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a b s t r a c t

Advances in Gaussian methodology for spatio-temporal data
have made it possible to develop sophisticated non-stationary
models for very large data sets. The literature on non-Gaussian
spatio-temporal models is comparably sparser and strongly fo-
cused on distributing the uncertainty across layers of a hierar-
chical model. This choice allows to model the data conditionally,
to transfer the dependence structure at the process level via a
link function, and to use the familiar Gaussian framework. Condi-
tional modeling, however, implies an (unconditional) distribution
function that can only be obtained through integration of the
latent process, with a closed form only in special cases. In this
work, we present a spatio-temporal non-Gaussian model that
assumes an (unconditional) skew-t data distribution, but also
allows for a hierarchical representation by defining the model
as the sum of a small and a large scale spatial latent effect.
We provide semi-closed form expressions for the steps of the
Expectation–Maximization algorithm for inference, as well as the
conditional distribution for spatial prediction. We demonstrate
how it outperforms a Gaussian model in a simulation study, and
show an example of application to precipitation data in Colorado.
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1. Introduction

Gaussian models have always been at the center of investigations in spatio-temporal statistics, as
the normal assumption implies an unparalleled degree of analytical tractability and computational
convenience. In many applications, however, the data often exhibit features that are inconsistent
with this assumption, and therefore require more flexible non-Gaussian models.

Different solutions for non-Gaussian, spatio-temporal data are available depending on the extent
of the departure from the normal assumption. When the non-Gaussianity is not too severe, the
simplest and more widespread solution is a non-linear transformation of the data that modifies
the marginal distribution to resemble the normal distribution, allowing for the subsequent use of
the traditional methodology (Cressie, 1993). These trans-Gaussian random fields consist of a simple,
marginal transformation of the data, such as a logarithm, and sometimes allow to explicitly express
the degree of skewness and kurtosis in the model; see Xu and Genton (2017) and references therein.

For severe departures from Gaussianity (e.g., count data), a more sophisticated solution is to
rely on a generalized linear model framework that assumes data independence conditionally on a
process, while the process is assumed to be Gaussian and captures the spatio-temporal dependence.
This model-based geostatistics approach (Diggle et al., 1998), whose cornerstone principle is the
stratification of the spatio-temporal uncertainty across layers of a (Bayesian) hierarchical model, has
recently seen a surge in popularity with the advent of the Integrated Nested Laplace Approximation
(INLA, Rue et al. (2009)) and the R-INLA project (Lindgren and Rue, 2015). In recent years, the INLA
approach has received a strong interest from the statistical community (and beyond), because of its
ability to sparsify the conditional dependence structure and therefore to achieve inference for large
spatial data. Although this modeling approach has arguably many advantages, it suffers, by design, of
a lack of explicit parametrizations of the non-Gaussian features. Since the focus of the modeling is on
a latent process and the data are only modeled conditionally, the (unconditional) data distribution
can be expressed only through integrals, by marginalizing over the latent process as well as the prior
uncertainty of its hyperparameters (in the case of a Bayesian model). These integrals rarely have a
closed form, and hence hamper model interpretability should one be interested in the unconditional
properties of the model.

In this work, we propose a new non-Gaussian model focused on the unconditional properties
of the data, which also allows for a convenient hierarchical representation for inference purposes.
Therefore, we retain the flexibility, as well as (some of) the computational convenience of hier-
archical models while also achieving an explicit expression of the moments, hence improving the
model interpretability. The model relies on a domain partition into regions, where a common latent
process across each region is assumed and estimated. Domain partition in spatio-temporal statistics
is a strategy typically employed as a means to perform approximate inference. Indeed, when the
data set is too large the likelihood is often misspecified through a composite approach. In the
case of non-Gaussian models such as max-stable processes, composite likelihood approaches are
necessary as full likelihood inference for more than eleven points is impossible (Castruccio et al.,
2016). In this work, the choice of partitioning was not dictated by computational needs, and instead
of misspecifying a model we opted for defining a model with a partition, and defined a global model
to allow non-Gaussian modeling in space with explicit expression of the unconditional properties
of the process.

