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ABSTRACT
Describing the complex dependence structure of extreme phenomena is particularly challenging. To tackle
this issue, we develop a novel statistical method that describes extremal dependence taking advantage
of the inherent tree-based dependence structure of the max-stable nested logistic distribution, and which
identifies possible clusters of extreme variables using reversible jump Markov chain Monte Carlo techniques.
Parsimonious representations are achieved when clusters of extreme variables are found to be completely
independent. Moreover, we significantly decrease the computational complexity of full likelihood inference
by deriving a recursive formula for the likelihood function of the nested logistic model. The method’s
performance is verified through extensive simulation experiments which also compare different likelihood
procedures. The new methodology is used to investigate the dependence relationships between extreme
concentrations of multiple pollutants in California and how these concentrations are related to extreme
weather conditions. Overall, we show that our approach allows for the representation of complex extremal
dependence structures and has valid applications in multivariate data analysis, such as air pollution
monitoring, where it can guide policymaking. Supplementary materials for this article are available online.
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1. Introduction

Estimating the probabilities associated with multivariate
extreme phenomena beyond the original observation range
requires flexible, yet interpretable, models with sound theo-
retical underpinning, that can be efficiently fitted to the data.
However, these criteria are exponentially more difficult to
meet as dimensionality increases; see, for example, the review
papers by Davison, Padoan, and Ribatet (2012) and Davison
and Huser (2015). For these reasons the notion of “high-
dimensionality” in the field of extremes typically invokes far
smaller scales than those considered in standard statistics.
Indeed, most applications of multivariate Extreme-Value
Theory have focused chiefly on relatively low-dimensional
cases, although much higher dimensions have been handled in
structured, spatial, and spatio-temporal settings (Wadsworth
and Tawn 2012; Huser and Davison 2014). Moreover, the
analysis of extreme events is also very challenging because of
the intrinsic lack of data; extreme datasets comprise only the
largest observations in a sample, and therefore are generally
characterized by small sample sizes, that is, few temporal
replicates.

Recent literature has been focusing on developing innovative
statistical methods to simplify the complex dependence struc-
ture of multivariate extremes in moderate or large dimensions.
Chautru (2015) proposed a nonparametric technique able to
identify possibly overlapping clusters of asymptotically depen-
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dent extreme variables, thus reducing the complexity of the
initial problem. Another approach, proposed by Bernard et al.
(2013), consists in a clustering technique for block maxima
observed at different spatial locations; the new method uses the
F-madogram “distance” in the K-means algorithm. Moreover,
Cooley and Thibaud (2019) summarized tail dependence in
high dimensions by the decomposition of a matrix of pairwise
dependence metrics.

In this work, we contribute to this developing research field
by proposing an efficient methodology to describe parsimo-
niously the dependence between (unstructured) multivariate
maxima. The technique may also be adapted to threshold
exceedances. Our approach relies on the nested logistic
distribution (McFadden 1978; Tawn 1990; Coles and Tawn 1991;
Stephenson 2003), which is max-stable, and thus, asymptotically
justified for the description of the whole multivariate extremal
dependence structure (de Haan and Resnick 1977; de Haan
1984). In particular, thanks to its underlying tree structure, the
nested logistic model can describe the dependence within and
between distinct clusters of variables using logistic distributions
(Gumbel 1960a,b).

Likelihood-based inference for max-stable distributions is
known to be computationally burdensome, especially in high
dimensions as the full likelihood is numerically intractable
(Castruccio, Huser, and Genton 2016; Bienvenüe and Robert
2017). One classical solution that dramatically reduces the
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computational burden but leads to a loss of efficiency consists in
using composite likelihood techniques (Varin and Vidoni 2005;
Padoan, Ribatet, and Sisson 2010; Genton, Ma, and Sang 2011;
Davison and Gholamrezaee 2012; Huser and Davison 2013;
Castruccio, Huser, and Genton 2016). The simplified likelihood
procedure proposed by Stephenson and Tawn (2005) leads to
more efficient inference both computationally and statistically,
but may be severely biased in certain cases. Apart from its
interpretability, the nested logistic model is also appealing for
its inference properties. Here, we derive a recursive formula
for the likelihood of the nested logistic model. The formula
greatly simplifies computations when dealing with multivariate
extremes in moderate or high dimensions without causing any
efficiency loss or introducing any additional bias.

Few authors have so far implemented a fully Bayesian infer-
ence method for the estimation of extremal dependence; see,
for example, Guillotte, Perron, and Segers (2011), Ribatet et al.
(2012), Reich and Shaby (2012), Sabourin et al. (2013), Sabourin
and Naveau (2014), Shaby (2014), and Thibaud et al. (2016). Our
method is based on the reversible jump Markov chain Monte
Carlo (RJ-MCMC) algorithm (Green 1995), which allows us
to sample from the posterior distribution of the nested logistic
model parameters and simultaneously identify the most likely
tree structures (i.e., clustering configurations) governing the
extremal dependence. Moreover, instead of providing just one
tree estimate, our methodology provides a natural measure of
model uncertainty, which is given by the posterior probabilities
associated with the tree structure. Model uncertainty is taken
into account for predictions using Bayesian model averaging,
that is, we construct the posterior predictive distributions as
mixtures of the model-specific distributions weighted by the
associated posterior probabilities. For more details on Bayesian
model averaging see, for example, Hoeting, Madigan, and Volin-
sky (1999). Therefore, we are able to describe complex extremal
dependence structures using a mixture of clustering configura-
tions, transcending the partial exchangeability limitations of the
nested logistic model while maintaining a moderate number of
parameters.

In Section 2, we describe the general extreme-value theory
framework and our modeling approach based on the nested
logistic model. In Section 3, we introduce our new recursive
likelihood formula, as well as alternative likelihood formula-
tions. In Section 4, we describe the proposed RJ-MCMC algo-
rithm, and in Section 5 we verify its performance through an
extensive simulation study. In Section 6, we fit our model to
multivariate air pollution data to investigate the dependence
relations between extreme concentration of air pollutants and
to understand how these relate to extreme weather conditions.
Finally, we discuss these results in Section 7 with an outlook
toward future research.

2. Modeling Extremal Dependence

2.1. Extreme-Value Theory Framework

Suppose that Yt = (Yt;1, . . . , Yt;D)⊤, t = 1, 2, . . ., is a sequence
of independent and identically distributed (iid) copies of the D-
dimensional random vector Y, representing D variables of inter-
est having a common distribution function (df) F with margins

Fd(yd), d = 1, . . . , D, and let Mn = (Mn;1, . . . , Mn;D)⊤ =
( max

1≤t≤n
Yt;1, . . . , max

1≤t≤n
Yt;D)⊤ denote the vector of multivariate

componentwise maxima computed over blocks of n observa-
tions. We assume that, as n → ∞, for some sequences of vectors
an = (an;1, . . . , an;D)⊤ ∈ RD

+ and bn = (bn;1, . . . , bn;D)⊤ ∈
RD, the renormalized vector of componentwise maxima M∗

n =
a− 1

n (Mn − bn) converges in distribution to the random vec-
tor Z, with limiting D-dimensional extreme-value df G and
nondegenerate margins; that is, the distribution F belongs to
the max-domain of attraction (MDA) of G. Upon marginal
standardization, we may assume unit-Fréchet margins, that is,
Gd(zd) = exp(− 1/zd) for zd > 0, d = 1, . . . , D. The joint
distribution of the random vector Z may be written as

P(Z ≤ z) = G(z) = exp{− V(z)}, (1)

V(z) =
∫

SD
max

1≤d≤D

(
ωd
zd

)
dH(ω), z ∈ RD

+,

where V(z), called exponent function, is homogeneous of order
− 1, that is, V (sz) = s− 1V (z) for all s > 0, and H is
a finite spectral measure on the unit simplex SD = {ω ∈
[0, 1]D :

∑D
d=1 ωd = 1} for ω = (ω1, . . . , ωD)⊤, satisfying the

mean constraints
∫

SD
ωddH(ω) = 1, d = 1, . . . , D (de Haan

and Resnick 1977; de Haan 1984). Extreme-value distributions
(1) are max-stable in the sense that Gs(z) = G(z/s) for all s > 0.
For more details, see, for example, Davison and Huser (2015).

A useful summary of the dependence strength between mul-
tivariate extremes is the extremal coefficient, proposed by Smith
(1990) and defined as θD = V(1) ∈ [1, D], where 1 is a
vector of ones. The coefficient θD decreases as the dependence
strength between the margins increases, with θD = 1 and θD =
D corresponding to complete dependence and independence,
respectively.

2.2. The Logistic and Nested Logistic Models

Among max-stable distributions, the oldest and simplest one
is the logistic model (Gumbel 1960a,b), characterized by the
exponent function

Vl(z | α0) =
( D∑

d=1
z− 1/α0

d

)α0

, α0 ∈ (0, 1]. (2)

The parameter α0 summarizes the dependence strength
between the extreme observations z = (z1, . . . , zD)⊤ ∈ RD

+. In
particular, the cases of complete dependence and independence
between the margins correspond to α0 → 0 and α0 = 1,
respectively. Therefore, the logistic model summarizes the
extremal dependence structure by only one parameter α0, and
its components are exchangeable. The extremal coefficient for
the logistic distribution is θD = Dα0 .

