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Abstract
We set up a general framework for modeling non-Gaussian multivariate stochastic 
processes by transforming underlying multivariate Gaussian processes. This general 
framework includes multivariate spatial random fields, multivariate time series, and 
multivariate spatio-temporal processes, whereas the respective univariate processes 
can also be seen as special cases. We advocate joint modeling of the transformation 
and the cross-/auto-correlation structure of the latent multivariate Gaussian process, 
for better estimation and prediction performance. We provide two useful models, 
the Tukey g-and-h transformed vector autoregressive model and the sinh-arcsinh-
transformed multivariate Matérn random field. We evaluate them with a simulation 
study. Finally, we apply the two models to a wind data set for modeling the two per-
pendicular components of wind speed vectors. Both the simulation study and data 
analysis show the advantages of the joint modeling approach.

Keywords Heavy tails · Multivariate random fields · Multivariate time series · Non-
Gaussian · Skewness

1 Introduction

Along with the abundance of data collected in space and/or time, the need for ana-
lyzing multiple spatially and/or temporally correlated response variables at the same 
time is ever-increasing in various fields. To model a multivariate stochastic process 
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jointly, it is essential to take the cross-correlation structure between variables into 
account in addition to the auto-correlation structure for each of the univariate pro-
cesses. For example, in climate science, surface pressure and temperature are known 
to be negatively correlated (Gneiting et  al. 2010); in environmental science, the 
concentrations of different pollutants are correlated (Genton and Kleiber 2015); in 
astronomy, to simulate multifrequency sky maps, backgrounds, sources, and noise 
are correlated (Vio et al. 2002).

The Gaussian process is the core in stochastic process modeling because its dis-
tribution is entirely determined by specifying the mean and covariance function, and 
properties of likelihood-based inference have been studied extensively. However, 
real data collected in different areas often show traits of skewness and a lighter or 
heavier tail that could not be accommodated by a Gaussian model. Therefore, flex-
ible multivariate non-Gaussian spatio-temporal models that are also computationally 
feasible are needed to analyze big data with multiple variables collected in space 
and/or time.

As a general setting, we refer to a stochastic process Y(�) = {Y1(�),… , Yk(�)}
T 

as a collection of random variables Y ∈ ℝ
k indexed by elements in a topological 

space � ∈ ℝ
q , which include spatial random fields when the indices are spatial loca-

tion, � = � ∈ Ds ⊂ ℝ
2 , time series when � = t ∈ Dt = {1, 2, 3,…} , and spatio-tem-

poral processes when � = (�, t) . The stochastic process Y(�) could be a univariate 
process when k = 1 or a process with multiple variables when k ≥ 2 . In this paper, 
we provide a general framework for modeling a non-Gaussian multivariate stochas-
tic process Y(�) by applying a component-wise transformation � ∶ ℝ

k
→ ℝ

k to an 
underlying multivariate Gaussian process Z(�) = {Z1(�),… , Zk(�)}

T:

or more explicitly, Yj(�) = �j{Zj(�)},�j ∶ ℝ → ℝ, j = 1,… , k.
Each component of � could come from the same parametric family of monotonic 

transformations with different values of parameters for each variable �j = �
�
(j)

1

 , to 
account for various shapes of the marginal distribution shown by different variables. 
We further suppose the dependence structure of the underlying Gaussian process 
Z(�) can be characterized by another set of parameters �2 . Given n observations 
Y = {Y

T

(�1),… ,Y
T

(�n)}
T from the non-Gaussian process Y(�) , the joint log-likeli-

hood can be derived:

where � = (�
T

1
,�

T

2
)
T is the full set of parameters, f� denotes the log-likelihood of a 

zero mean multivariate Gaussian distribution with covariance matrix determined by 
�2 , � �

�
(j)

1

(⋅) is the derivative of the function �
�
(j)

1

(⋅) , Z
�
(j)

1

(�i) = �−1

�
(j)

1

{Yj(�i)}, j = 1,… , k 

are from the latent Gaussian process obtained by applying the corresponding inverse 
transformation to the observations, and Z�1

= {Z
T

�1
(�1),… ,Z

T

�1
(�n)}

T is the vector of 

(1)Y(�) = �{Z(�)},

(2)log L(�;Y) = f�(Z�1
,�2) −

k∑

j=1

n∑

i=1

log

[
� �

�
(j)

1

{Z
�
(j)

1

(�i)}

]
,
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all the Gaussian-scale observations. Maximum likelihood estimation (MLE) of � 
can be found by maximizing (2).

Prediction of the non-Gaussian process at an unobserved index �0 is based on 
the conditional distribution Y(�0)|Y . Since the transformation is monotonic, 
this conditional distribution problem in the transformed scale can be translated 
directly to the Gaussian scale. Assuming the true model is known, let Z and Z(�0) 
be the latent Gaussian realizations corresponding to Y and Y(�0) . It follows that 
Z(�0)|Z ∼ Nk(�̃, �̃) , where the conditional mean �̃ and covariance matrix �̃ are 
determined by the dependence structure of the underlying Gaussian process. Then,

the right hand side of which is a shorthand for the distribution of transforming a 
k-dimensional random variable that follows the conditional Gaussian distribution. 
Therefore, realizations of Y(�0)|Y are the same as realizations of �{Z(�0)|Z} . Thus, 
point and probabilistic prediction of Y(�0) can be formulated. In particular, the opti-
mal point prediction that minimizes the absolute loss is the conditional median 
�Yj
opt(

�0

)
= argminc E

[{|||Yj
(
�0

)
− c

|||
}
|Y
]
= med

{
Yj
(
�0

)
|Y
}
= 𝜓j(�̃�j).

