial data, where the continuous realization of a random field is
considered as a unit. This approach can have computational advantages, especially if the loca-
tions, where data are observed, are dense in space. Particularly, spatio-temporal data (Cressie
and Wikle, 2011) can be considered as surface data that are observed over time (surface time
series). Surface data capture the spatial dependence through the continuity of the surface (see,
e.g., Bernardi et al., 2017). Moreover, the approach of surface data can be applied to a nonpla-
nar spatial domain, such as a sphere or a general two-dimentional manifold (Dassi et al., 2015,
Wilhelm et al., 2016, Ettinger, Perotto and Sangalli, 2016, Menafoglio and Secchi, 2017,
Greco, Ventrucci and Castelli, 2018). Kriging can be applied to these complex domains by
using an appropriate distance, but the covariance models do not necessarily guarantee a posi-
tive definite covariance, for example, the Matérn covariance (Gneiting, 2013). Here, we focus
on spatio-temporal data, where at each time point we observe a surface.

The functional time series approach to spatial statistics has been studied by Ruiz-Medina,
Salmerón and Angulo (2007). In Aston, Pigoli and Tavakoli (2017), a tensor product Hilbert
space was considered to propose a separability test for the covariance operators of random
surfaces.

5.1 Basic concepts

Let (�,F,P ) be a probability space, and let H be the Hilbert space defined as the set of
functions with domain D ⊂ R

2, H = {f : D → R : ∫
D |f (s)|2 ds < ∞}, and with the inner

product 〈f,g〉 = ∫
D f (s)g(s)ds. The norm induced by the inner product is denoted by ‖ · ‖H.

Thus, a random variable X : � → H is a functional random variable with a surface as atom.
We denote by X(s) this functional random variable with s = (s1, s2) ∈ D.

A functional time series is a sequence of functional random variables {Xt(s); t ∈ Z} in H.
Bosq (2000) is a monograph on linear processes in function spaces, including functional time
series in a Hilbert space. Hörmann and Kokoszka (2012) reviewed functional time series.
Also, see Ramsay and Silverman (2005), Ferraty and Vieu (2006), and Horváth and Kokoszka
(2012) for a general introduction to functional data analysis. In this paper, we assume that
E{‖Xt(s)‖2

H} < ∞ for all t ∈ Z.
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The mean of the surface time series {Xt(s)} is defined as μt(s) = E{Xt(s)}, where μt(s) is
such that E(〈Xt,f 〉) = 〈μt, f 〉 for all f ∈ H. The covariance function at lag h ∈N is defined
as

CXt−h,Xt (f ) = E
{〈Xt−h − μt−h, f 〉(Xt − μt)

}
, f ∈ H.

This covariance function can be expressed as

CXt−h,Xt (f )(·) =
∫

σt−h,t (·, s)f (s)ds,

where σt−h,t (s1, s2) = Cov{Xt−h(s1),Xt(s2)}. The stationarity condition is important for sta-
tistical inference.

Definition 3 (Weak stationarity). A surface time series {Xt(s); t ∈ Z} is said to be (weakly)
stationary if

1. E{Xt(s)} = μ(s) for all t ∈ Z, and
2. CXt1+h,Xt2+h

(f ) = CXt1 ,Xt2
(f ) for all t1, t2 ∈ Z, h ∈N, and f ∈H.

If the surface time series is stationary, we write Ch for the covariance functions instead
of CXt ,Xt+h

. The definition of stationarity does not require stationarity over the space D, for
example, for each t , data can be a realization of a nonstationary random field. In general,
the covariance function C0 describes only the spatial dependence, whereas Ch, for h �= 0,
describes the dependency over time of the surface time series.

A surface white noise is a stationary surface time series with a zero mean and a covariance
function Ch = 0, if h �= 0. Thus, the surface white noise can have a spatial correlation at each
time point, but not across time.