Generalizing the idea of the logistic model, McFadden (1978)
and Tawn (1990), see also Coles and Tawn (1991), proposed
the nested logistic distribution, a more flexible multivariate
max-stable model that maintains the logistic model’s simplicity
and interpretability. The nested logistic model implies that
the vector z, containing the extreme observations, is split
into K homogeneous clusters and it describes the dependence
within and between these clusters using the logistic distribution
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defined in (1) based on (2). It is defined by the exponent
function

Vnl(z | α) = Vl
{

Vl(z1 | α0α1)
− 1, . . . , Vl(zK | α0αK)− 1 | α0

}

=

⎧
⎨

⎩

K∑

k=1

⎛

⎝
Dk∑

ik=1
z
− 1

α0αk
k;ik

⎞

⎠
αk

⎫
⎬

⎭

α0

, (3)

where Vl(zk | α0αk) is the logistic exponent function in (2)
of the subvector zk = (zk;1, . . . , zk;Dk)

⊤ comprising extreme
observations belonging to the kth cluster of dimension Dk ∈
{1, . . . , D}, k = 1, . . . , K, with D = ∑K

k=1 Dk, and where
α = (α0, α1, . . . , αK)⊤ ∈ (0, 1]K+1 are the dependence
parameters. More precisely, the parameter α0 summarizes the
dependence strength between the clusters and the product
of the parameters α0αk summarizes the dependence strength
within the kth cluster. The extremal coefficient, which quantifies
the effective number of independent variables among the D
variables, is equal to θD =

(∑K
k=1 Dαk

k

)α0
for the nested logistic

distribution. The hierarchical structure of the nested logistic
model can be represented with a tree, as illustrated in Figure 1.
In practice, more complex situations may arise with more
clusters and, possibly, an arbitrary number of layers (Stephenson
2003). For simplicity, in this article, we limit ourselves to
dependence structures with only two layers (i.e., one nesting
level).

The nested logistic model can also be defined in terms
of nested Archimedean copulas or nested Gumbel copulas
(Okhrin, Okhrin, and Schmid 2009; Hofert and Pham 2013).
There exist already a number of papers on inference on such
copulas, both parametric and nonparametric; see, for example,
Okhrin, Okhrin, and Schmid (2013), Segers and Uyttendaele
(2014), and Górecki, Hofert, and Holeňa (2016).

2.3. Bayesian Model Averaging Over Tree-based
Dependence Structures

Although the nested logistic distribution defined in Section 2.2
is more flexible than the logistic model, it is still fairly rigid
in practice because it assumes that the variables are partially

Figure 1. Example of a simple two-layer tree structure, summarising the extremal
dependence of the vector Z = (Z1, Z2, Z3, Z4)⊤ , where the dependence within
the pairs of variables (Z1, Z3)⊤ , (Z1, Z4)⊤ , (Z2, Z3)⊤ and (Z2, Z4)⊤ is summarized
by a logistic distribution with parameter α0, and the dependence within the pairs
of variables (Z1, Z2)⊤ and (Z3, Z4)⊤ is summarized by logistic distributions with
parameters α0α1 and α0α2, respectively.

exchangeable, and that any pair of variables belonging to dif-
ferent clusters has the same logistic distribution with parameter
α0. To overcome these limitations, we here embed the nested
logistic model into the Bayesian framework and assume that the
underlying tree structure is random.

Let G be the set of all possible two-layer trees with D terminal
nodes (i.e., leaves), and T ∈ G denote a specific tree (e.g., as in
Figure 1). Splitting the observed data Yt = (Yt;1, . . . , Yt;D)⊤,
t = 1, . . . , M, into N blocks with an equal number of obser-
vations n (assuming that M = Nn), we first extract compo-
nentwise maxima data mi = (mi;1, . . . , mi;D)⊤, i = 1, . . . , N.
Then, after transforming the maxima to the unit Fréchet scale,
we assume the following hierarchical model:

mi | T , α iid∼ NestedLogistic(α; T )

α | T ∼ π(α; T )

T ∼ π(T ),

where the model parameters α = (α0, α1, . . . , αK)⊤ ∈ (0, 1]K+1

have independent prior distributions, that is, π(α; T ) =∏K
k=0 π(αk). To allow for independence within and between

the clusters of variables, we choose the prior distribution
for each dependence parameter αk as a mixture between a
point mass at αk = 1 (the upper boundary of the domain of
definition), and a uniform distribution in [0, 1]. Specifically, for
each k = 0, . . . , K, we set π(αk) = 0.5δ1 + 0.5Unif(0, 1),
where δ1 is the Dirac delta function at 1. This allows us to
reduce model complexity if certain parameters are found to
be exactly equal to one. Notice that the parameter vector α
is intrinsically linked to the tree T ; in particular, the number
of model parameters (i.e., the dimension of the vector α) is
equal to K + 1, the number of nonterminal nodes of the
underlying tree structure T . Finally, we assume that T has
a discrete uniform prior on the (finite) set of all admissible
trees, G, that is, π(T ) = 1/|G|. Thus, a priori, all clustering
configurations are equally likely. Every fixed tree T leads to a
different nested logistic model for the data with its own vector of
parameters α. Integrating out T therefore amounts to averaging
different nested logistic models, which introduces partial
asymmetries.

To fit this complicated model, we develop a RJ-MCMC
algorithm (Green 1995), which allows us to sample from the
posterior distribution of the underlying tree structure T and
the model parameters α (of varying dimension), jumping
across different nested logistic models. The resulting RJ-MCMC
output can then be used to perform model averaging by
marginalizing over T . To implement such an algorithm, the
likelihood function of the nested logistic model plays a key role.
In Section 3, we show how it can be computed efficiently, and
in Section 4, we describe our RJ-MCMC algorithm in more
detail.

3. Full Likelihood

3.1. General Full Likelihood Formula

Assuming that the vectors of componentwise maxima mi =
(mi;1, . . . , mi;D)⊤, i = 1, . . . , N, follow a multivariate extreme-
value distribution with unit Fréchet margins as in (1), the full
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likelihood function may be expressed in general form as

L(α | m1, . . . , mN) (4)

=
N∏

i=1
exp{− V(mi | α)}

{
∑

E∈E

∏

S∈E
− V̇S(mi | α)

}

,

where α is the vector of unknown dependence parameters, E
denotes the collection of all partitions of D = {1, . . . , D}, V̇S
denotes the partial derivative of the function V in (1) with
respect to the variables whose indices lie in S ⊂ D; see,
for example, Huser, Davison, and Genton (2016); Huser et al.
(2019). The cardinality of E equals BD, the Bell number of order
D (Graham, Knuth, and Patashnik 1988), meaning that the
number of terms to be computed and the storage space required
for evaluating the likelihood grow super-exponentially with the
dimension D (Castruccio, Huser, and Genton 2016). In the next
sections, we propose two different ways to significantly speed-
up computations in high dimensions: either by exploiting the
specific structure of the nested logistic model (Section 3.2), or
by using the additional information about occurrence times of
maxima (Section 3.3).

3.2. Recursive Full Likelihood Formula

Similarly to the recursive full likelihood formula for the logistic
model derived by Shi (1995), we here develop a recursive for-
mula to efficiently compute the full likelihood function (4) for
the nested logistic model (3). Let mi;k;1:Dk be the subvector of
maxima belonging to the kth cluster of dimension Dk. Recalling
that the nested logistic likelihood depends on a particular tree
structure T , the recursive likelihood formula may be written as

L(α | m1, . . . , mN ; T ) =
N∏

i=1
exp{− Vnl(mi | α)}

D1∏

i1=1
m

− 1
α0α1 − 1

i;1;i1

· · ·
DK∏

iK=1
m

− 1
α0αk

− 1
i;K;iK

D1∑

i1=1
· · ·

DK∑

iK=1
∑K

k=1 ik∑

j=1
β

(D1;...;DK )
i1;...;iK ;j Vl(m1/α0

i;1;1:D1
| α1)

i1− D1
α1

· · · Vl(m1/α0
i;K;1:DK

| αk)
iK− DK

αk Vnl(mi | α)
j−

∑K
k=1 ik
α0 ,

(5)

where Vnl(mi | α) is defined in (3) and Vl(m1/α0
i;k;1:Dk

| αk) =
(∑Dk

ik=1 m− 1/(α0αk)
i;k;ik

)αk
, i = 1, . . . , N, k = 1, . . . , K. The coef-

ficients β
(D1;...;DK )
j1;...;jK ;j can be computed recursively in explicit form

reducing the computational complexity to O
( ∑K

k=1(D1 + · · ·
+Dk)D1 · · · Dk− 1D2

k
)

≪ BD; the proof of (5) and the expression
for β

(D1;...;DK )
j1;...;jK ;j are given in Appendix A.3. When all the clusters

are of equal size, that is, Dk = D1 for all k = 2, . . . , K, the
complexity is O

(
K

∑K
k=1 Dk+2

1

)
. Therefore, the computational

time needed to compute the full likelihood using the recursive
formula is polynomial in terms of the number of variables D,
but exponential-linear in terms of the number of clusters K,

suggesting that in practice it might be convenient to prevent K
from being large when D is large. The formula (5) holds for the
nested logistic model (3) constructed from an underlying two-
layer tree structure. Recursive formulas for more complex tree
structures with additional layers may be derived similarly, but
they have a higher computational complexity.