The model relies on a perturbation of the Gaussian distribution, introduced by Azzalini (1985)
in the univariate case: the skew-normal. This distribution generalizes the normal distribution
by explicitly accounting for the skewness with a parameter; it has been actively studied and
developed for over three decades. Azzalini and Dalla Valle (1996) proposed a multivariate extension,
whereas Azzalini and Capitanio (2003) proposed an equivalent formulation for the Student’s t
distribution. A full review can be found in Genton (2004) and most recently in Azzalini and
Capitanio (2014). While some work has focused on extending these multivariate distributions to
processes (Zhang and El-Shaarawi, 2010; Mahmoudian, 2017; Bevilacqua et al., 2018; Kim and
Mallick, 2004; Kim et al., 2004; Allard and Naveau, 2007; Schmidt et al., 2017), the existence of
a process is not guaranteed in general (Genton and Zhang, 2012; Minozzo and Ferracuti, 2012).
Skewed distributions cannot be obtained from a central limit theorem or any other large sample
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results, they are obtained by perturbing the normal distribution to account for some degree of skew-
ness and kurtosis, and they also emerge naturally in selective population sampling, when a latent
variable is involved in the sampling and does not allow a completely random sample (Arellano-Valle
et al., 2006).

Skew-t models have been widely used for applications involving multivariate and sometimes
spatial data, but to our knowledge, no work has highlighted the potential of this distribution as a
baseline for establishing a spatial hierarchical model. Here we show how this reformulation allows
for a bi-resolution model with a partition of the spatial domain into multiple regions, each one with
a different stationary behavior, linked with a latent large-scale spatial effect.

We perform a frequentist inference, and develop a Monte Carlo Expectation–Maximization
(MCEM) algorithm, a choice also used in the spatial skew-normal model developed by Zhang and
El-Shaarawi (2010). MCEM is also often used for inference involving skewed distributions in a non-
spatial context (e.g., Lin and Lee (2008), Lin (2010), Lachos et al. (2010); see Lachos et al. (2018)
for a review). In this work, we derive the semi-explicit expressions of the E and M step, as well
as a closed form of the conditional distribution at unobserved locations, in order to allow spatial
prediction.

The remainder of the paper is organized as follows: Section 2 introduces the model, Section 3
presents the E and the M step of the algorithm for inference, as well as the conditional distribution
at unsampled locations for prediction. Section 4 presents a simulation study where the proposed
model is compared with a Gaussian model. Section 5 shows an application to Colorado precipitation
data. Section 6 concludes with a discussion.

2. Model definition

For this section, we assume we have a purely spatial process. We consider a scalar, non-Gaussian
random field {Y (s), s ∈ D}, where D ⊂ R2, and a partition D = ∪

R
r=1Dr such that Dr ∩ Dr ′ = ∅

if r ̸= r ′. The partition should be determined by areas where higher moment characteristics are
similar, as we will show in the application. We propose a model for Y (s) for which the process,
within each region, is multivariate skew-t , with the parameterization of Azzalini and Capitanio
(2003).

For each region Dr , and for each point s ∈ Dr , the following model applies

Y (s) = σr
ρrU0,r + λrU1,r + ηr (s)

√
Zr

, (1)

where U1,r has a standard half-normal distribution, Zr a Gamma(νr/2, νr/2) distribution, where the
first argument is the scale, while the second the rate, and ηr (s) is a stationary Gaussian process
independent across r , with mean zero and correlation function that depends on parameters ψr ,
with an associated correlation matrix Σr = Σ(ψr ); and σr ≥ 0, ρr ≥ 0, λr ∈ R. Setting ρr = 0
reduces the model to that of Tagle et al. (2019), in which each region has a multivariate skew-t
distribution, but evolves independently from the others. Here, we introduce the random vector
U0 = (U0,1, . . . ,U0,R)⊤, assumed to follow a mean zero multivariate normal distribution with
correlation matrix Σ0 = Σ(ψ0), with each component being assigned to each region, with the
aim of inducing an inter-regional spatial dependence. The vector U0 hence takes on the role of
a large-scale effect, with components interacting additively with the other terms in the numerator
and capturing the fine-scale variability, jointly resulting in a multivariate skew-normal distribution.
A location parameter could be added in model (1), and in fact the application in Section 5 allows
for a changing latent parameter for each region. However, for the ease of analytical tractability and
computational convenience in the simulation studies, we chose not to allow for this parameter at
this stage.