Similarly as before, the eigenfunctions are defined as functions ζ ∈ H such that

C0(ζ )(s) = λζ(s),

where λ is positive and is the corresponding eigenvalue. Moreover, the covariance operator
C0 can be decomposed in terms of the eigenfunctions, that is

C0(f )(s) =
∞∑

j=1

λj 〈ζj , f 〉ζj (s),

where ζj , j = 1,2, . . . , are the eigenfunctions of C0 with eigenvalues λj . The eigenvalues are
such that

∑∞
j=1 λj = E{‖X0(s)‖2

H} < ∞. This operator C0 is nuclear and therefore Hilbert-
Schmidt. Similarly as in the finite dimensional case, eigenfunctions are important to reduce
dimensionality.

5.2 Estimation

Now, we describe estimators of the mean μ(s) and the covariance operator Ch. Let {xt (s)}Tt=1
be a realization of a stationary surface time series Xt(s) with mean μ(s). The sample mean
is defined as

μ̂(s) = 1

T

T∑
t=1

xt (s). (5.1)

The sample mean μ̂(s) is an unbiased estimator of μ(s).
The empirical covariance at lag h of Xt(s) is defined as

Ĉh(f )(s) = 1

T − h

T −h∑
t=1

〈xt − μ̂, f 〉{xt+h(s) − μ̂(s)
}
, f ∈ H, (5.2)
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and the corresponding empirical kernel is defined as

σ̂h(s1, s2) = 1

T − h

T −h∑
t=1

{
xt+h(s1) − μ̂(s1)

}{
xt (s2) − μ̂(s2)

}
.

The empirical covariance operator Ĉh is an unbiased estimator of Ch, see Bosq (2000). For
papers related to the mean and the covariance functions, refer to previous studies by au-
thors Hörmann and Kokoszka (2010), Horváth, Kokoszka and Reeder (2013), and Horváth,
Kokoszka and Rice (2014).

In time series analysis, there is no direct modeling of the covariance function. Instead, a
model for the process is proposed, and the covariance function is derived from the model. We
adopt this idea in the next section (Section 5.3).

5.3 Modeling

This section discusses two topics: the continuous estimation of the surface and the modeling
of the continuous surface series.

5.3.1 Estimating the continuous surface. In practice, data are observed on a finite set of
points, that is, for each t = 1, . . . , T , we observe nt points {yt,i = yt (si )}nt

i=1 of the func-
tional data Yt (s) on a set of points {s1, . . . , snt } ⊂ D, and possibly with measurement errors.
Thus, for each t , the unknown surface (deterministic field) yt (s) needs to be estimated. This
continuous surface estimate can be associated with kriging in classical spatial data analysis.

Because the procedure to estimate yt (s) is independent of t , we drop the subindex t in the
sequel, and we consider n as the sample size. Thus, a model of y(s) can be written as

yi = y(si ) + εi,

where {εi}ni=1 represent the measurement errors that are spatially uncorrelated. The function
y(s) describes the spatial structure of the phenomenon being studied.

To estimate y(s), one can extend the smoothness techniques of the curves described
in Ramsay and Silverman (2005) to surfaces (manifolds). In particular, one can extend
the spline smoothing. The extension of spline smoothing to surfaces is an important re-
search area. Extensions have been done over Euclidean domains and non-Euclidean do-
mains, including the spherical domain. One extension is to use the tensor product of uni-
variate B-splines (Eilers and Marx, 1996, Wood, 2006, Qingguo and Longsheng, 2010,
Xiao, Li and Ruppert, 2013). In this case, an estimator of y(s) has the form

ŷ(s) =
K1∑
k=1

K2∑
l=1

θklηk(s1)νl(s2),

where {ηk}K1
k=1 and {νl}K2

l=1 are B-splines basis functions for s1 and s2 coordinates, respec-
tively, with s = (s1, s2). In the estimation procedure, smoothness properties are imposed
through a penalization term. To read about some approaches of bivariate smoothing, see
Ruppert, Wand and Carroll (2003), Lai and Schumaker (2007), and Wood (2017).