This general trans-Gaussian approach is flexible, interpretable, and parsimonious 
by taking advantage of both a family of transformations and the appealing proper-
ties of the Gaussian process. In Sect. 2, we provide a literature review of existing 
approaches for modeling non-Gaussian processes, and compare them with, or put 
them within, our general framework in Eq. (1). In Sect.  3, we present two useful 
non-Gaussian models for multivariate times series and multivariate spatial random 
fields: the multivariate Tukey g-and-h (TGH) transformed vector autoregressive 
(VAR) model and the multivariate sinh–arcsinh (SAS) transformed Matérn random 
field. Section  4 illustrates estimation and prediction performance of the bivariate 
SAS-transformed parsimonious Matérn random fields with a simulation study. We 
then, in Sect. 5, apply the two models to a wind data set for modeling bivariate wind 
speeds that come from the two perpendicular directions. Both the simulation study 
and data analysis show the advantages of the joint modeling approach. Finally, in 
Sect. 6, we discuss a potential area for further research.

2  Literature review on non‑Gaussian processes

For non-Gaussian data, the transformation approach is straightforward and widely 
used among practitioners to, first, Gaussianize the data and then examine the latent 
Gaussian process on the transformed scale. In light of the general framework given 
by Eq. (1), it is equivalent to Gaussianizing the data with �−1 . For example, Shum-
way and Stoffer (2011) used the logarithm transformation on glacial varves thick-
nesses time series and quarterly U.S. GNP time series whereas the square-root 
transformation was adopted by Johns et  al. (2003) to normalize spatial precipita-
tion data. However, a fixed transformation is not flexible enough to adapt to various 
non-Gaussian features exhibited by the data. A parametric form of transformations 
that allows modelers to find the optimal one within a family of transformations by 

(3)Y(�0)|Y ∼ �{Z(�0)|Z},
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estimating the related parameters from the data is thus preferable. For example, the 
Box–Cox power transformation (Box and Cox 1964) is a family of transformations 
with one parameter that includes the logarithm, square- and cubic-root, but it can 
only be applied to positive values. Instead of the two-stage procedure, to first esti-
mate �1 without considering the dependent structure of the observations, and then 
model the Gaussianized process, modeling the trans-Gaussian process directly with 
joint likelihood (2) is beneficial for estimating the optimal transformation as well as 
making a prediction on the original scale. Snelson et al. (2004) outlined a general 
procedure and coined the term ‘warped Gaussian processes’ for univariate trans-
formed Gaussian processes to include the transformation as an integral part of the 
model, rather than an ad-hoc step. In particular, Block et al. (1990) presented a non-
Gaussian time series model with arbitrary continuous marginal distributions that 
belong to a parametric family by transforming a Gaussian autoregressive (AR) time 
series by the composition of the inverse marginal cumulative distribution function 
(CDF) and the Gaussian CDF. Cressie (1993) introduced log-normal random fields, 
developed log-normal kriging methods, and further generalized the methodology to 
trans-Gaussian kriging to derive unbiased predictors with unknown mean but known 
covariance structure of the latent Gaussian random fields. De Oliveira et al. (1997) 
considered Box–Cox transformed random fields for spatial data under a Bayesian 
framework and applied the model to predict spatial weekly rainfall amounts. Zam-
mit-Mangion et al. (2016), for modelling mole-fraction and flux fields, relaxed the 
Gaussian assumption through Box–Cox transformations for the spatio-temporal 
bivariate inversion problem and performed Bayesian inference via approximation of 
the likelihood under the hierarchical framework. Recently, Xu and Genton (2017) 
and Yan and Genton (2019a) introduced the TGH random fields and the TGH-AR 
process, that can accommodate different levels of skewness and tail heaviness in 
marginal distributions. Zhang and Yeung (2010) attempted to extend the general 
warped Gaussian processes (Snelson et al. 2004) to a multivariate setting, with an 
application in personalized age estimation. However, their model essentially utilizes 
one latent univariate Gaussian process with white noise of different variance added 
to different variables. Vio et al. (2001, 2002) discussed the associations between the 
cross-correlation functions in Gaussian-scale Z and the transformed-scale Y under 
the general framework (2), for the purpose of simulating multivariate random fields 
with prescribed marginal distributions and cross-correlation structure.

Another popular approach of modeling non-Gaussian data is via the general-
ized linear model (GLM), which is especially useful for analyzing binary and count 
data. Under the spatial setting, the GLM approach was first proposed by Gotway 
and Stroup (1997) and then formalized by Diggle et al. (1998) with a latent Gauss-
ian random field as a random effect. The hierarchical flavor of the GLM approach 
fits naturally within a Bayesian framework, in which the latent Gaussian random 
field can be regarded as a prior put on the space of functions, see Banerjee et  al. 
(2014) and Cressie and Wikle (2011) for book-length overviews. Chagneau et  al. 
(2011) extended the hierarchical Bayesian spatial GLM idea to build multivariate 
non-Gaussian random fields. In the spatial GLM models, a random field is added 
as a random effect in the linear predictor; therefore, the likelihood function involves 
high-dimensional integration, which makes computational evaluation challenging. 