3.3. Stephenson–Tawn Likelihood

Stephenson and Tawn (2005) developed a simplified likelihood
approach for multivariate extreme-value data, which uses addi-
tional information about the occurrence times of maxima. Pre-
cisely, using the same notation as in Section 3.1, for each i =
1, . . . , N, let Ei ∈ E denote the partition of D = {1, . . . , D}
grouping the maxima mi;1, . . . , mi;D with identical occurrence
times. For instance, for D = 3, the partition Ei = {1, {2, 3}} indi-
cates that the maxima mi;2 and mi;3 occurred simultaneously,
that is, at the same index t within the ith block, but at a different
one than mi;1. The Stephenson–Tawn likelihood is

L{α | (m1, E1), . . . , (mN , EN)}

=
N∏

i=1
exp{− V(mi | α)}

⎧
⎨

⎩
∏

S∈Ei

− V̇S(mi | α)

⎫
⎬

⎭ , (6)

where α is the vector of unknown parameters and V̇S denotes
the partial derivative of V in (1) with respect to the variables
in S. Therefore, using the partitions Ei, i = 1, . . . , N leads to a
more efficient inference, both computationally and statistically,
which comes at the price of introducing estimation bias; see
Huser, Davison, and Genton (2016), Thibaud et al. (2016)
and our simulations in Section 5. The Stephenson–Tawn
likelihood replaces the asymptotic partitions with the observed,
sub-asymptotic ones, which might be misspecified and cause
bias for finite block sizes n. Wadsworth (2015) proposed a
bias reduction technique, which remains intensive in case of
strong dependence or large dimensions. To further speed up
the computation of (6), we derived a recursive formula to
compute the partial derivatives of the nested logistic model
exponent function. Let mi;k;1:dk be the subvector of the first
1 ≤ dk ≤ Dk components of the maxima vector belonging
to the kth cluster. Partial derivatives of the nested logistic
exponent function Vnl with respect to the variables mi;k;1:dk ,
k = 1, . . . , κ , within 1 ≤ κ ≤ K clusters, may be
expressed as

∂
∑κ

k=1 dk Vnl(mi | α)

∂
∏κ

k=1 mi;k;1:dk
=

d1∏

i1=1
m

− 1
α0α1 − 1

i;1;i1 · · ·
dκ∏

iκ=1
m

− 1
α0ακ

− 1
i;κ ;iκ

×
d1∑

i1=1
· · ·

dκ∑

iκ=1
γ

(d1;...;dκ )
i1;...;iκ Vl(m1/α0

i;1;1:d1
| α1)

i1− d1
α1 · · ·

Vl(m1/α0
i;κ ;1:dκ

| ακ)
iκ− dκ

ακ Vnl(mi | α)
1−

∑κ
k=1 ik
α0 ,

(7)

which can then be plugged into (6) leading to the like-
lihood L{α | (m1, E1), . . . , (mN , EN); T } (now emphasizing
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that it depends on a tree structure T ). The total com-
plexity for computing the recursive coefficients γ

(d1;...;dκ )
i1;...;iκ is

O
(∑κ

k=1 d1 · · · dk− 1d2
k
)
. If all clusters are of equal size, that

is, dk = d1, for all k = 2, . . . , κ , then O
(∑κ

k=1 dk+1
1

)
. The

proof of (7) and the expression for γ
(d1;...;dκ )
i1;...;iκ are given in the

supplementary material.

4. Inference by RJ-MCMC

4.1. General Considerations

To fit the nested logistic model with an unknown tree structure
T , we exploit the reversible jump MCMC algorithm (Green
1995) (RJ-MCMC). This algorithm allows us to sample from
the posterior distribution of the model parameters α =
(α0, . . . , αK)⊤ ∈ (0, 1]K+1 (of possibly varying dimensions)
and the tree T ∈ G itself, and thus, as a by-product, it
can identify the most likely tree structures (i.e., clustering
configurations) that best describe the componentwise maxima
data. Moreover, instead of describing the data with a single, fixed
tree structure, our approach accounts for model uncertainty and
allows to improve the model’s predictive performance using
Bayesian model averaging. In particular, the final posterior
predictive distributions are obtained as an average of the
posterior distributions associated with each of the nested logistic
models (i.e., each of the trees) considered by the RJ-MCMC
algorithm weighted by their posterior probabilities, calculated
as the proportion of time the chain has spent on each of the
trees.

The joint posterior distribution π(α, T | m1, . . . , mN) is pro-
portional to

π(α, T | m1, . . . , mN) ∝ L(α | m1, . . . , mN ; T )π(α; T )π(T )

∝ L(α | m1, . . . , mN ; T )

K∏

k=0
π(αk),

(8)

where L(α | m1, . . . , mN ; T ) is either the full (recursive) like-
lihood (5) or the Stephenson–Tawn likelihood (6) computed
using (7) (where the partitions Ei, i = 1, . . . , N have been
dropped here for simplicity), π(α; T ) = ∏K

k=0 π(αk) is the
prior defined in Section 2.3 and π(T ) = 1/|G| is the discrete
uniform prior on the space of two-layer tree structures, G; recall
Section 2.3.

In our algorithm, we build an irreducible and ergodic
Markov chain on the domain of admissible combinations of
parameters α and trees T (i.e., the product space (0, 1]K+1 ×G),
in a way to ensure proper convergence to the joint posterior
distribution (8). At each iteration, we first sequentially update
each parameter αk ∈ (0, 1] conditional on the current tree
structure T c and the other model parameters, and then
we update the tree T given the current parameter vector
αc. In Section 4.2, we introduce the Metropolis–Hastings
(Hastings 1970) algorithm that we use to update the model
parameters α conditional on the tree. In Section 4.3, we
explain how to move across tree structures T given the model
parameters.

4.2. Updating the Model Parameters Using
Metropolis–Hastings

We here explain how to update the model parameters α =
(α0, α1, . . . , αK)⊤ conditional on the current tree structure T c.
At each MCMC iteration, we sequentially propose candidate
parameter values α∗

k for each parameter αk based on a proposal
distribution q(α∗

k | αc
k), where αc

k denotes the current value of
the parameter αk. As we choose the prior π(αk) as a mixture
between a point mass at 1 and a uniform distribution in [0, 1]
(recall Section 2.3), the proposal distribution q also needs to
reflect this feature, in order to explore the whole space of admis-
sible parameters. Therefore, we define the proposal distribution
as follows:

q(α∗
k | αc

k) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5δ1 + 0.5p(α∗
k | αc

k),
if αc

k ̸= 1 and 1 ∈ [αc
k − εk, αc

k + εk];
p(α∗

k | αc
k),

if αc
k = 1 or 1 /∈ [αc

k − εk, αc
k + εk],

where δ1 denotes the Dirac delta function at 1, εk is a tuning
parameter, and p(α∗

k | αc
k) is the density of a uniform random

variable with boundaries
{

max
(
0, αc

k − εk
)

, min
(
αc

k + εk, 1
)}

.
The parameter α∗

k is then accepted with probability

min
{

π(α∗, T c | m1, . . . , mN)q(αc
k | α∗

k )

π(αc, T c | m1, . . . , mN)q(α∗
k | αc

k)
, 1

}

= min
{L(α∗ | m1, . . . , mN ; T c)π(α∗

k )q(αc
k | α∗

k )

L(αc | m1, . . . , mN ; T c)π(αc
k)q(α∗

k | αc
k)

, 1
}

.

If accepted, then αc
k is replaced with α∗

k , otherwise it keeps its
current value. Adaptive methodologies for choosing the tun-
ing parameters εk allow for efficient simulations even in high
dimensions. We update εk every 100 iterations during the burn-
in, ensuring that the acceptance rate remains between 20% and
50% to guarantee well-mixing properties of the chain. Then,
we restart the algorithm with fixed εk values. More details are
available in the supplementary material.