Model (1) assumes that, conditional on U0,r and U1,r , points across different regions are indepen-
dent, and hence simulations from this model will have discontinuities at the boundaries and there
is conditional independence among points for different regions. While this is arguably a suboptimal
feature of the model globally this can however be mitigated by constraining the latent process U0,r
to be very smooth, by fixing the smoothness of the corresponding covariance matrix Σ0.
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The additive form ensures that the numerator of (1) remains a multivariate skew-normal
distribution given the closure of the skew-normal distribution under convolutions with a normal
random variable (Azzalini and Capitanio, 2014). It is straightforward to show that, for a collection
of points s1, . . . , sn ∈ Dr , the numerator has a skew-normal distribution with a probability density
function (pdf) given by

ρrU0,r + λrU1,r + ηr (s) ∼ 2
(√

1 + λ2
r + ρ2

r )φn(y;Ωr

)
Φ(α⊤

r y), (2)

where φn is the pdf of an n-dimensional normal distribution with mean zero and covariance
Ωr , and Φ is the cumulative distribution function of the univariate standard normal distribution.
Furthermore,

αr =
δr

1 − δ2r

1⊤
n Ω

−1
r(

1 +
δ2r

1−δ2r
1⊤
n Ω

−1
r 1n

)1/2 ,

Ωr = (1 − δ2r )
(
Σ(ψr )

∗
+

δ2r

1 − δ2r
1n1⊤

n

)
,

Σ(ψr )∗ is a correlation matrix with terms Σ(ψr )∗ij = (Σ(ψr )ij + ρ2
r )/(1 + ρ2

r ), and δr =
λr√

1+λ2r +ρ2
r
.

Dividing by a Gamma distribution results in the multivariate skew-t distribution.
Let s be one point of the collection s1, . . . , sn with corresponding skewness parameter α drawn

from the vector αr . For simplicity of notation, we further drop the index r across all terms. The
proposed skew-t formulation allows to explicitly compute the moments. From (1) and (2), we can
write the kth moment as

E[Y (s)k] = σ k(1 + λ2
+ ρ2)k/2E[Z−k/2

]E[Y ∗(s)k], (3)

where Y ∗(s) = {ρU0 + λU1 + η(s)}/
√
1 + λ2 + ρ2 which has a standard skew-normal distribution.

Since Z is a Gamma distribution, it can be easily shown that

E[Z−k/2
] =

(ν/2)k/2Γ {(ν − k)/2}
Γ (ν/2)

,

whereas the kth moment of a standard skew-t distribution can be obtained from Azzalini and
Capitanio (2014), pg. 32, as

E[Y ∗(s)k] =

√
2
π

sgn(α)
αk+1 Bk(α−2),

where, for h > 0,

Bk(h) =
k − 1
h

Bk−2(h) +
βk−1

h(1 + h)k/2
, k = 2, 3, . . .

B0(h) =

√
π

2h
, B1(h) =

1
h
√
1 + h

,

and βk is the kth moment of the standard normal distribution, βk = (k − 1)!!, for k = 2, 4, 6, . . .
and 0 otherwise.

The kth moment formula (3) allows to obtain the mean and variance as

E[Y (s)] = σ (1 + λ2
+ ρ2)1/2

(ν/2)1/2Γ {(ν − 1)/2}
Γ (ν/2)

sgn(α)

√
2

π (1 + α−2)
,

Var[Y (s)] = σ 2(1 + λ2
+ ρ2)sgn(α) − E[Y (s)]2.