133

1 3

Japanese Journal of Statistics and Data Science (2020) 3:129–152 

Instead of putting a Gaussian prior, Bradley et al. (2019) introduced the ‘conjugate 
multivariate distribution’ as prior for the latent process at the n observed locations to 
facilitate Bayesian inference of dependent data from the exponential families. In the 
time series context, Benjamin et  al. (2003) introduced the generalized autoregres-
sive moving average (ARMA) model. Unlike the spatial case, no underlying Gauss-
ian time series is added as a random effect, thanks to the unidirectional property of 
time. However, the GLM approach is not flexible enough to model continuous data 
with arbitrary distribution shape. Cordeiro and de Andrade (2009) combined both 
the transformation and GLM approaches and introduced the transformed general-
ized linear models.

The third class of models for constructing a non-Gaussian process involves mix-
ing a Gaussian process with a random variable (common mixing variable) or another 
process (individual mixing variable) or a mixture of several independent processes. 
Wong and Li (2000) introduced the mixture AR models with a mixture of m Gauss-
ian AR components, which is a generalization of the Gaussian mixture transition 
distribution models (GMTD) (Le et al. 1996). Later, Wong et al. (2009) extended 
the Gaussian mixture AR models to the Student t-mixture AR model. Palacios and 
Steel (2006) proposed scale mixing Gaussian random fields by combining a Gauss-
ian random field with spatially correlated scale parameters (a log-Gaussian random 
field). Later, Fonseca and Steel (2011) extended the idea to non-Gaussian processes 
in space and time with non-separable covariance functions. Ma (2009) introduced 
a general class of non-Gaussian random fields, the so-called elliptically contoured 
random fields, by multiplying a Gaussian random field with a random scale factor. 
However, Genton and Zhang (2012) pointed out identifiability problems related to 
the above construction. Ma (2010) built the �2 random process by summation of 
the squares of m independent Gaussian processes and extended it to the multivariate 
case (Ma 2011). A series of papers with the same author combined the above two 
ideas and constructed many special cases for non-Gaussian vector random fields, 
such as the hyperbolic vector random fields (Du et al. 2012) and the K-distributed 
process (Ma 2013). Bolin et al. (2019) presented multivariate latent Gaussian ran-
dom fields mixture models that combined a discrete Markov random field with a 
latent multivariate Gaussian random field and used it for classification purpose. Yin 
and Craigmile (2018) introduced the heteroscedastic asymmetric spatial process 
(HASP) formed by transformation and mixing of two dependent univariate Gauss-
ian random fields. All the above models, except those by mixing with a random 
variable, involve more underlying processes than the resulting one, which can be 
seen as (1) with the modification that � has a more general form of transformations 
� ∶ ℝ

m
→ ℝ

k,m ≥ k , instead of the element-wise transformation.
Besides the above three classes, other non-Gaussian spatial models include: the 

skew-Gaussian random fields (Zhang and El-Shaarawi 2010; Rimstad and Omre 
2014) and log-skew-elliptical random fields (Marchenko and Genton 2010) as exten-
sions from the skew-elliptical family (Azzalini 1985; Azzalini and Dalla Valle 1996; 
Genton 2004); spatial copula models (Gräler 2014; Krupskii et al. 2018); and non-
Gaussian Matérn fields based on stochastic partial differential equations (Wallin 
and Bolin 2015); additional models for time series are mainly based on the ARMA 
model with non-Gaussian noise (Lawrance and Lewis 1980; Gaver and Lewis 1980; 
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Davies et al. 1980; Li and McLeod 1988; Tarami and Pourahmadi 2003). See also 
the review paper by Jones (2015) for constructing non-Gaussian distributions for a 
univariate random variable. We attempted to make the literature review as thorough 
as possible, however, it is still not exhaustive. Other approaches for non-Gaussian 
processes might exist in other fields, such as machine learning, signal processing 
and econometrics, that we are unaware of.

3  Two multivariate transformed Gaussian models

In this section, we provide two useful models for multivariate time series and multi-
variate random fields under our general framework (1). The time series model is an 
extension of the TGH-AR time series (Yan and Genton 2019a) to a multivariate set-
ting, while the spatial model uses the SAS transformation (Jones and Pewsey 2009) 
in modeling multivariate trans-Gaussian random fields.

3.1  Multivariate TGH‑VAR time series models

The Tukey’s g-and-h transformation (Tukey 1977) is a function with two parameters 
g and h:

which is a strictly monotonic function of z when h ≥ 0.
Tukey (1977) introduced this transformation and used it on a standard Gaussian 

random variable Z ∼ N(0, 1) to yield Y = �g,h(Z) , in order to construct skewed distri-
butions with heavy tails and model the quantiles of Y directly rather than the density 
function (Yan and Genton 2019b). The resulting random variable Y is said to fol-
low the TGH distribution, with parameter g and h controlling the skewness and tail 
heaviness, respectively. Shapes of the TGH distribution with three sets of parameter 
values are illustrated in the top row of Fig. 1. Martinez and Iglewicz (1984) studied 
various properties of the TGH distributions and gave an explicit form of their finite 
moments. For parameter estimation, since the inverse transformation does not have 
an explicit form (except when either g or h is equal to 0), the likelihood inference is 
difficult. Earlier works focused on quantile-based method (Hoaglin 1985; Dutta and 
Babbel 2002) and later, Xu and Genton (2015) proposed an efficient parameter esti-
mation algorithm for the independent TGH distribution using an approximated like-
lihood. The maximum approximated likelihood estimation (MALE) substantially 
improved the parameter estimation performance compared to the moment or quan-
tile-based methods without compromising the computational speed. Field (2004) 
applied the univariate TGH distribution to model extreme wind speed and showed 
its adaptability by comparing it with the classical generalized extreme value (GEV) 
distribution and the generalized Pareto distribution (GPD). Field and Genton (2006) 
and He and Raghunathan (2012) used different approaches to extend the univariate 
TGH distribution to a multivariate setting. Recently, Xu and Genton (2017) further 