4.3. Moving Across Tree Structures Using Reversible Jump
MCMC

Any proposed transition from the current tree T c, with
parameters αc of dimension dim(αc), to a proposed tree T ∗,
with parameters α∗ of dimension dim(α∗), must be reversible.
Therefore, if the transition involves a dimension change, a
random auxiliary variable uc is generated such that, when
moving from the current state xc = (αc, uc) to the proposed
state x∗ = (α∗, u∗), the dimension matching condition
dim(xc) = dim(x∗) is satisfied and the mapping gxc→x∗ is
a bijection (Green 1995). Throughout, we assume a uniform
prior distribution on the space of valid two-layer tree structures,
although more efficient algorithms with informative priors
might be designed. The proposed transition is accepted based
on the acceptance probability

min
{

π(α∗, T ∗ | m1, . . . , mN)q(uc, αc | u∗, α∗)πxc→x∗

π(αc, T c | m1, . . . , mN)q(u∗, α∗ | uc, αc)πx∗→xc
∣∣∣∣
∂(α∗, u∗)
∂(αc, uc)

∣∣∣∣ , 1
}

,
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where u∗ corresponds to the auxiliary variable generated to
meet the reversibility condition, π(α∗, T ∗ | m1, . . . , mN) is the
posterior distribution evaluated at the state x∗ (i.e., for the tree
T ∗), q(u∗, α∗ | uc, αc) is the proposal distribution for moving
from the state xc to the state x∗ and πxc→x∗ is the proba-
bility of choosing such a move type (i.e., from the current
tree T c to the proposed tree T ∗); uc, π(αc, T c | m1, . . . , mN),
q(uc, αc | u∗, α∗) and πx∗→xc correspond to the reverse move
counterparts and

∣∣∣ ∂(α∗,u∗)
∂(αc,uc)

∣∣∣ is the Jacobian of the transformation
gxc→x∗ . In practice, there might be no need to generate any
auxiliary variable in one direction or the other.

We implement three different move types within the
reversible jump MCMC algorithm in order to explore the whole
space of admissible trees. The moves are defined below and
represented in Figure 2. At each iteration of the reversible
jump MCMC algorithm, each move type is chosen with
probability πxc→x∗ = 1/3. Given that our approach aims
at describing extremal dependence using a mixture of tree
structures, we henceforth call it the tree mixture (TM)-MCMC
algorithm.

Split Move: The split move consists in splitting an existing
cluster at random. It is the inverse of the merge move defined
below, and the transition implies a dimension change. More
precisely, the current state xc = (αc

1, uc)⊤ is mapped to the
proposed state as x∗ = (α∗

1 = αc
1 + uc, α∗

2 = αc
1 − uc)⊤,

where uc is an auxiliary variable. The proposal distribution for
the split move q(uc, αc

1 | α∗
1 , α∗

2 ) is defined by assuming that uc

is a uniform random variable with boundaries chosen such that{
max

(
0, αc

1 − η
)

≤ α∗
1 , α∗

2 ≤ min
(
αc

1 + η, 1
)}

, for some η ∈
[0, 1]. The constant η should, in practice, be chosen in order to

ensure that the chain is well-mixing; in our case we fix η = 0.4.
Here, the Jacobian reduces to

∣∣∣ ∂(α∗
1 ,α∗

2 )

∂(αc
1,uc)

∣∣∣ = 2.
Merge Move: The merge move consists in merging two clus-

ters at random. It is the inverse of the split move, implying a
dimension change transition from the state xc = (αc

1, αc
2)

⊤ to
x∗ = (α∗

1 = (αc
1 + αc

2)/2, u∗ = (αc
1 − αc

2)/2)⊤. In this case,
there is no need to generate any auxiliary random variable and
the Jacobian reduces to

∣∣∣ ∂(α∗
1 ,u∗)

∂(αc
1,αc

2)

∣∣∣ = 1
2 .

Swap Move: The swap move consists in exchanging some
variables from one cluster to another cluster at random. This
move type is self-reversible because transitioning from the cur-
rent state xc = (αc

1, αc
2)

⊤ to the proposed state x∗ = (α∗
1 , α∗

2 )⊤

does not involve any parameter dimension change and therefore
the Jacobian is simply equal to one.

In our implementation of this algorithm, the initial tree
configuration groups all variables in the same cluster, so that
the order in which the variables appear in the dataset does
not matter. More details on the algorithm are available in the
supplementary material.

5. Numerical Experiments

5.1. Simulation Settings

The TM-MCMC algorithm performance is tested on 1000 inde-
pendent simulated datasets of various dimensions D = 4, 10, 15,
imposing the dependence structures represented in Figure 3. It
is important to bear in mind that multivariate extremes appli-
cations are normally carried out for relatively low dimensions.
Here, we simulate data up to dimensions D = 15, which is

Figure 2. Illustration of the reversible split, merge and swap moves implemented in the TM-MCMC algorithm.

Figure 3. Dependence structure configurations used for the data simulation when D = 4 (top left), D = 10 (top right) and D = 15 (bottom).
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considered fairly large in this type of applications. The data are
generated from: the nested logistic distribution (3) as explained
by Stephenson (2003); a nested Archimedean copula with unit
Fréchet margins whose distribution is in the max-domain of
attraction (MDA) of the nested logistic distribution; and the
Student-t copula with unit Fréchet margins, whose limit max-
stable distribution is not the nested logistic model, but rather
the extremal t model (Opitz 2013), thus implying a more severe
model misspecification. More specifically, data in the MDA of
the nested logistic distribution are sampled using the outer
power nested Clayton copula with one nesting level and K child
copulas (clusters), that is,

C(u) = C{C(u1; ϕ1), . . . , C(uK ; ϕK); ϕ0}, (9)

where u = (u⊤
1 , . . . , u⊤

K )⊤ ∈ [0, 1]D and ϕk = (1 − t)− 1/θk ,
k = 0, 1, . . . , K, are Archimedean generators of the Clayton’s
family (Hofert and Pham 2013). The parameters θk ∈ [1, ∞)

fulfill the sufficient nesting condition if θ0 ≤ θk, k = 1, . . . , K
and are fixed according to θ0 = 1/α0 and θk = 1/(α0αk)
with α0, αk, k = 1, 2, 3, specified in Figure 3. Sampling from
such copulas is explained by Hofert (2011). More details about
sampling nested Archimedean copulas using R can be found in
Hofert and Martin (2011). Student-t data are generated from the
multivariate Student-t distribution with 10 degrees of freedom,
zero mean vector and covariance matrix #D×D(ρ0) as specified
below

#4×4(ρ0) =
[

A2(ρ1) ρ012×2
ρ012×2 A2(ρ3)

]
,

#10×10(ρ0) =

⎡

⎣
A3(ρ1) ρ013×4 ρ013×3
ρ014×3 A4(ρ2) ρ014×3
ρ013×3 ρ013×4 A3(ρ3)

⎤

⎦ ,

#15×15(ρ0) =

⎡

⎣
A4(ρ1) ρ014×6 ρ014×5
ρ016×4 A6(ρ2) ρ016×5
ρ015×4 ρ015×6 A5(ρ3)

⎤

⎦ ,

where 1n×m is the n × m matrix of ones and An(ρk) = (1 −
ρk)In + ρk1n×m, k = 1, 2, 3, with In being the n × n identify
matrix and ρk = 0.98, 0.94, 0.86. The simulation is repeated
for different values of ρ0 = 0.77, 0.62, 0. The coefficients ρ0
and ρk, k = 1, 2, 3, are chosen such that the pairwise extremal
coefficients θ2 for the limiting extremal t distribution match the
extremal coefficients calculated for the nested logistic model,
with respective parameters α0 and α0αk, k = 1, 2, 3, speci-
fied in Figure 3, except for ρ0 = 0. Indeed, for ρ0 = 0,
θ2 = 1.99, only approximately 2, which corresponds to the
complete independence case of α0 = 1. The simulation param-
eters used in the numerical experiments are summarized in
Table 1. For the results presented below in Section 5.2, we iden-
tify for simplicity the Student-t correlation parameters, ρ0, ρk,

to their analog in terms of the nested logistic distribution,
α0, α0αk.

For each simulation setting under model misspecification, we
generate datasets of sample sizes M = 10,000, 20,000, 40,000
and extract N = 100, 200, 400 componentwise maxima with
blocks of size n = 100, respectively. The simulation results are
obtained considering R = 15,000 iterations, including R/5 =
3000 burn-in iterations. We do not show simulation results for
data sampled from the nested logistic distribution (3) as they
lead to the same conclusion as simulation experiments con-
ducted for data simulated from the nested outer power Clayton
copula (9).

5.2. Summary of Simulation Results

The histograms in Figure 4 indicate the proportion of times that
each tree structure (A, B, C and D) is identified as the most likely
clustering configuration representing the data across B = 1000
TM-MCMC algorithm chains, when the recursive likelihood
formula (5) is used in each likelihood evaluation, considering
data generated from both the copula in (9) and the Student-t
distribution. Generally, our method correctly identifies the true
tree structure, represented by tree A (green), as the most likely
clustering configuration of componentwise maxima describing
the data dependence structure. Moreover, the method identifies
at least the cluster characterized by strong dependence strength
in tree B (yellow) across all chains. When the data are generated
from the copula (9), the method’s performance improves as the
value of the α0 parameter and the sample size increase; this
means that the between-cluster dependence strength plays an
important role in identifying the true dependence structure.
When data are simulated from the Student-t distribution, the
“true” tree structure is mostly identified by our method for any
sample sizes, suggesting that our inference approach also works
well in misspecified settings.