The covariance for points s1 and s2 belonging to the same region Dr can be expressed as

Cov(Y (s1), Y (s2)) = σ 2 ν

ν − 2

{
ρ2

+ λ2
+ Cψ(h)

}
− E[Y (s1)]2, (4)
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where Cψ(h) is the correlation function associated with the matrix Σ. If, instead, s1 ∈ Dr1 and
s2 ∈ Dr2 with r1 ̸= r2

Cov(Y (s1), Y (s2)) = σr1σr2ρr1ρr2
(νr1/2)

1/2Γ {(νr1 − 1)/2}
Γ (νr1/2)

(νr2/2)
1/2Γ {(νr2 − 1)/2}
Γ (νr2/2)

Σ0;r1,r2 . (5)

The representation in (1) involves the latent variables U0,r , U1,r and Zr , r = 1, . . . , R, which we
choose to estimate with an EM algorithm (Dempster et al., 1977). This approach aims to maximize
the model likelihood in the presence of latent processes by alternating between an expectation
step to estimate U0, and a maximization step to estimate all the model parameters, see McLachlan
and Krishnan (2007) for details. During the first step, (U0,r ,U1,r , Zr )⊤, r = 1, . . . , R and functions
thereof are replaced by their conditional expectations given the data and parameter estimates θ̂ =

(θ̂
⊤

1 , . . . , θ̂
⊤

R , ψ̂
⊤

0 )
⊤, with θr = (σr , ρr , λr ,ψ

⊤

r )
⊤. In the second step, θ̂ is updated in the traditional

maximum-likelihood sense based on the maximization of the associated log-likelihood. Since a
parameter set is required to conduct the first E-step, an initial set of values is provided, which
is then subsequently updated by alternating between both steps until convergence is achieved.

Our choice of an EM approach was mostly computational and dictated by the availability of
closed form expressions for some of the parameters during the Maximization step, as the next
section shows. A full Bayesian model is a possible alternative, but we could not find any conjugate
prior for the parameters, so we would have needed another MCMC step within the Gibbs sampling,
thus adding additional strain to the already burdensome inference approach.

3. EM algorithm

Henceforth Yr , r = 1, . . . , R represents the vector of random variables corresponding to the
observations in region Dr , and |Dr | = nr , so that

∑R
r=1 nr = n. The proposed model in (1) has the

following hierarchical representation,

Yr |U0,r = u0,r ,U1,r = u1,r , Zr = zr
iid
∼ Nnr

(
σr√
zr
(ρru0,r + λru1,r )1nr ,

σ2
r
zr
Σr

)
,

U0 ∼ NR(0,Σ0),

U1,R
iid
∼ HN(0, 1),

Zr
iid
∼ Gamma(νr/2, νr/2),

where HN refers to the half-normal distribution, and 1nr is a nr × 1 vector with all entries being
equal to one. We now assume to have independent temporal replicates, as will be the case in the
application. We thereby consider the vector yt = (y⊤

1,t , . . . , y
⊤

R,t )
⊤, t = 1, . . . , T , as well as u0,t ,

u1,t , and z1,t , which are defined conformably (in an abuse of notation, we henceforth use lower-
case letters to denote both realizations and random quantities). Their joint distribution, for each t ,
follows from the above representation:

p(yt ,u0,t ,u1,t , zt
⏐⏐θ) = p(yt

⏐⏐u0,t ,u1,t , zt , θ) × p(u0,t
⏐⏐θ) × p(u1,t

⏐⏐θ) × p(zt
⏐⏐θ)

=
∏R

r=1
1

(2π )nr /2
⏐⏐⏐σ2

r /zrΣr

⏐⏐⏐1/2 exp
{
−

zr,t
2σ2

r
x⊤
r,tΣ

−1
r xr,t

}
×

1
(2π )R/2|Σ0|1/2

exp
{
−

1
2u

⊤

0,tΣ
−1
0 u0,t

}
×

(νr /2)νr /2

Γ (νr /2)
z

νr+nr
2 −1

r,t

×

√
2
π
exp

{
−

u21,r,t
2

} (6)

where xr,t = yr,t − σr/
√
zr,t (ρru0,r,t + λru1,r,t )1nr . We can further aggregate the time-t vectors, as

y = (y⊤

1 , . . . , y⊤

T )
⊤, with conformable definitions for the latent variables, allowing us to express the