(4)�g,h(z) =

{
g−1{exp(gz) − 1} exp(hz2∕2), g ≠ 0, z ∈ ℝ,

z exp(hz2∕2), g = 0, z ∈ ℝ,
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generalized the TGH distribution to a spatial configuration and constructed TGH 
random fields, while Yan and Genton (2019a) extended it in a time series setting and 
introduced the TGH-AR model. Jeong et al. (2019) used the TGH-AR process for 
building a stochastic generator for global monthly wind speed as a computationally 
efficient way for uncertainty quantification of wind energy potential.

For this multivariate time series model example, we consider transforming each 
component of a latent stable Gaussian VAR(1) process Zt by the TGH transforma-
tion with extra location parameters:

where  the vector � = (�1,… , �k)
T contains the location parameters,  the vectors 

g = (g1,… , gk)
T ∈ ℝ

k, h = (h1,… , hk)
T ∈ ℝ

k
+
 , �g,h ∶ ℝ

k
→ ℝ

k denotes the ele-
ment-wise application of the TGH transformation with the corresponding param-
eters, � is a k × k transition matrix for the underlying Gaussian VAR(1) process, and 
� is the k × k covariance matrix of the Gaussian white noise process. Notice that, 
unlike the previous TGH models, in our TGH-VAR(1) model (5), the TGH transfor-
mation is applied to an underlying Gaussian time series without the constraints for 
each component to have variance 1. In fact, the covariance function of the under-
lying stable Gaussian process Zt is implied by the dynamic VAR(1) structure and 
depends on � and � . Instead of transforming a Gaussian process with unit variance 
and multiplying by a scale parameter outside the transformation like previous mod-
els, we transform the underlying Gaussian VAR process as a whole, which can have 

(5)Yt = � + �g,h(Zt), Zt = �Zt−1 + �t, �t
i.i.d.
∼ Nk(0,�)
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Fig. 1  Density shapes of the TGH distributions (top row) and SAS distributions (bottom row) with dif-
ferent parameters values to control skewness and tail-heaviness. A standard normal density (obtained 
when g = h = 0 ) is shown in each panel with dashed black line for reference
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arbitrary marginal variances. Since �g,h(�Z) = ��g�,h�2(Z) , the scale parameter can 
be put either inside or outside the TGH transformation and results in the same TGH 
distribution family.

For model (5), each component of the multivariate time series Yt follows a TGH 
distribution marginally with different g and h parameters. Mean and variance of the 
TGH-VAR process can be computed in similar ways as in Xu and Genton (2017) by 
the equivalence relationship �g,h(�Z) = ��g�,h�2(Z) , i.e., with g and h in formulae for 
the standard TGH distribution substituted by g� and h�2 . The mean exists for 
hj𝜎

2
j
< 1 , where �2

j
 is the marginal variance of Zjt:

and the variance exists for hj𝜎2
j
< 1

2
:

For the cases gj = 0 , their values are defined as the limit as gj → 0 . The cross-
covariance can be derived similarly as the covariance matrix in He and Raghunathan 
(2012):

where �2
j1
 and �2

j2
 are the marginal variances of Zj1t and Zj2t , � = �j1j2(t1, t2) is the 

cross-correlation between the two variables at temporal points t1 and t2 , and the 
above terms depend on � and � . The pairwise covariance exists if 
(1 − hj1𝜎

2
j1
)(1 − hj2𝜎

2
j2
) − 𝜌2𝜎2

j1
𝜎2
j2
hj1hj2 > 0.

This model is flexible and can accommodate different tail and skewness behavior of 
each variable separately. There are 3k parameters for �1 related to the location TGH 

�Yj
= E (Yjt) = �j +

1

gj

√
1 − hj�

2
j

[
exp

{
g2
j
�2
j

2(1 − hj�
2
j
)

}
− 1

]
,

�2
Yj
= var (Yjt) =

1

g2
j

√
1 − 2hj�

2
j

[
exp

(
2g2

j
�2
j

1 − 2hj�
2
j

)

−2 exp

{
g2
j
�2
j

2(1 − 2hj�
2
j
)

}
+ 1

]
− (�Yj

− �j)
2.

cov
(
Yj1t1 , Yj2t2

)
=

1

gj1gj2

√
(1 − hj1�

2
j1
)(1 − hj2�

2
j2
) − �2�2

j1
�2
j2
hj1hj2

×

(
exp

[{1 − hj2�
2
j2
(1 − �2)}g2

j1
�2
j1
+ {1 − hj1�

2
j1
(1 − �2)}g2

j2
�2
j2
+ 2��j1�j2gj1gj2

2
{
(1 − hj1�

2
j1
)(1 − hj2�

2
j2
) − �2�2

j1
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j2
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}
]
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[�2
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j1
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1 − hj2�
2
j2
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(1 − hj1�
2
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)(1 − hj2�
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transformation and k2 + k(k + 1)∕2 parameters for �2 that contains � and � . Parameter 
estimation for model (5) can be done by MALE (Xu and Genton 2015), obtained by 
maximizing the approximated likelihood with piece-wise linearization of the inverse 
transformation �−1

g,h
 involved in the log-likelihood (2). Forecasting of Yt+1 can be based 

on (3) with the estimated � and conventional forecasting of Gaussian VAR(1) pro-
cesses, see standard multivariate time series textbooks (e.g., Lütkepohl 2007).