Figure 5 displays the proportion of times the true compo-
nentwise maxima partition was identified by applying the TM-
MCMC algorithm, also called true positive rates, when using
either the recursive formula (5) or the Stephenson–Tawn likeli-
hood (6). The true positive rates are plotted against different val-
ues of the parameter α0 for sample sizes N = 100, 200, 400. The
data are simulated from the copula (9) and from the Student-t
distribution with D = 10, 15. In accordance with the findings
for D = 4, the method performs reasonably well, identifying
all clusters more than 80% of the time for all sample sizes when
using the recursive likelihood. The effect of misspecification is
more apparent in larger dimensions, but remains quite weak
overall. In contrast, the true positive rate is generally lower for all
clusters when the Stephenson–Tawn likelihood is implemented,
and it decreases as the between-cluster dependence increases.

Table 1. Dependence parameters used in the simulation experiments. From left to right, the coefficients of α0 and ρ0 represent the cases from weak dependence to
complete or near independence between the clusters, and the coefficients α0αk and ρk represent the cases of strong, mild, and weak dependence within the clusters,
respectively.

MDA data Student-t data

D = 4 α0 = 0.8, 0.9, 1 α0αk = 0.3 α0αk = 0.7 ρ0 = 0.77, 0.62, 0 ρk = 0.98 ρk = 0.86
D = 10 α0 = 0.8, 0.9, 1 α0αk = 0.3 α0αk = 0.5 α0αk = 0.7 ρ0 = 0.77, 0.62, 0 ρk = 0.98 ρk = 0.94 ρk = 0.86
D = 15 α0 = 0.8, 0.9, 1 α0αk = 0.3 α0αk = 0.5 α0αk = 0.7 ρ0 = 0.77, 0.62, 0 ρk = 0.98 ρk = 0.94 ρk = 0.86
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Figure 4. The histograms (left) report the proportion of times that a specific tree structure (right) is identified as the most likely one across B = 1000 TM-MCMC algorithm
chains after R = 15,000 iterations for data generated from the copula in (9) and from the Student-t copula with D = 4 and tree structure comprising two clusters of
variables (see the top-left tree in Figure 3). The recursive formula (5) was used for the likelihood evaluation. The correct tree structure is tree A (green).

Figure 5. The true positive rate calculated for each cluster is plotted against different values of the parameter α0 (abscissa) for different sample sizes N (colors) obtained
by applying the TM-MCMC algorithm with R = 15,000 iterations over B = 1000 replicates for data generated from the copula in (9) and from the Student-t copula
with D = 10, 15 and tree structure comprising three clusters of variables (see the bottom tree in Figure 3) implementing either the recursive formula (5) (left) or the
Stephenson–Tawn (6) likelihood (right) using (7), respectively.

The computational time generally ranges from a few seconds
to a few minutes depending on the running time for individual
likelihood calculations. In the simplest case with D = 4 and N =
100, a single likelihood evaluation takes around 0.05 seconds
using either the recursive likelihood formula or the Stephenson–

Tawn likelihood formula, whereas in the most complicated case
with D = 15 and N = 400 a single likelihood evaluation
takes around 12 seconds using the recursive likelihood and
less than 2 seconds using the approximate Stephenson–Tawn
likelihood.
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6. Application to Air Pollution Data

6.1. Air Pollutants

Air pollution has various negative effects on human health,
ranging from respiratory illnesses to premature death, see, for
example, Peden (2001), Brunekreef and Holgate (2002) and
Kampa and Castanas (2008), and causes serious global envi-
ronmental issues such as global warming and ozone depletion,
see, for example, Murphy et al. (1999) and Seinfeld and Pandis
(2016). Generally, regional air quality is affected by topography
and weather, but also by emission sources. Ground level ozone
(O3) is formed by chemical reactions of volatile organic com-
pounds (VOCs) and nitrogen dioxide (NO2), in the presence
of heat and sunlight (Jacob and Winner 2009). NO2, like its
precursor nitric oxide (NO), and carbon monoxide (CO) are
mostly created by the combustion of fossil fuels in power plants
and automobile engines (Cofala et al. 2007). VOCs include a
large variety of both natural and artificial chemical species, such
as methane and isoprene.

Several international institutions and agencies, including the
United States Environmental Protection Agency (U.S. EPA),
have traditionally focused on controlling the emissions of each
of the most dangerous air pollutants, also called criteria pol-
lutants, for example, O3, NO2, and CO, separately. However,
long-term and peak exposures to multiple air pollutants simul-
taneously have been demonstrated to cause serious health prob-
lems (Dominici et al. 2010; Johns et al. 2012) and so policy-
makers worldwide, including the U.S. EPA, are now keen on
moving toward a multi-pollutant approach to quantify air pol-
lution risks (Johns et al. 2012). There is also growing inter-
est in studying the health effects of the interaction between
ozone and temperature, see, for example, Kahle et al. (2015),
particularly given that temperatures are expected to rise in the

coming decades. In this work, we investigate the dependence
relationships between extreme concentrations of air pollutants
and extreme weather conditions through max-stable distribu-
tions using the TM-MCMC algorithm described in the previous
sections. In particular, we focus on daily observations available
from the Air Quality System (AQS) database on the EPA website
https://www.epa.gov/aqs collected at 21 sites across the state of
California, which is one of the most populated and polluted
areas of the U.S. (American Lung Association 2017). The site
locations can be visualized in Figure 6. Details on the data
preprocessing and marginal estimations are available in the
supplementary material.

6.2. Multivariate Analysis of California Air Pollution
Extremes

Considering daily observations of the variables CO, NO, NO2,
O3, and temperature (T) collected from January 2004 to Decem-
ber 2015, we derive at least 100 multivariate monthly maxima
for each site in Figure 6 to which we apply the TM-MCMC
algorithm with R = 15,000 iterations, and burn-in R/5 = 3000.
The most frequent dependence structures identified by our
method and the corresponding posterior probabilities obtained
for each of the sites under study are represented in Figure 7. In
particular, the tree structures that appear most often across the
chains are trees A and B, considered at 16 sites. Tree A includes
only the CO-NO cluster, while tree B has two clusters, respec-
tively, grouping the maxima of NO and CO and the maxima
of NO2 and O3 with T. While the data dependence structure
can be represented by only tree B at the Clovis-Villa site, for
instance the TM-MCMC algorithm suggests to represent the
extremal dependence structure at Victorville-Park Avenue using
a mixture of the trees A, C, D, and E.

Figure 6. Map of California with the 21 sites under study indicated by numbers.
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Figure 7. A different letter is associated to each of the most frequent tree structures (right) identified by the TM-MCMC algorithm after R = 15,000 iterations and burn-in
R/5 = 3000. The histograms (left) report the posterior probability associated to each tree for each site under study calculated according to the number of times each tree
appears in the algorithm chain.

Figure 8. A color scale is used to represent the point estimates of the nested logistic model (3) parameters computed as the median of the sub-chain corresponding to the
most likely tree after burn-in. The parameter α0 represents the dependence between the clusters (left map) and the parameters α0α1, α0α2 represent the dependence
within the clusters CO-NO (central map) and O3-NO2-T (right map), respectively.

Figure 8 represents the point estimates for the nested logistic
model parameters α, considering the tree structures A and B
in Figure 7. The values of the parameter α0 represented in
the left map are generally close to α0 = 0.7 for the southern
sites, whereas α0 tends to be close to 1 for the northern sites,
indicating that most of the identified clusters can be treated
independently. This suggests that the original observations from

these distinct clusters are asymptotically independent, which
can arise for example when they are weakly dependent in the
bulk, but not in the upper tail, or when they are negatively
associated. As expected, the dependence strength within the
clusters is stronger. The maxima of NO and CO are found to be
particularly dependent in areas characterized by heavy traffic,
especially between the cities of Anaheim and Long Beach and
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close to Los Angeles and San Diego. The dependence strength
between the maxima of NO2, O3, and T is generally mild or weak
for the inland sites, but increases for the sites near the coast.