In general, the estimation of y(s) can be formulated as the minimization of the sum of
squared errors with a penalization term. The penalization term measures the roughness of the
fitted surface and can carry partial information of y(s). That is, the optimization problem is
written as

n∑
i=1

{
yi − y(si )

}2 + λP (y), (5.3)
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where P(y) is the penalization term, and λ the smoothness parameter which controls the
smoothness of the estimated surface. A popular penalization is the thin-plate energy, which

is defined as P(y) = ∫ {(∂2y

∂s2
1
)2 + 2(

∂2y
∂s1∂s2

)2 + (
∂2y

∂s2
2
)2}ds. The resulting estimator is called

the thin plate splines (Duchon, 1977). A Bayesian adaptive thin plate spline was proposed
in Yue and Speckman (2010). Another example of penalization involves the Laplacian, that

is P(y) = ∫
(
∂2y

∂s2
1

+ ∂2y

∂s2
2
)2 ds (Wood, Bravington and Hedley, 2008, Sangalli, Ramsay and

Ramsay, 2013). The definition of the penalty term depends on each specific problem. For
example, in the Laplacian case, the unique penalty parameter λ that controls both directions
s1 and s2 implies an isotropic smoothing. In contrast, if P(y) = λ1P1(y) + λ2P2(y), where
Pi(y) is a penalty term in the ith coordinate, then it results in anisotropic smoothing.

In general, the penalty term can be defined in terms of a partial differential equation (PDE).
For example, P(y) = ∫

(Ly − u)2 ds, where L is a differential operator and Ly = u is a
PDE (see, e.g., Azzimonti et al., 2015, Sangalli, 2020). The advantage of the penalty term
with PDE is that it can handle complex domains with boundary conditions or interior holes,
and varies depending on the phenomena being studied. The PDE is such that it contains
information about the phenomena, and it regularizes the estimation with values of λ. The
solution of (5.3) may not have a closed form, but it can be approximated by using finite
elements analysis, see Ramsay (2002), Duchamp and Stuetzle (2003), and Sangalli, Ramsay
and Ramsay (2013).

We describe the solution of (5.3) using the finite elements analysis technique. Let M
be a mesh of D. Let {φ1(s), . . . , φK(s)} be basis functions that are piece-wise polynomials
associated with the mesh M. Then, the estimator of y(s) is assumed to have the form

ŷ(s) =
K∑

k=1

βkφk(s),

where the coefficients β = (β1, . . . , βK)T need to be estimated. Let y = (y1, . . . , yn)
T be the

observed values over D, and let P be the discretization of the penalty. Then, the estimator of
β has the form

β̂ = (
ΦTΦ + λP

)−1
ΦTy,

where Φ = {φk(si )}n,K
i,k=1 is the n × K matrix which represents the evaluation of each basis

function at the locations at which data are observed.
The time component can also be considered in the PDE. Arnone et al. (2019) proposed

general forms of time-dependent PDEs in the context of time dependent surface data.
Additional studies of data over complex domains have been published. Wang and Ranalli

(2007) proposed a modified thin plate spline over a complex domain; Lindgren, Rue and
Lindström (2011) linked Gaussian fields via stochastic partial differential equations, where
the solution is found using a finite elements analysis; Scott-Hayward et al. (2014) proposed
a complex region spatial smoother using the geodesic distance; and Menafoglio, Gaetani and
Secchi (2018) proposed a methodology for spatial fields of object data over complex domains.

5.3.2 Functional autoregressive models. Here, we assume that the functional time series
consist of continuous surfaces (deterministic fields) that can be estimated with the methods
described in Section 5.3.1. In the context of functional time series, the most popular model
is the functional autoregressive model of order P , FAR(P ). A surface time series {Xt(s)}
follows the FAR(P ) model if Xt(s) = ∑P

p=1 �p(Xt−p)(s) + Wt(s), where each coefficient
�p : H → H is an operator, and {Wt(s)} is a surface white noise. In practice, the order P

needs to be estimated (Kokoszka and Reimherr, 2013). Here, we assume P = 1 to illustrate
the ideas and to simplify the notations.
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Let {yt (s)}Tt=1 be the surface data observed over time t = 1, . . . , T , and assume that it is a
stationary surface time series. Then, the dependency over time can be modeled by using the
FAR(1) process, that is

yt (s) = μ(s) + xt (s), (5.4)

xt (s) = �(xt−1)(s) + Wt(s), (5.5)

where μ(s) represents the surface mean, i.e., the large-scale variation for all t . The unob-
served xt (s) follows a stationary FAR(1) process with mean zero, and {Wt(s)} is a surface
white noise. The surface white noise {Wt(s)} can be interpreted as the surface data compo-
nents that describe the small-scale variation for each time t , which are not correlated over
time. The dependency over time is driven by the operator � .