3.2  Multivariate SAS Matérn random fields

The sinh–arcsinh transformation (Jones and Pewsey 2009) is defined as:

Jones and Pewsey (2009) associated the standard normal random variable Z 
and a random variable Ye,� that follows a SAS distribution by Z = Se,�(Ye,�) or 
Ye,� = S−1

e,�
(Z) = S−e∕�,1∕�(Z) . The parameter e determines the skewness, and � con-

trols the tail weight of the SAS distribution. Ye,� is positively (negatively) skewed if 
e > 0 ( e < 0 ), and has lighter (heavier) tails than the normal if 𝛿 > 1 ( 𝛿 < 1 ). Shapes 
of the SAS distribution with three sets of parameter values are shown in the bot-
tom row of Fig. 1. The advantages of the SAS distribution over the TGH distribu-
tion are that both the SAS and its inverse transformation belong to the same family 
and it can model distributions with lighter tails. However, transforming a Gauss-
ian random variable with variance not equal to 1 by the SAS transformation does 
not result in the canonical SAS distribution. Hence, in order to construct marginally 
SAS distributed multivariate random fields, we apply the SAS transformation to a 
latent k-dimensional Gaussian process Z(�) of mean 0 and variance 1 for each com-
ponent and some cross-covariance function �ij(�k, �l) by the location-scale version of 
the SAS transformation:

where � = (�1,… , �k)
T,� = (�1,… ,�k)

T, e = (e1,… , ek)
T, � = (�1,… , �k)

T , ◦ is 
the element-wise (Hadamard) product, and S−1

e,�
∶ ℝ

k
→ ℝ

k denotes the element-
wise application of the inverse SAS transformation with the corresponding param-
eters. Moments of the univariate SAS distribution were given in Jones and Pewsey 
(2009), however, the derivation is tedious and explicit formulas for cross-moments 
of the SAS random fields seem difficult to obtain.

Valid models for cross-covariance functions �ij(�k, �l) can be found in the review by 
Genton and Kleiber (2015). For example, the multivariate Matérn covariance function 
(Gneiting et al. 2010; Apanasovich et al. 2012) has not only a marginal Matérn correla-
tion but also flexible cross-correlation structures, and it has a form as follows:

Here, �i is the marginal standard deviation, �ij measures the strength of the correla-
tion between two random variables at the same location ( � = 0 ), and 

(6)Se,�(z) = sinh{� sinh−1(z) − e}, e ∈ ℝ, � ∈ ℝ+.

(7)Y(�) = � + �◦S−1
e,�
{Z(�)},

Cii(�) = �2
i
M(�|�i,�i) and Cij(�) = �ij�i�jM(�|�ij,�ij), � ∈ ℝ

q.
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M(���,�) = 21−�

Γ(�)
(‖�‖∕�)�K�(‖�‖∕�) is the Matérn correlation function at distance 

‖�‖ where K� is a modified Bessel function of the second kind of order � , 𝜙 > 0 is a 
spatial range parameter, and 𝜈 > 0 is the smoothness parameter. In particular, the 
parsimonious version assumes that �ij = 0.5(�i + �j) and �i = �j = �ij = � for all i; 
for more details, see Gneiting et al. (2010). On the other hand, Royle and Berliner 
(1999) and Cressie and Zammit-Mangion (2016) suggested modeling the cross-vari-
able dependence structure via conditional specification in multivariate spatial fields, 
when known causal relationships imply a natural conditional ordering of the 
variables.

The MLE for model (7) can be obtained from maximizing the log-likelihood (2). 
Spatial prediction of Y(�0) given Y(�1),… ,Y(�n) can be made based on (3) and co-
kriging of the underlying multivariate Gaussian random field treating the MLE of 
� as the true parameters. Co-kriging is a multivariate variant of the ordinary krig-
ing, and it performs predictions for the primary variable (or a poorly sampled vari-
able) with the help of a more readily observed variable. For discussion and technical 
details, see Myers (1982) and Wackernagel (2013).

Figure 2 shows one realization of the bivariate SAS random field on a unit square 
for each variable as well as their histograms. Here, variable  1 has a left-skewed 
lighter tailed distribution, and variable 2 is right-skewed with heavy tails, respec-
tively. The underlying bivariate Gaussian random field has a parsimonious bivari-
ate Matérn cross-covariance function. The true SAS density and the corresponding 
Gaussian density with the same mean and variance are also shown in the histograms, 
where we can see a noticeable departure from the Gaussian assumption. In the next 
section, we run a simulation study for the estimation and prediction performance of 
the bivariate SAS random field with parsimonious bivariate Matérn cross-covari-
ance function.