The Air Quality Index (AQI) is a measure typically used
by the U.S. EPA to communicate the level of air pollution to
the public. When multiple criteria pollutants are measured at
the same location, the EPA reports the largest AQI value as a
measure of air quality; for more details see, for example, Airnow
(2016). The AQI is divided into different categories that indicate
different levels of health concern. Using our methodology, we
are able to sample from the posterior predictive distribution of
the AQI values for the maxima of the criteria pollutants CO, O3,
and NO2, taking into account the uncertainty associated with
the trees summarizing the dependence relations between these
pollutants, meteorological parameters, and other air pollutants
using Bayesian model averaging. In Figure 9, we display high
p-quantiles with probabilities ranging from p = 0.5 to p =
0.996, considering August 2006 and August 2014 as baselines,
computed for the smallest, the average and the largest AQI
monthly maxima for CO, O3, and NO2. The projections and
credible bands for the AQI of CO, O3 and NO2 were com-
puted as explained in U.S. EPA (2018) on the basis of 500 new
datasets simulated from the nested logistic distribution with
the dependence parameters obtained by 500 independent TM-
MCMC algorithm runs with R = 50,000 and burn-in R/5.
Notice that the values of p = 1 − 1/12 ≈ 0.917 and p =
1 − 1/(12 × 20) ≈ 0.996 roughly correspond to 1 and 20
year-return levels, respectively, under stationary conditions. The
AQI categories are represented by different colors. For com-
parison purposes, we also computed high quantiles for the site
named Victorville-Park Avenue. Since we estimate the depen-
dence structure separately from the margins, the 95% bootstrap
credible intervals solely reflect the model uncertainty associated
with the clustering, illustrating the ability of the TM-MCMC
algorithm to realistically account for the model uncertainty
in predictions. In practice, it might be better to adopt a fully
Bayesian approach aggregating the margins and dependence

structure uncertainties. Interestingly, the 95% bootstrap credible
bands are very narrow in the case of the Clovis-Villa site. Indeed,
from Figure 7, a single-tree structure (tree B) is sufficient to
represent the whole dependence structure. On the other hand,
as shown in Figure 7, the site Victorville-Park Avenue is charac-
terized by a higher model uncertainty, which reflects on much
wider credible bands for the high quantiles in Figure 9. The
high p-quantiles projections calculated based on August 2006
are generally larger than the high quantiles based on August
2014. For 2014, the minimum AQI exceeds the satisfactory level
of 50 with probability about 0.5% at Clovis-Villa and around
20% at Victorville-Park Avenue, that is, once every 15–20 years
and 3 times per year on average, respectively, under stationarity.
Moreover, the average AQI generally lies within the unhealthy
category only for sensitive groups of people in Clovis-Villa
whereas at Victorville-Park Avenue it is expected to exceed this
category with probability about 1.5%, so roughly once every 5
years on average. The maximum AQI high quantiles generally lie
within the very unhealthy category, indicating that at least one
of the criteria pollutants under study exceeds this most critical
threshold with probability about 15% at Clovis-Villa and around
2.5% at Victorville-Park Avenue, and therefore 2 times per year
and once every 3 or 4 years on average, respectively.

6.3. Analysis of Clovis-Villa Air Pollution Extremes

We now include in our analysis the monthly maxima of relative
humidity (RH), barometric pressure (BP) and wind speed
(WS), together with concentration maxima of nonmethane
organic compounds (NM), which are essentially VOCs without
methane. For illustrative purposes, we focus on the site named
Clovis-Villa, located in Fresno, for which we were able to derive
54 multivariate monthly maxima, collected from January 2006
to December 2014. The two tree structures identified by the TM-
MCMC algorithm are illustrated in Figure 10. In accordance
with previous findings, our method groups the maxima of

Figure 9. High p-quantiles zp computed for the minimum (left), the average (center) and the maximum (right) AQI setting August 2006 (dashed lines) or August 2014 (solid
lines) as baselines with 95% bootstrap credible bands (grey areas) for CO, O3, and NO2 indexes, obtained for the Clovis-Villa (top) and Victorville-Park Avenue (bottom) site
applying the TM-MCMC algorithm after R = 50,000 iterations and burn-in R/5 iterations. AQI categories: 0–50 satisfactory (green); 51–100 acceptable (yellow); 101–150
unhealthy for sensitive groups (orange); 151–200 unhealthy (red); >200 very unhealthy (purple). Probabilities are displayed on a Gumbel scale, that is, zp is plotted against
− log{− log(p)}.
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Figure 10. Dependence structures identified by the TM-MCMC algorithm after R = 15,000 iterations and the associated posterior probability for Clovis-Villa.

Figure 11. Trace-plots (left) and the autocorrelation functions (right) for the sub-chain corresponding to the tree structure represented in Figure 10, with posterior
probability of 84% obtained by applying the TM-MCMC algorithm after R = 15,000 iterations after a burn-in of R/5 iterations. The posterior medians are represented
by yellow lines.

NO and CO through 98% of the chain, and the maxima of
O3, NO2, and T, now combined with RH, through 84% of the
chain.

The algorithm output is provided in Figure 11. The sub-
chains seem stationary from the trace-plots on the left pan-
els and the autocorrelation functions on the right panels hint
toward good mixing properties. In particular, the posterior
median of the parameter α0 is exactly 1, indicating that the two
clusters of variables, as well as the other single variables, can be
treated independently. Therefore, our methodology allows us
to significantly reduce the data complexity by describing their
extremal dependence structure using only three parameters, or
even two since α0 = 1, for the nine variables considered here.
In contrast, fitting the bivariate logistic model to all possible
pairs of variables yields 36 estimated dependence parameters,
as shown in Figure 12. The bivariate fits suggest a relation of
strong dependence between the maxima of NO and CO and
of moderate dependence between the maxima of O3, NO2, T,
and RH, as indicated by the point estimates obtained from the
algorithm output. Interestingly, the joint fits match the bivariate

fits almost perfectly, except for a few pairs of variables with high
variability.

The Gelman–Rubin statistics (Gelman and Rubin 1992),
plotted in Figure 13, provide a convergence diagnostic measure
based on the fact that if two different runs of the same model
have converged, we expect the respective sub-chains to be
similar to one another and the Gelman–Rubin statistics should
tend to one as we increase the number of iterations. Since this
is the case in Figure 13, we conclude that there is no significant
difference between the variance within and between the two
algorithm sub-chains for each of the dependence parameters.

7. Discussion

To describe the complex dependence relationships between
extremes variables, we proposed a novel technique based on the
hierarchical structure of the nested logistic model and Bayesian
computational tools. Our methodology has the advantage of
allowing parameter estimation and model selection to be done
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Figure 12. Parameters estimates (circles) and 95% credible intervals (vertical segments) resulting from logistic model bivariate fits for each pair of pollutants and
meteorological parameters. The red lines represent the median of the parameter estimates and the yellow lines the posterior medians obtained from the multivariate
fit using the TM-MCMC algorithm assuming the tree in the right panel of Figure 10, after R = 15,000 iterations and burn-in R/5 iterations.

Figure 13. Gelman-Rubin statistics (Gelman and Rubin 1992) comparing two parallel sub-chains obtained from two independent runs of the TM-MCMC algorithm for
R = 15,000 iterations and burn-in R/5.

simultaneously, thus providing a Bayesian assessment of the
model uncertainty. Numerical experiments suggest that, most
of the time, the method is able to find the true dependence
structure from the data, even in case of model misspecification.

The TM-MCMC algorithm was applied to air pollution con-
centration maxima collected at 21 sites across California. A
particularly strong dependence relation between the maxima of
CO and NO was found for most of the sites located between or
within big cities, possibly because both pollutants are released
by motor vehicles. Moreover, many of the sites close to coastal
areas present a strong to mild dependence relation between the
maxima of O3 and NO2 and high temperatures. This is expected
as O3 generally forms in chemical reactions that depend on the
presence of NO2 and heat. Fitting the bivariate logistic model to
all possible pairs of variables for the Clovis-Villa site in Fresno
yields similar conclusions, verifying that, despite its simplicity,
the nested logistic model was flexible enough to provide a good
estimation of the overall data dependence structure. The AQI
high quantiles indicate that air quality is generally expected to
exceed the healthy threshold within the next two decades under
stationarity. Further efforts to reduce emissions seem necessary
in order to protect public health, especially given that longer-
term climatic changes projections predict rising temperatures.
Our method could be used for obtaining air quality measures
that take into account the extremes of multiple pollutants and
the public health risks associated with their exposure.

When fitting the nested logistic model, its within-cluster
exchangeability may be seen as a limitation. However, embed-
ding the nested logistic distribution within a Bayesian frame-
work has the great advantage of describing the data dependence
structure using a mixture of trees, allowing therefore to capture
complex dependence relationships between variables. Indeed,

our method is not only able to appropriately describe data
dependence structures represented by homogenous clusters, for
example, at the Clovis-Villa site, but also much more compli-
cated dependencies, which often arise in applications, such as
the situation at the Victorville-Park Avenue.

Our method is coded in C++, integrated within R using
the package Rcpp. The code is available in the supplementary
material. The computational efficiency remains fairly moderate
and limited to a few seconds in the settings we have consid-
ered. In order to further improve the computational efficiency
in high dimensions and facilitate convergence, a guided pro-
cedure could be implemented for selecting the move type at
each iteration of the algorithm and additional moves might be
implemented.

A similar procedure might be applied to threshold exceed-
ances based on the original series of observations, instead of
on maxima, by implementing a censored recursive likelihood
function.

Our method is based on the nested logistic model, whose
hierarchical structure is less appropriate to describe spatial
extremes. In Vettori et al. (2019), the nested logistic model is
extended to the multivariate spatial framework, allowing for
much larger dimensions D.