Since {yt (s)} is assumed to be stationary, the estimation of μ(s) can be obtained as in
(5.1). After removing the mean, the rest of the analysis is performed on the process xt (s) =
yt (s) − μ̂t (s).

Now, we focus on the estimation of the coefficient operator � . Let Ch be the covariance
operator of the FAR(1) process Xt(s) with realization {xt (s)}. Then, the covariance operator
of Xt(s) satisfies

C1(f ) = �
{
C0(f )

}
, f ∈ H. (5.6)

Moreover, for h ∈ N, we have that Ch(f ) = �h{C0(f )}. So if the coefficient � and C0 are
known, then we can compute the covariance function at any lag h ∈ N. Thus, the estimation
of � is crucial.

To obtain an estimator of � , we can use the estimation of C0 and C1 in (5.6), defining
�(f ) = C1{C−1

0 (f )}, if C0 is invertible. In principle, we can always use the estimator (5.2)
for h = 0,1, and compute the inverse Ĉ−1

0 . However, when the sample size T tends to in-
finity, Ĉ−1

0 becomes unbounded (Cardot, Ferraty and Sarda, 1999). This is because C0 is a
compact operator (Bosq, 2000). Thus, it is necessary to use some regularization methods to
obtain C−1

0 . That is, (C0 + αT )−1 is computed instead of C−1
0 where αT > 0 and αT ↓ 0. Al-

ternatively, C−1
0 can be approximated by using only the first k eigenfunctions corresponding

to the largest eigenvalues, that is, C−1
0 = ∑k

j=1 λ−1
j ζj ⊗ ζj , see Bosq (2000) and Kokoszka

and Reimherr (2017). Let Ĉ−1
0 denote an estimator of the inverse operator, either using some

regularization method, finite eigenfunctions or other methods (Martínez-Hernández, Genton
and González-Farías, 2019). Then, the estimator of � is defined as

�̂(f ) = Ĉ1
{
Ĉ−1

0 (f )
}
, f ∈ H.

Once μ(s) and � are estimated, then the one-step-ahead prediction is obtained as

ŷT +1(s) = μ̂(s) + x̂T +1(s),

where x̂T +1(s) = �̂(xT )(s). The estimators of μ, � , and Ch can be explicitly expressed in
terms of the basis functions {φ1(s), . . . , φK(s)} from the finite elements technique. Alternative
approaches can be used to predict data, for example one can extend the ideas described in
Hyndman and Ullah (2007) and Aue, Norinho and Hörmann (2015) to surfaces.

The approach of the surface time series provides alternatives to analyze spatio-temporal
data. The advantage of this approach is that it can handle data collected on a large scale for
each time point, over a general domain, Euclidean, or non-Euclidean. With this approach,
the process is modeled instead of the covariance, which is convenient when the classical
covariance models are not guaranteed to be positive definite.
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6 Statistical software

Here, we mention some packages available in R for SFD and surface data. The package fda
(Ramsay et al., 2018) provides several commands to analyze and construct continuous func-
tions. It contains several options of basis functions, such as Fourier basis functions and spline
basis functions. The basis functions can be used to estimate the continuous functions as in
(2.8). Once the coefficients are obtained in (2.8), we can use packages for classical spatial
data, for example, spatial (Venables and Ripley, 2002), gstat (Pebesma, 2004), Random-
Fields (Schlather et al., 2019), fields (Nychka et al., 2017), geoR (Ribeiro and Diggle, 2018),
ExaGeoStatR (Abdulah et al., 2019) for large datasets, and spBayes (Finley, Banerjee and
Gelfand, 2015) for Bayesian analysis of hierarchical multivariate models. Thus, when data
are expressed in terms of basis functions as in (2.8), we can combine the fda package and
the packages for spatial data to obtain estimators of the mean and the covariance functions
described in Section 2.2.