4  Simulation study

We perform a Monte Carlo simulation study to assess the estimation and prediction 
performance of the bivariate SAS parsimonious Matérn random fields and compare 
the results with alternative methods. We generate observations from the bivariate SAS 
model with parsimonious Matérn on a perturbed 15 × 15 grid within a unit square, 
similar to the design in Yan and Genton (2018). We use 200 points for estimation and 
the remaining 25 locations for prediction. For the bivariate case with parsimonious 
Matérn cross-covariance function, there are 8 parameters related to the transforma-
tion �1 , and 4 parameters involved for the spatial cross-correlation structure �2 : the 
common range parameter � , smoothness parameters �1, �2 , and � for the correlation 
between the two variables. The model parameters chosen in this simulation study are 
�1 = �2 = 0, �1 = �2 = 1, e1 = 0.3, e2 = 0.1, �1 = 1.2, �2 = 0.7,� = 0.05, �1 = 0.5,

�2 = 1, � = 0.7 , for which variable 1 is right-skewed with lighter tail and variable 2 
is heavy tailed and slightly right-skewed. We use the following four methods for 
estimation and prediction:
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Method 1 (Gaussian): MLE and prediction based on bivariate Gaussian random 
fields with parsimonious Matérn and unknown constant mean;

Method 2 (Independent SAS): MLE and prediction for each variable separately 
based on two independent SAS random fields with full Matérn covariance function;

Method 3 (Sequential): two-stage estimation procedure for the bivariate SAS ran-
dom fields to first estimate parameters related to the SAS transformation for each 
variable (same as method 2) and then an additional step to estimate parameters 
related to the bivariate parsimonious Matérn from the underlying Gaussian random 
fields obtained by transforming the observations with estimated parameters;

Method 4 (Joint): estimate all parameters for the bivariate SAS fields with parsi-
monious Matérn by maximizing the joint log-likelihood function (2).
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Fig. 2  One realization and histograms of the bivariate SAS random field for each variable (with-
out location-scale parameters) with parsimonious bivariate Matérn cross-covariance function for 
� = 0.05, � = 0.7, �1 = 0.5, �2 = 1, e1 = − 0.5 , e2 = 0.3 , �1 = 1.5 , �2 = 0.8 . Histograms are overlaid with 
the SAS density (red line) and corresponding Gaussian density with the same mean and variance (green 
line) (color figure online)
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All the optimizations for the four estimation methods were done by the R soft-
ware (Development Core Team 2019) with the Template Model Builder (TMB) 
package (Kristensen et al. 2016), which utilizes automatic differentiation (Griewank 
and Walther 2008) to assist optimization.

For estimation, Fig. 3 shows boxplots of the 12 estimated parameters by Method 
3 and Method 4 from 500 replicates that are without convergence problem. Param-
eters in Method 1 and Method 2 are not directly comparable with the 12 parameters 
in the bivariate parsimonious Matérn SAS fields, and thus boxplots are not shown 
alongside. The first step in the sequential procedure for estimating the transforma-
tion-related parameters �1 ignores the correlation of the two variables, which results 
in slightly larger estimation variability than the joint method and biased estimation 
for � , shown by the boxplots. We also notice that estimation is more unstable for the 
light-tailed variable 1 than the heavy-tailed variable 2, which can be explained by 
the fact that the distribution shape does not change much with the skewness param-
eter when the tail is light. Table 1 shows the number of parameters, mean log-like-
lihood, and Bayesian Information Criterion (BIC) for estimation by the four meth-
ods. The joint estimation has the maximum mean log-likelihood and minimum BIC 
among the four estimation methods.
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Fig. 3  Boxplots of estimated parameters for bivariate SAS parsimonious Matérn random 
fields in 500 simulations by Method 3 and Method 4 (green lines represent the true values 
�1 = �2 = 0, �1 = �2 = 1, e1 = 0.3, e2 = 0.1, �1 = 1.2, �2 = 0.7,� = 0.05, �1 = 0.5, �2 = 1, � = 0.7  ) 
(color figure online)
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For prediction, Method 1 ignores the non-Gaussian characteristics of the two var-
iables while Method 2 omits the correlation between the two variables. Prediction 
by Method 3 and Method 4 differs only in the estimated parameters. Table 1 pre-
sents prediction performance by the four methods in terms of mean absolute error 
(MAE), the width of the 95% confidence interval (CI) and empirical coverage of the 
95% CI, for each variable. The joint procedure has the minimum MAE and CI width 
while maintaining empirical coverage close to the claimed level. Note that for the 
best method with respect to CI width and coverage, we use combined criteria and 
for both variables, e.g., 94.6% and 94.2% with shorter CI widths by Method 4 are 
better than 95.2% and 93.9% by Method 1. The empirical coverage is always slightly 
less than the claimed 95% (except for the lighter tailed variable by Method 1) since 
we treat the estimated parameters as the true values for prediction without taking the 
uncertainty in estimation into consideration.

Additional simulations with different parameter settings and a simulation study 
for the trivariate SAS parsimonious Matérn random field show similar results (see 
supplementary material). In summary, for modeling bivariate or trivariate random 
fields, ignoring either the non-Gaussian features of the variables or the correlation 
between the variables is detrimental for the prediction purpose. For the bivariate or 
trivariate SAS random fields, it is beneficial to estimate all the parameters simul-
taneously with the joint likelihood rather than the sequential procedure. However, 
as the number of parameters to estimate grows as k grows, optimization becomes 
much more difficult for joint estimation. If optimization becomes problematic when 
estimating � jointly for a high-dimensional vector process, we suggest estimation in 
an iterative manner of �1 and �2 until convergence as in Xu and Genton (2017) or 
sequentially (iterate once).