Because of its max-stability property, the nested logistic
model assumes asymptotic dependence between the margins,
which might lead to overestimation of joint-tail probabilities
under asymptotic independence (Davison, Huser, and Thibaud
2013). Multivariate models for asymptotic independence were
proposed among others by Ledford and Tawn (1996) and
Heffernan and Tawn (2004); see de Carvalho and Ramos (2012)
for a review. More recently, there has been an increasing research
effort in bridging asymptotic dependence and independence
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in spatial (Huser, Opitz, and Thibaud 2017, 2018; Huser and
Wadsworth 2019) and multivariate (Wadsworth et al. 2017)
settings, although the latter mostly focus on the bivariate case.
When it is not clear whether extreme data are asymptotically
dependent or independent, Davison, Huser, and Thibaud (2013)
suggested using max-stable models since the latter provide more
conservative bounds for probabilities of concurrent extremes.
In this paper, we analyzed multivariate, a priori unstructured,
maxima data, and we therefore chose to work with max-stable
models. It would be interesting to generalize our method to
handle asymptotic independence scenarios.

Appendix: Recursive Formulas for the Nested Logistic
Distribution

A.1. Notation

For simplicity, we denote the distribution of the nested logistic model
as G = exp(− V), where

V =

⎛

⎝
K∑

k=1
Vk

⎞

⎠
α0

, Vk =

⎧
⎨

⎩

Dk∑

ik=1
z− 1/(α0αk)

k;ik

⎫
⎬

⎭

αk

, k = 1, 2, . . . , K,

with dependence parameters 0 < α0, α1, . . . , αK ≤ 1, and where, for
clarity, we have omitted the function arguments. Moreover, we use the
following vector notation:

zk = (zk;1, . . . , zk;Dk)
⊤ All variables in cluster k = 1, . . . , K;

zk,1:dk = (zk;1, . . . , zk;dk )
⊤ Sub-vector of the first dk variables

in cluster k = 1, . . . , K;

i1:κ = (i1, . . . , iκ )⊤ Vector of κ indices.

A.2. Preliminary Results

From the definition in Section A.1, we deduce the following derivatives:

∂Vk
∂zk;ik

= αk

⎧
⎨

⎩

Dk∑

ik=1
z− 1/(α0αk)

k;ik

⎫
⎬

⎭

αk− 1

× − 1
α0αk

z− 1/(α0αk)− 1
k;ik

= − 1
α0

z− 1/(α0αk)− 1
k;ik V1− 1/αk

k ; (A.1)

∂V
∂zk;ik

= α0

⎛

⎝
K∑

k=1
Vk

⎞

⎠
α0− 1

∂Vk
∂zk;ik

= − z− 1/(α0αk)− 1
k;ik V1− 1/αk

k V1− 1/α0 ; (A.2)

∂G
∂zk;ik

= − ∂V
∂zk;ik

exp(− V)

= z− 1/(α0αk)− 1
k;ik GV1− 1/αk

k V1− 1/α0 . (A.3)

A.3. Partial Derivatives of G

The distribution G is a function of D = ∑K
k=1 Dk variables, namely

z1 = (z1;1, . . . , z1;D1)
⊤, . . . , zK = (zK;1, . . . , zK;DK )⊤. The partial

derivative of G with respect to any subset of variables z1,1:d1 , . . . , zκ ,1:dκ

in 1 ≤ κ ≤ K clusters of dimensions 1 ≤ dk ≤ Dk, k = 1, . . . , κ , may
be expressed as

∂
∑κ

k=1 dk G
∂

∏κ
k=1 zk;1:dk

= G
d1∏

i1=1
z
− 1

α0α1 − 1
1;i1 · · ·

dκ∏

iκ=1
z
− 1

α0ακ
− 1

κ ;iκ

d1∑

i1=1

· · ·
dκ∑

iκ=1

∑κ
k=1 ik∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j V

i1− d1
α1

1 · · · V
iκ− dκ

αk
κ Vj−

∑κ
k=1 ik
α0

(A.4)

where the coefficients β
(d1;...;dκ )
i1;...;iκ ;j can be computed recursively as

demonstrated below. By specialising the expression in (A.4) to κ = K
clusters and d1 = D1, . . . , dK = DK variables, we obtain the density,
or full likelihood, for one replicate.

Proof
Equation (A.4) may be proven by double induction over κ ∈ {1, . . . , K}
and dk ∈ {1, . . . , Dk}, k = 1, . . . , κ . The proof also naturally provides a
constructive approach to the recursive computation of the coefficients
β

(d1;...;dκ )
i1;...;iκ ;j . More precisely, we demonstrate the following four steps:

1. (A.4) holds for κ = 1 and d1 = 1;
2. If (A.4) holds for κ = 1 and d1 ∈ {1, . . . , D1 − 1}, then it also holds

for d1 /→ d1 + 1;
3. If (A.4) holds for κ ∈ {1, . . . , K− 1}, then it also holds for κ /→ κ+1

with dκ+1 = 1;
4. If (A.4) holds for κ ∈ {1, . . . , K} and dκ ∈ {1, . . . , Dκ− 1}, then it

also holds for dκ /→ dκ + 1.

Step 1
From (A.3) we have

∂G
∂z1;1

= z− 1/(α0α1)− 1
1;1 GV1− 1/α1

1 V1− 1/α0 ,

which proves the first step by setting β
(1)
1;1 = 1.

Step 2
Assuming that (A.4) holds for κ = 1 and d1 ∈ {1, . . . , D1 − 1}, and
using (A.1)–(A.3), we obtain

∂d1+1G
∂z1;1:d1+1

=
d1∏

i1=1
z
− 1

α0α1 − 1
1;i1

⎧
⎨

⎩
∂G

z1;d1+1

d1∑

i1=1

i1∑

j=1
β

(d1)
i1;j V

i1− d1
α1

1 Vj− i1
α0

+ G
d1∑

i1=1

i1∑

j=1
β

(d1)
i1;j

∂V
i1− d1

α1
1

z1;d1+1
Vj− i1

α0

+G
d1∑

i1=1

i1∑

j=1
β

(d1)
i1;j V

i1− d1
α1

1
∂Vj− i1

α0

z1;d1+1

⎫
⎬

⎭

=G
d1+1∏

i1=1
z
− 1

α0α1 − 1
1;i1

⎧
⎨

⎩

d1∑

i1=1

i1∑

j=1
β

(d1)
i1;j V

(i1+1)− (d1+1)
α1

1 V(l+1)− (i1+1)
α0

−
d1∑

i1=1

i1∑

j=1
β

(d1)
i1;j

(
i1 − d1

α1

) ( 1
α0

)
V

i1− d1+1
α1

1 Vj− i1
α0

−
d1∑

i1=1

i1∑

j=1
β

(d1)
i1;j

(
l − i1

α0

)
V

(i1+1)− d1+1
α1

1 Vj− (i1+1)
α0

⎫
⎬

⎭
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= G
d1+1∏

i1=1
z
− 1

α0α1 − 1
1;i1

⎧
⎨

⎩

d1+1∑

i1=2

i1∑

l=2
β

(d1)
i1− 1;j− 1V

i1− (d1+1)
α1

1 Vj− i1
α0

−
d1∑

i1=1

i1∑

j=1
β

(d1)
i1;j

(
i1 − d1

α1

) ( 1
α0

)
V

i1− d1+1
α1

1 Vj− i1
α0

−
d1+1∑

i1=2

i1∑

j=1
β

(d1)
i1− 1;j

(
l − i1 − 1

α0

)
V

i1− d1+1
α1

1 Vj− i1
α0

⎫
⎬

⎭

=G
d1+1∏

i1=1
z
− 1

α0α1 − 1
1;i1

d1+1∑

i1=1

i1∑

j=1
β

(d1+1)
i1;j V

i1− d1+1
α1

1 Vj− i1
α0 ,

where

β
(d1+1)
i1;j = β

(d1)
i1− 1;j− 1 − 1

α0

(
i1 − d1

α1

)
β

(d1)
i1;j −

(
l − i1 − 1

α0

)
β

(d1)
i1− 1;j,

1 ≤ j ≤ i1 ≤ d1 + 1, (A.5)

with

β
(d1)
i1;j = 0, for all i1 /∈ {1, . . . , d1}, or j /∈ {1, . . . , i1}.

(A.6)
Hence, (A.4) holds by induction for κ = 1 and any 1 ≤ d1 ≤ D1, and
the recursive formula to compute coefficients β

(d1)
i1;j is given by (A.5)

and (A.6) with the initial condition β
(1)
1;1 = 1.