corresponding log-likelihood as

ℓ(θ|y,u0,u1, z) =

R∑
r=1

ℓr (θ|y,u0,u1, z) −
T
2
log|Σ0| −

1
2

T∑
t=1

u⊤

0,tΣ
−1
0 u0,t , (7)
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where

ℓr (θ|y,u0,u1, z) = T
νr

2
log

(νr

2

)
− T logΓ

(νr

2

)
−

Tnr

2
log(σr ) −

T
2
log|Σr |

+

(
νr + nr

2
− 1

) T∑
t=1

log(Zr,t )

−
1
2

T∑
t=1

(
u2
1,r,t + νrzr,t +

zr,t
σ 2
r
x⊤

r,tΣ
−1
r xr,t

)
.

The log-likelihood involves the inversion of the matrices Σr and Σ0, as well as the computation
of their respective determinants, which are typically problematic when the size of the data set
becomes large. However, our approach of regionalizing the spatial domain allows for a judicious
choice of nr to ensure the computation feasibility of said operations on Σr , while the dimension of
Σ0 is determined by the number of regions R for which R ≪ n is assumed to hold.

3.1. E-step

The E-step proceeds by computing the conditional expectation, commonly denoted by the Q
function,

Q (θ|θ̂
[k]
) = E

[
ℓ(θ|y,u0,u1, z)|y, θ̂

[k]]
based on the value of θ = θ̂

[k]
at the kth iteration, in order to obtain a new estimate of the latent

processes u0, u1 and z. Technical details on how to simulate the full conditional of z and the closed
form expressions for u0 and u1 are provided in the Supplementary Material.

3.2. M-step

Once the estimates for the latent processes û[k]
0 , û[k]

1 and ẑ[k] are available, they are plugged in
(7) and a new parameter vector θ̂

[k+1]
is obtained as

θ̂
[k+1]

= argmax
θ

ℓ(θ|y, û[k]
0 , û[k]

1 , ẑ[k]).

Details of the maximization of each of the parameters, i.e. νr , σr , ρr , λr ,Σr and Σ0, are provided in
the Supplementary Material.

3.3. Prediction

We carry out prediction in the classical sense; first estimating the parameter set θ based on a
collection of observations and subsequently, making use of the plug-in predictive distribution that
treats the estimated parameters as truth to generate predictions at another set of locations (Diggle
and Ribeiro, 2007). Let us first fix some notation. Let y = (y⊤

pr, y⊤

ob)
⊤, denote the vector that stacks

the vector of desired predictions ypr at npr locations, and a vector of yob observations at nob locations.
The plug-in predictive distribution of ypr is then given by

p(ypr|yob, θ̂) =

∫
p(ypr|yob,u0,u1, z, θ̂)p(u0,u1, z|yob, θ̂)du0du1dz.

Denote with Σ the covariance matrix of y, and its partition for the observed and predicted part of
the model

Σ =

(
Σob,ob Σob,pr
Σpr,ob Σpr,pr

)
.
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Applying standard results from multivariate normal theory we obtain

p(ypr|yo, u0, u1, z, θ̂) ∼ Nnpr

{
ρu0 + λu1

√
z

1npr + Σpr,obΣ
−1
ob,ob

(
yob −

ρu0 + λu1
√
z

1nob

)
,

σ 2

z

(
Σpr,pr − Σpr,obΣ

−1
ob,obΣob,pr

)}
. (8)

On the other hand, the density p(u0,u1, z|yob, θ̂) coincides with that of the E-step of the EM
algorithm, replacing here the kth parameter set with the parameter set θ̂. Thus, in practice, we may
draw samples from p(u0,u1, z|yob, θ̂) for as many regions as required, as indicated in Section 3.1,
followed by samples for each regional set of prediction locations, according to (8).