The package geofd by Giraldo, Delicado and Mateu (2015) implements kriging of func-
tional data described in Section 4. The curves observed are pre-processed by fitting Fourier
or B-splines basis functions. Also, this package provides a command to compute the trace-
variogram defined in (2.12). Another package related to Section 4 is fdagstat (Grujic and
Menafoglio, 2017). This package implements kriging, cokriging, and universal kriging, and
includes the large-scale variation described in Sections 3.1 and 3.3.

For the surface data described in Section 5, one can use the package mgcv by Wood (2017),
which allows us to smooth surfaces. The package fdaPDE (Lila et al., 2019) implements
smoothing with PDE penalization described in Sangalli, Ramsay and Ramsay (2013) and
Azzimonti et al. (2015). INLA (Rue, Martino and Chopin, 2009) can be used to estimate
continuous surfaces. The package Manifoldgstat by Sartori and Torriani (2019) implements
kriging for manifold-valued random fields.

Some visualization tools for functional data and functional time series are the functional
boxplots (Sun and Genton, 2011, 2012) implemented in the fda package; for functional im-
ages and surfaces, surface boxplots are used (Genton et al., 2014). These tools are based on
an order induced by a depth notion for functional data.

7 Data analysis

In this section, we illustrate general ideas of modeling spatial functional data and surface
data, without a deep statistical analysis of the data. Our goal is to provide a general example,
using only available packages.

We use wind data simulated from the Weather Research and Forecasting (WRF) model by
Yip (2018). Each measurement corresponds to hourly wind speed from 2009 to 2014, in a
115× 115 km region centered in Dumat Al Jandal, Saudi Arabia. That is where the first wind
farm of the country is being built. These wind speeds are simulated on a regular grid of points
in space, namely at 5-km resolution.

7.1 Spatial functional data approach

Our data are the daily wind speed, where y(si;vj ) is the wind speed at location si for hour vj ,
for vj = 1,2, . . . ,24. With the functional approach, we consider y(si; ·) as a single object,
assuming continuity over time. To illustrate the continuous estimation of the curves, we focus
on data observed on June 22, 2010. For that specific day, we fit 23 cubic B-spline basis func-
tions for each location, that is, ŷ(si;v) = ∑23

k=1 zk(si )ηk(v), where {ηk}23
k=1 are B-spline basis

functions. The continuous curves are required to be smooth; thus, we consider a penalization
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term on the second derivative of ŷ(si;v) with respect to v. Specifically, the estimator is such
that

y(si;vj ) = ŷ(si;vj ) + eij ,

where the coefficients zk(si ) of ŷ(si;v) are obtained as the solution that minimizes

24∑
j=1

{
y(si;vj ) − ŷ(si;vj )

}2 + λ

∫
ŷ′′(si;v)dv,

with the smoothing parameter λ fixed. We select the optimal smoothing parameter by gen-
eralized cross-validation through the n = 529 locations. Figure 1 shows an example of the
curve estimation at two locations. These two locations are separated by 10 km at the same
latitude.

Once continuous curves are estimated with basis functions, we can compute the mean
(large-scale variation). Since data are measured on a regular grid of points, and if each corre-
sponding coefficient random field {Zk(si )}ni=1, with realization {zk(si )}ni=1, is stationary, then
we can use the empirical mean to estimate each E{Zk(s)}. Under this scenario, Figure 2 (left)
shows the result of the estimated mean curve.

On the other hand, if the coefficient random fields {Zk(si )}ni=1 are nonstationary, then
E{Zk(s)} can depend on the location s. Under this framework, we use the surf.gls com-
mand defined in the spatial package. Figure 2 (right) shows the estimator of E{Z1(s)} for
the first random field coefficient Z1(s). The surf.gls command uses the GLS method to

Figure 1 Example of two estimations of the continuous curve at two different locations s1 and s2 separated by
10 km with latitude fixed. We use 23 cubic B-spline basis functions.