Step 3
Assuming that (A.4) holds for κ ∈ {1, . . . , K − 1}, we obtain

∂1+∑κ
k=1 dk G

∂
∏κ

k=1 zk;1:dk∂zκ+1;1
=

d1∏

i1=1
z
− 1

α0α1 − 1
1;i1 · · ·

dκ∏

iκ=1
z
− 1

α0ακ
− 1

κ ;iκ
⎧
⎨

⎩
∂G

∂zκ+1;1

d1∑

i1=1
· · ·

dκ∑

iκ=1
V

i1− d1
α1

1 · · · V
iκ− dκ

αk
k

i1+···+iκ∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j Vj− i1+···+iκ

α0 + G
d1∑

i1=1
· · ·

dκ∑

iκ=1

i1+···+iκ∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j V

i1− d1
α1

1 · · · V
iκ− dκ

αk
k

∂Vj− i1+···+iκ
α0

∂zκ+1;1

⎫
⎬

⎭

= G
d1∏

i1=1
z
− 1

α0α1 − 1
1;i1 · · ·

dκ∏

iκ=1
z
− 1

α0ακ
− 1

κ ;iκ (zκ+1;1)
− 1

α0ακ+1 − 1
d1∑

i1=1
· · ·

dκ∑

iκ=1
V

i1− d1
α1

1 · · · V
iκ− dκ

αk
k

⎧
⎨

⎩

i1+···+iκ+1∑

l=2
β

(d1;...;dκ )
i1;...;iκ ;j− 1

× V
1− 1

ακ+1
κ+1 Vj− i1+···+iκ+1

α0 −
i1+···+iκ∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j

×
(

l − i1 + · · · + iκ
α0

)
V

1− 1
ακ+1

κ+1 Vj− i1+···+iκ+1
α0

}

= G
d1∏

i1=1
z
− 1

α0α1 − 1
1;i1 · · ·

dκ∏

iκ=1
z
− 1

α0ακ
− 1

κ ;iκ (zκ+1;1)
− 1

α0ακ+1 − 1

×
d1∑

i1=1
· · ·

dκ∑

iκ=1

i1+···+iκ+1∑

j=1
β

(d1;...;dκ ;1)
i1;...;iκ ;1;j V

i1− d1
α1

1 · · ·

V
iκ− dκ

αk
k V

1− 1
ακ+1

κ+1 Vj− i1+···+iκ+1
α0 ,

where

β
(d1;...;dκ ;1)
i1;...;iκ ;1;j = β

(d1;...;dκ )
i1;...;iκ ;j− 1 −

(
l − i1 + · · · + iκ

α0

)
β

(d1;...;dκ )
i1;...;iκ ;j ,

1 ≤ j ≤
κ∑

k=1
ik + 1, 1 ≤ ik ≤ dk, k = 1, . . . , κ , (A.7)

with
β

(d1;...;dκ ;1)
i1;...;iκ ;1;j = 0, for all ik /∈ {1, . . . , dk}, k = 1, . . . , κ , or

l /∈ {1, . . . , i1 + · · · + iκ }. (A.8)
Hence, (A.4) holds by induction for κ /→ κ + 1 with dκ+1 = 1 and

the recursive formula to compute coefficients β
(d1;...;dκ ,1)
i1;...;iκ ,1,l is given by

(A.7) and (A.8).

Step 4
Assuming that (A.4) holds for κ ∈ {1, . . . , K} and dκ ∈ {1, . . . , Dκ − 1},
we obtain

∂1+∑κ
k=1 dk G

∂
∏κ

k=1 zk;1:dk∂zκ ;dκ+1
=

d1∏

i1=1
z
− 1

α0α1 − 1
1;i1 · · ·

dκ∏

iκ=1
z
− 1

α0ακ
− 1

κ ;iκ

×

⎧
⎨

⎩
∂G

∂zκ ;dκ+1

d1∑

i1=1
· · ·

dκ∑

iκ=1

i1+···+iκ∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j

V
i1− d1

α1
1 · · · V

iκ− dκ
αk

κ Vj− i1+···+iκ
α0 + G

d1∑

i1=1
· · ·

dκ∑

iκ=1

i1+···+iκ∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j V

i1− d1
α1

1 · · · ∂V
iκ− dκ

ακ
κ

∂zκ ;dκ+1
Vj− i1+···+iκ

α0

+ G
d1∑

i1=1
· · ·

dκ∑

iκ=1

i1+···+iκ∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j V

i1− d1
α1

1 · · · V
iκ− dκ

ακ
κ

∂Vj− i1+···+iκ
α0

∂zκ ;dκ+1

⎫
⎬

⎭

= G
d1∏

i1=1
z
− 1

α0α1 − 1
1;i1 · · ·

dκ+1∏

iκ=1
z
− 1

α0ακ
− 1

κ ;iκ

⎧
⎨

⎩

d1∑

i1=1
· · ·

dκ+1∑

iκ=2

i1+···+iκ∑

l=2

β
(d1;...;dκ )
i1;...;iκ− 1;j− 1V

i1− d1
α1

1 · · · V
iκ− dκ+1

ακ
κ Vj− i1+···+iκ

α0

−
d1∑

i1=1
· · ·

dκ∑

iκ=1

i1+···+iκ∑

j=1
β

(d1;...;dκ )
i1;...;iκ ;j V

i1− d1
α1

1 · · ·

(
iκ − dκ

ακ

) ( 1
α0

)
V

iκ− dκ+1
ακ

κ Vj− i1+···+iκ
α0

−
d1∑

i1=1
· · ·

dκ+1∑

iκ=2

i1+···+iκ− 1∑

j=1
β

(d1;...;dκ )
i1;...;iκ− 1;jV

i1− d1
α1

1 · · ·

V
iκ− dκ+1

ακ
κ

(
l − i1 + · · · + iκ − 1

α0

)
Vj− i1+···+iκ

α0

}

= G
d1∏

i1=1
z
− 1

α0α1 − 1
1;i1 · · ·

dκ+1∏

iκ=1
z
− 1

α0ακ
− 1

κ ;iκ

d1∑

i1=1
· · ·

dκ+1∑

iκ=1

i1+···+iκ∑

j=1
β

(d1;...;dκ+1)
i1;...;iκ ;j V

i1− d1
α1

1 · · · V
iκ− dκ+1

αk
k Vj− i1+···+iκ

α0

where

β
(d1;...;dκ+1)
i1;...;iκ ;j = β

(d1;...;dκ )
i1;...;iκ− 1;j− 1 − 1

α0

(
iκ − dκ

ακ

)
β

(d1;...;dκ )
i1;...;iκ ;j

−
(

l − i1 + · · · + iκ − 1
α0

)
β

(d1;...;dκ )
i1;...;iκ− 1;j, (A.9)
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if 1 ≤ j ≤ 1 + ∑κ
k=1 ik, ik ≤ dk, k = 1, . . . , κ , with

β
(d1;...;dκ+1)
i1;...;iκ ;j = 0, for all ik /∈ {1, . . . , dk}, k = 1, . . . , κ , or

j /∈ {1, . . . ,
κ∑

k=1
ik}. (A.10)

Hence, (A.4) holds by induction for ∈ {1, . . . , K} with dκ /→ dκ +1,
and the recursive formula to compute coefficients β

(d1;...;dκ+1)
i1;...;iκ ;j is given

by (A.9) and (A.10).

A.4. Complexity

If κ = 1, the number of coefficients β
(d1)
i1;j to be computed recursively

in (A.4) is

d1∑

h=1

⎛

⎝
h∑

i1=1

i1∑

j=1
1

⎞

⎠ =
d1∑

h=1

h(h + 1)

2
= 1

2

⎛

⎝
d1∑

h=1
h2 +

d1∑

h=1
h

⎞

⎠

= d1(d1 + 1)(d1 + 2)

6
,

which implies that the complexity is O(d3
1). For 1 ≤ κ ≤ K clusters of

size d1, . . . , dκ , the number of coefficients β
(d1;...;dκ )
i1;...;iκ ;j to be computed

in (A.4) is

dκ∑

h=1

⎛

⎝
d1∑

i1=1
· · ·

dκ− 1∑

iκ− 1=1

h∑

iκ=1

i1+···+iκ∑

j=1
1

⎞

⎠

=
dκ∑

h=1

h∑

iκ=1

d1∑

i1=1
· · ·

dκ− 1∑

iκ− 1=1
(i1 + · · · + iκ )

=
dκ∑

h=1

h∑

iκ=1

{d1(d1 + 1)

2
d1 · · · dκ− 1 + · · ·

+ d1 · · · dκ− 2
dκ− 1(dκ− 1 + 1)

2
+ d1 · · · dκ− 1iκ

}

=
{d1(d1 + 1)

2
d2 · · · dκ− 1

dκ (dκ + 1)

2

}
+ · · ·

+
{

d1 · · · dκ− 2
dκ− 1(dκ− 1 + 1)

2
dκ (dκ + 1)

2

}

+
{

d1 · · · dκ− 1
dκ (dκ + 1)(dκ + 2)

6

}
,

which implies that the total complexity for the computation of the
coefficients β

(d1;...;dκ )
i1;...;iκ ;j in (A.4) is

O

⎛

⎝
κ∑

k=1
(d1 + · · · + dk)d1 · · · dk− 1d2

k

⎞

⎠ .

If the cluster size is the same for all clusters, that is, dk = d1, for all
k = 2, . . . , κ , then we have O

(
κ

∑κ
k=1 dk+2

1
)

.

Supplementary Materials

The supplementary materials contain the code to replicate (part of) the
simulation study, as well as a manuscript detailing the proof of the recursive
likelihood formula for the nested logistic model and further computa-
tional details about the reversible jump MCMC algorithm and marginal
modeling.
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