4. Simulation study

Here we examine the predictive performance of the proposed skew-t model, which we hereby
denote as SKT, against a skew-normal (SN) with Zr = 1 in (1), a bi-resolution Gaussian model
(biGau) with Zr = 1 and λr = 0 in (1), and a Gaussian model (GAU) with Zr = 1, λr = 0 and ρr = 0.
We test these four models against samples generated from a Tukey g-and-h random field (Xu and
Genton, 2017), a trans-Gaussian process with transformation

τg,h(z) =

{
g−1

{exp(gz) − 1} exp
(

hz2
2

)
, g ̸= 0,

z exp(hz2/2), g = 0.

The transformation τg,h(z) allows to control skewness and kurtosis separately using the two
parameters g-and-h, and are here sampled randomly for each region from a range of 0.3 to 0.5 for
the former, and 0.03 to 0.06 for the latter. Using the biGau model as the underlying model to which
the Tukey g-and-h transformation was subsequently applied, the resulting parameter values yielded
skewness and kurtosis values ranging from approximately 1.25 to 3, and 6.5 to 25, respectively. We
further assume φ0 = 2, for the range parameter governing the large-scale correlation function, for
which region centroids are used to determine intra-region distances. The range parameter for each
region is fixed at φr = 0.1. We also fix σr = 1, and assume νr = 7. A total of ten simulations is
performed, each with T = 150 spatial replicates. We consider a spatial design composed of R = 15
regions, each consisting of a 1 × 1 square, arranged in a 4-by-4 grid. Within each region, 15 points
are chosen at random, for a total of 225 spatial locations (see Fig. S1 in Supplementary Material).
After the Tukey g-and-h has been simulated, all four models are fit and we compare differences in
prediction accuracy as measured by the continuous ranked probability score (CRPS, Gneiting et al.
(2007)).

Inference for the SKT, SN and biGau model is achieved using the EM algorithm outlined in
Section 3 (or simplified versions thereof in the case of SN and biGau), with M = 1000 MCEM
iterations for each spatial replicate t . Inference for the GAU model is achieved by maximum
likelihood. We consider multiple initial parameter values, and do not observe convergence to
local minima. Figure S2 displays the evolution of θ̂

[k]
and the Q-function for 500 iterations of the

average of the ten simulations; parameter estimates can be seen stabilizing beyond the 200-th
iteration, and close to their true values. The estimation of νr appears to be particularly noisy. A
quantification of the (asymptotic) standard deviation would require EM-specific approaches such as
the Supplemented Expectation–Maximization (SEM, Meng and Rubin (1991)) algorithm. However,
this task was computationally infeasible given the large number of temporal replicates and the
number of repeated simulations. SEM was however performed in the application from the next
section, and the results highlight how the standard deviation in the estimation of νr is more than
one order of magnitude larger than all other parameters.

Table 1 provides a comparison of the out-of-sample average CRPS values for the four models for
each of the 15 regions. The SKT model outperforms all other three models. An increase in model
performances is highlighted when allowing two resolutions, i.e. from GAU (0.61) to biGau and SN
(0.57), and an additional improvement is achieved when allowing for a skewed behavior for the
SKT model (0.56).
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Table 1
Out-of-sample average continuous ranked probability scores based on 10 spatial replicates for the SKT, SN, biGau and
GAU models for the 15 regions, and their overall mean.
Model Region Mean

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SKT 0.49 0.56 0.47 0.55 0.56 0.62 0.67 0.56 0.60 0.54 0.50 0.65 0.62 0.47 0.57 0.56
SN 0.54 0.57 0.50 0.55 0.59 0.66 0.52 0.55 0.62 0.65 0.58 0.56 0.55 0.65 0.52 0.57
biGau 0.54 0.57 0.50 0.55 0.59 0.66 0.52 0.55 0.62 0.65 0.58 0.57 0.55 0.65 0.52 0.57
GAU 0.55 0.60 0.51 0.61 0.55 0.74 0.61 0.61 0.80 0.68 0.59 0.55 0.63 0.63 0.44 0.61