Figure 2 Left: mean curve if the coefficient random fields {Zk(s)} are stationary. Right: trend estimation of the
first coefficient random field Z1(s) if the coefficient random fields {Zk(s)} are nonstationary.
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Figure 3 Trace-variogram of the daily wind speed. Left: empirical. Right: fitted model (blue).

obtain the estimator with an exponential model as the covariance function. From Figure 2
(right), we observe some evidence that the mean depends on the location s.

For the modeling of small-scale variations, we use the trace-variogram defined in (2.12).
With the assumption of isotropy, Figure 3 (left) shows boxplots of the corresponding em-
pirical trace-variogram for different distances. The fit.tracevariog command in the
geofd package allows us to fit four covariance models: spherical, exponential, Gaussian, and
Matérn. In our data, the exponential model is the best model in terms of minimizing the sum
of squares errors. Figure 3 (right) shows the fitted model. Finally, ordinary kriging predictors
can be obtained with the command okfd in the geofd package.

We have used daily wind speed to illustrate general results. Similarly, we can use monthly
or yearly wind speed with y(si;v) representing the entire year, and repeat the procedure.

7.2 Surface data approach

For illustration purposes, we consider daily average data of the hourly wind speed, that is,
yt (si ) represents the daily average wind speed on day t , for t = 1, . . . ,365 in the year 2010.

To estimate the continuous surface yt (s) described in Section 5.3.1, we use the smooth.
FEM.basis command in the fdaPDE package. It uses the finite elements analysis and pe-
nalizes with the Laplacian. Figure 4 shows one surface data for a specific day, t = 1. In
the left panel, we plot the surface data observed on the 115 × 115 km region centered in
Dumah Al Jandal, Saudi Arabia. In the right panel, we plot the estimated continuous surface.
The estimated continuous functions {ŷ1(s), . . . , ŷ365(s)} is the surface time series, and can be
modeled as in (5.4) and (5.5). This approach allows us to successfully forecast the next day of
surface wind data, x̂T +1(s) and ŷT +1(s), as well as understanding its temporal dependence.

Figure 4 Estimation of surface data for t = 1. Left: daily average of wind speed on a regular grid of points.
Right: the continuous surface estimated with finite elements analysis.
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Here, we consider a rectangular region domain centered at Dumah Al Jandal, Saudi Arabia,
but could also, similarly, consider the domain as being the entire kingdom of Saudi Arabia or
the entire world, and study the statistical properties of the surface time series. In general, the
approach of functional data can be used in more complex and large datasets.

8 Discussion

In this paper, we have provided an overview of functional data analysis in the case of spatially
correlated data. We presented two main approaches, one when data are curves observed over
space (spatial functional data), and the other when spatio-temporal random fields are consid-
ered as a surface (or manifold) time series. These two approaches present a new paradigm of
data analysis, in which the continuous processes or random fields are considered as a single
entity. Although software packages are still limited for statistical analysis, we believe that
this mode of thinking can be valuable in the context of big data.

It is a welcomed fact that users can have different tools for data analysis, either with the
surface time series approach or with classical spatio-temporal techniques. The choice will de-
pend on the data, on the phenomena being studied, and on the scientific questions of interest.
We appreciate all the effort and work done in both directions. We have attempted to collect
all significant references, and we apologize for any unmentioned works.

Similarly, as functional data with temporal dependence arise, we can also consider spatio-
temporal functional random fields (Bel et al., 2011, Lee, Zhu and Toscas, 2015) meaning that
a functional time series is observed at each location. For example, yt (si;v) can represent the
functional time series of daily wind speed at location si , where t is the day index, and v is
the time within a day. Multivariate spatial functional data can also be considered, that is, at
each location, we can observe different functional data, such as temperature, precipitation,
and humidity.

We conclude that the functional approach opens new areas of research to develop method-
ologies and theories for the analysis of complex and large spatio-temporal datasets.
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