5  Wind data examples

5.1  Large ENSemble Project (LENS)

We consider wind data sets at daily and monthly levels from the LENS, which is an 
ensemble of runs of the Community Earth System Model (CESM) from the National 

Table 1  Comparison of the four methods for bivariate SAS parsimonious Matérn random fields in terms 
of the number of parameters, mean log-likelihood and BIC; MAE, width of 95% CI and empirical cover-
age of the 95% CI for prediction of each variable (left/right column for variable 1/2)

The best method is in bold

# pars Log-likelihood BIC MAE CI width Coverage

Var 1 Var 2 Var 1 Var 2 Var 1 (%) Var 2 (%)

Method 1 8 − 513.5 1069.3 14.019 23.481 2.68 4.72 95.2 93.9
Method 2 12 − 565.9 1195.4 14.102 23.481 2.63 4.73 94.4 94.1
Method 3 12 − 498.0 1059.6 13.993 23.314 2.61 4.70 94.5 94.1
Method 4 12 − 497.3 1058.1 13.985 23.309 2.61 4.69 94.6 94.2
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Center for Atmospheric Research. The LENS is a set of climate model simulations 
intended for understanding the internal variability, and it includes 40 ensemble 
members of simulations from 1910 to 2010. The spatial resolution of the ensemble 
members is 0.9375◦ × 1.25◦ (latitude × longitude) and each run was generated under 
the Representative Concentration Pathway (RCP) 8.5 (van Vuuren et al. 2011; Kay 
et al. 2015). Since future wind trends are often of interest, here, we work on daily 
and monthly near-future wind components, eastward U, and northward V compo-
nents, above the ground level from 2006 to 2100. In the following two examples of 
bivariate time series and spatial data sets, we focus on demonstrating the benefits of 
using multivariate transformations in terms of either a model fit or a prediction.

5.2  Example 1: bivariate time series data (monthly LENS data)

At first, we examine the temporal properties of global monthly wind components 
with all 288 longitudes, but 134 latitudes between 62◦ N and 62◦ S. For a total of 
95 years, we have 1,140 temporal points at each location and run. For each site, we 
calculate the empirical skewness and kurtosis of the wind components, U and V, 
after removing the climatology (i.e., the average across five selected runs for each 
space-time location). We consider the significance test of the third and fourth cen-
tral moments, the skewness and kurtosis, of residuals over time (Bai and Ng 2005). 
We observe that both residuals, RU and RV, clearly show features of skewness and 
heavier tails compared to the Gaussian distribution in many spatial locations (only 
locations where p-values of the significance test are smaller than 0.05 are reported), 
as shown in Fig. 4. That is, the first two moments, such as the mean and variance, 
are not enough in characterizing the temporal patterns of both residuals. Thus, we 
conclude that the Gaussianity assumption is not suitable for modeling, and we fit 
univariate TGH-AR(1) and bivariate TGH-VAR(1) models marginally and jointly 
for the RU and RV residuals, respectively. Estimated values of TGH-AR(1) such as 
ĝi , ĥi , and �̂�i (autoregressive coefficients) for i = 1, 2 are shown in Fig. 5. In particu-
lar, ĝ and ĥ for both RU and RV were estimated with nonzero values over most loca-
tions, suggesting non-Gaussianity.

Now we focus on the region with longitudes between 26.25◦ E and 68.75◦ E and 
latitudes 8.953◦ N and 36.283◦ N near Saudi Arabia. Figure  6 shows boxplots of 
some selected parameters for TGH-AR(1) and TGH-VAR(1). The first two boxplots 
in Fig. 6a indicate the distribution of estimates ĝi for RU from the two models and 
the remaining two boxplots represent the distribution of ĝi for RV from two models. 
Similarly, Fig. 6b reports the distribution of ĥi from the two models. We observe that 
the ranges in the boxplots of ĝi and ĥi for TGH-VAR(1) are substantially longer com-
pared to TGH-AR(1), i.e., the parameters for the skewness and tail behavior were 
estimated higher in TGH-VAR(1) compared to TGH-AR(1). The boxplots of esti-
mates of the VAR coefficient matrix, � , for the TGH-VAR(1) are reported in Fig. 6c. 

Figure  7 presents the BIC values between the two models at each site from 
one ensemble member. Positive and negative values indicate a better and worse 
fit of the TGH-VAR(1) compared to the TGH-AR(1). In terms of the BIC values, 
TGH-VAR(1) outperforms TGH-AR(1) over many spatial locations. In particular, 
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locations near the Red Sea and the Persian Gulf have significantly higher values than 
other locations. Since the TGH-VAR(1) considers the relationship between the two 
variables and provides additional flexibility, it has a better model fit compared to the 
TGH-AR(1). Here, we show that the TGH-VAR(1) model can be a better fit for the 
wind component than the TGH-AR(1) model. However, there is room for improve-
ment. For example, one may think that the bivariate time series model is not entirely 
appropriate for the horizontal and vertical components. A small change in both hori-
zontal and vertical components can result in a profound difference in wind direc-
tion. Thus, a state-dependent model, e.g., threshold vector autoregressive time-series 
model (Lo and Zivot 2001; Wikle et al. 2019) for the � and � matrices might be 
more appropriate and preferred.