5. Application

We use the Colorado climatological data obtained from the Geophysical Statistics Project at the
National Center for Atmospheric Research (www.cgd.ucar.edu/stats/Data/US.monthly.met). The data
set provides monthly data for temperature maxima and minima, as well as precipitation, for the
years 1895 to 1997. Here, we focus solely on annual total precipitation amounts (in millimeters), and
consider only the 137 stations from the original 397 that have observations over the final 40 years,
see Fig. 1. We chose a subset of stations to allow an uninterrupted 40 years long record of annual
data. We could in principle have added more, but that would have required adding missing data
whose estimation is beyond the scope of this work. We refrain from any transformation of the data
(e.g., log-transformed), keeping them to their original scale, except for a prior standardization. The
lack of transformation implies an always positive quantity, while all the models we consider allow
for values across the entire real line. Figure S1 in the supplementary material shows the aggregated
histogram across all locations and years. As apparent from the plot, no data point was exactly equal
to zero, and the vast majority of the data are far away from zero as well, hence allowing us to
approximate the probability of a negative event to zero. The median skewness across locations
is −0.22 (Q1 = −0.69, Q3 = 0.27), while the median kurtosis is 3.30 (−3.34, 3.95), hence an
overall non-Gaussian, skewed and heavy tailed behavior that justifies the use of a ST distribution
introduced in the previous sections. We also found no indication of temporal dependence. We
calculated the autocorrelation function at each site, along with its asymptotic standard deviation,
and we found that no site had a significant lag-1 value. Thus, at annual level it is perfectly
reasonable to assume temporal independence. A modified model that would account for temporal
dependence and possibly lack of space–time separability would likely be necessary for lower levels
of aggregation, i.e. daily or sub-hourly temporal scales.

We extend the model in (1) to account for the non-zero location parameter, which we assume
to be the same across all points belonging to the same region. The location transformation adds
the term ξr to the conditional mean of the sampling distribution, which implies replacing the yr,t
terms with yr,t − ξr1nr in the formulas of the EM algorithm, and the additional update as part of
the M-step,

ξ (k)
r =

tr
(
Σ−1

r

[
1/σ 2

r
∑T

t=1⟨zr,t ⟩
(
1nr y⊤

r,t + yr,t1⊤
nr

)
− 2/σr

∑T
t=1

(
⟨
√
zr,tu0,r,t ⟩ρr + ⟨

√
zr,tu1,r,t ⟩λr

)
1nr 1⊤

nr

])
2 tr

(
Σ−1

r

[
1/σ 2

r
∑T

t=1⟨zr,t ⟩1nr 1⊤
nr

])
We distinguish six regions, shown color-coded in Fig. 1, covering the Eastern plains, the foothills,

the high peaks and the adjacent Southern and Western areas. As part of an exploratory analysis,
we fit a multivariate skew-t distribution, with the help of the R package sn (Azzalini, 2018),
independently to each region, and find that the resulting parameter estimates exhibit consistent
non-zero skewness in all regions, as well as heavy-tails in most, lending justification to the use
of the SKT model. We fit the SKT model, but given the small number of regions (R = 6), the EM
algorithm was unstable in the identification of the large-scale range parameter φ0, as it tended
towards increasingly larger values, in order to reproduce the inter-regional dependence structure.
We thus fixed it at a suitably large value, φ0 = 10,000. Estimates for the remaining parameters are
shown in Table S1, while those for the GAU model fit are shown in Table S2. The evolution of the
Q-function and parameter estimates of each M-step iteration are shown in Fig. S3.
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Fig. 1. Location of precipitation stations, each region being assigned a different marker, with region number plotted at the
centroid. The overlaid elevation map (in meters) is from the United States Geological Survey GTOPO30 digital elevation
model.

Fig. 2. Empirical correlations (blue dots) for each of the six regions denoted in Fig. 1, and the respective correlation
functions (red curves) of the SKT model (4) evaluated using parameter estimates.

Fig. 2 shows the empirical correlation for each region as a function of the distance and the model-
implied correlation function evaluated, using estimated parameters. We see overall good agreement
between the fitted and empirical correlation, although the terminal value of the correlation function
in region 1 seems sensibly too high, underscoring the tension between inducing inter-regional
spatial dependence and skewness, and non-vanishing intra-regional spatial correlation. Fig. 3
examines the inter-regional spatial dependence, contrasting the median of the correlations between
points located in different regions and the model implied inter-regional correlation. From this figure
it is apparent how the model overall adequately captures the inter-regional dependence as well.

We contrast the in-sample predictive performance between both models, using the first 10
spatial replicates of the 40 year period. Table 2 presents the CRPS values for each model, where
it is seen that the SKT model offers better predictive accuracy. The results are dependent on the
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Fig. 3. Matrix of kernel density estimates of the correlations between points belonging to the respective regions, along
with median correlation (dashed blue) and the inter-regional correlation (solid red) based on Eq. (5), evaluated at the
parameter estimates.

Table 2
Predictive performances of GAU and SKT model in terms of average
continuous ranked probability scores for the first ten replicated of the
40 year period.
Model Region Mean

1 2 3 4 5 6

SKT 0.39 0.36 0.33 0.45 0.41 0.36 0.38
GAU 0.51 0.50 0.47 0.60 0.50 0.60 0.53

number R and location of the clusters, so a simulation study assessing the sensitivity against these
factors could be performed. However, such a task is currently too computationally intensive as
it would require re-running the model for different configurations. As a general rule of thumb,
the regions should not be too small to have unstable estimates, and not too large to avoid losing
information about local spatial structure. Moreover, if one is interested in a particular subregion, a
clustering approach with more points in that region can be envisioned, and as long as prediction is
not performed too close to the edges of the regions, no artifacts from the discontinuity should be
apparent.

6. Conclusions

In this work, we proposed a new model for non-Gaussian spatial data that does not rely on the
classical conditional independence assumption of hierarchical models. We showed how the skew-t
has a representation that can be used as a baseline for a new class of hierarchical models, and is
suitable for spatial data that have similar high-order moments.

The proposed model has a closed form expression for all moments, as well as a covariance
between points. We chose to perform inference in a frequentist setting via an MCEM algorithm,
with semi-closed form expressions for both the E and the M steps. The skew-t model also allows
for a continuous underlying process within each region, and hence prediction can be performed
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conditionally on the observed data using the estimated parameters from the aforementioned MCEM
algorithm. The proposed MCEM algorithms require simulations of u0,t ,u1,t and zt for all t in the
M-step, so it is computationally burdensome. However, full conditionals for u0,t ,u1,t are available
and full MCMC is necessary only for zt . In order to fit larger data sets with this model, a promising
direction of research to achieve approximate but faster computation is the use of Stochastic
Approximation EM (SAEM, Jank (2006), Ordoez et al. (2018)), which relies on a Taylor approximation
of the Q function.

The model could be generalized to account for spatial covariates. In the application we have
provided a common location parameter ξr across each region, so the model would also allow
for a changing mean. The location parameter could be generalized to allow for spatial covariates,
i.e. ξr = x⊤

r β, for some design vector xr and some parameters β to be estimated. This specification
could be made more flexible with a location specific scale parameter, but that would require a very
large sample size to avoid identifiability issues.

The extent of the generalizability of an (additive) hierarchical representation of the skew-t is
an open question. In principle, a similar representation could be sought for skew-elliptical models,
but the algebra of the E and M steps, or full conditionals in a Bayesian version of this model, are
expected to be non-trivial. Additional extensions to scale mixtures of skew-normal (Cabral et al.,
2012) would be even more challenging as a closed form expression is not guaranteed, hence the
computation would be considerably more burdensome. Besides, there would be subjectivity in the
choice of the mixing distribution and for an application a sensitivity study should be performed.

Scalability is also a potential issue when applying such a model to considerably larger spatial
data sets. Additional work is needed to seek solutions to either reparametrize the latent parameter
space from the current dimension vector of size 3R, or a Bayesian version of the model with either
a Laplace or Hamiltonian approximation of the posterior.

Lastly, the time component here is used only to provide replicates and improve the inference,
thus implicitly assuming space–time separability. This assumption is likely not realistic for data
sets at high temporal resolution, and will thus require a new formulation that allows a temporally
nonstationary model with a marginal structure identical or similar to the one presented in this
work.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.
spasta.2019.100398.
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