5.3  Example 2: bivariate spatial data (daily LENS data)

We examine the spatial behaviors of daily wind components. For the data sets, we 
select the residuals of two components, RU and RV, on September 23, 2020. Their 
histograms from one ensemble member are reported in Fig. 8. Based on the histo-
grams and empirical kurtosis values, we observe that RU has heavier tails, whereas 
RV has slightly lighter tails compared to the Gaussian distribution.

Again, we pay attention to the region near Saudi Arabia from one ensemble 
member after removing the trend on September 23, 2020, resulting in n = 1050 
spatial locations. Figure  8 displays the maps of RU and RV over the spatial 
domain we consider and their histograms. Since the two histograms of RU and 
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Fig. 4  The empirical skewness and kurtosis of (a, b) RU and (c, d) RV from one ensemble member after 
removing the trend (from five runs) are reported
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ĝ for RU

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-150 -100 -50 0 50 100 150

longitude

-60

-40

-20

0

20

40

60

la
tit

ud
e

0

0.05

0.1

0.15

0.2

0.25

0.3

-150 -100 -50 0 50 100 150

longitude

-60

-40

-20

0

20

40

60

la
tit

ud
e
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Fig. 6  a, b Boxplots of ĝi and ĥi ’s for TGH-AR(1) and TGH-VAR(1) near Saudi Arabia. c Boxplots of 
the estimates for the � matrix for the TGH-VAR(1)



145

1 3

Japanese Journal of Statistics and Data Science (2020) 3:129–152 

30 35 40 45 50 55 60 65

longitude

10

15

20

25

30

35

la
tit

ud
e

-500

-400

-300

-200

-100

0

100

200

300

400

500

Fig. 7  Map of differences in the BIC values between the TGH-VAR(1) and TGH-AR(1)

30 35 40 45 50 55 60 65

longitude

10

15

20

25

30

35

la
tit

ud
e

(a) RU on Sept 23, 2020

-5

-4

-3

-2

-1

0

1

2

3

4

5

(m
s−

1 )

-6 -4 -2 0 2 4 6
0   

0.05

0.1 

0.14

0.19

0.24

(b) Histrogram of RU near KSA

30 35 40 45 50 55 60 65

longitude

10

15

20

25

30

35

la
tit

ud
e

(c) RV on Sept 23, 2020

-5

-4

-3

-2

-1

0

1

2

3

4

5

(m
s−

1 )

-4 -3 -2 -1 0 1 2 3 4
0   

0.02

0.04

0.06

0.08

0.1 

0.11

0.13

0.15

0.17

0.19

(d) Histrogram of RV near KSA

Fig. 8  The maps of a RU and c RV near Saudi Arabia from one ensemble member after removing the 
trend (from five runs) on September 23, 2020. The histograms of b RU and d RV on September 23, 2020. 
Red curves are corresponding normal fits. The empirical skewness and kurtosis are (0.26, 5.17) for RU 
and (− 0.21, 2.90) for RV 
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RV show lighter and heavier tail behaviors at the same time, we consider the SAS 
transformation instead of the TGH distribution for spatial data sets. Because the 
area of this region is not very broad, we consider the chordal distance instead 
of great-circle distance. Here, the maximum distance between two locations is 
approximately 5100 km. We consider the following list of models:

Model A: two independent SAS random fields with Matérn covariance function;
Model B: a bivariate Gaussian random field with a parsimonious Matérn covariance 

function;
Model C: a bivariate SAS random field with a parsimonious Matérn covariance function.

The maximum likelihood estimates for all these models are reported in Table 2. 
The estimated correlation coefficient, �̂�12 , between the two components for the 
Models B and C are 0.36 and 0.29, so the relationship between the two variables 
cannot be neglected. According to Table 2, the distribution of RU has a heavier 
tail compared to the Gaussian distribution ( ̂𝛿1 < 1 ) and is not significantly skewed 
( ̂e1 is close to 0), whereas that of RV has a lighter tail compared to the Gaussian 
distribution ( ̂𝛿2 > 1 ) and is skewed ( ̂e2 > 0).

Table 2 presents the number of parameters, log-likelihood, and BIC values for 
the models. Model B shows the worst model fit regarding the log-likelihood and 
BIC values among models. It is evident that the Gaussian assumption is not suit-
able. Between the SAS random fields, Model C outperforms Model A in terms of 
model fit. This result is not surprising because the correlation between the two 
different components cannot be neglected (the two components over the spatial 
domain have a positive empirical correlation coefficient, �̂�0 = 0.31 ). Here, Model 
A has the advantage of its flexibility for fitting marginally with additional param-
eters for the spatial ranges, whereas Model C highlights the flexibility for mode-
ling jointly along with cross-correlation between the two components. If we have 
a more flexible multivariate Matérn covariance function, i.e., the spatial range 
and smoothness parameters for the marginal and cross-covariance structures can 
be determined without restrictions, then it might have a better performance than 
Model C.

Finally, we compare the prediction performance among models using the co-
kriging predictor (Wackernagel 2013). Here, we use a ten-fold cross-validation 
strategy and quantify the discrepancy between the simulated and predicted values 
for RU and RV. That is, we split the data set into ten groups and take one group as 
a test set (10% of locations) to perform interpolations over the spatial domain and 
take the remaining groups as a training set (90% of locations), respectively. Then, 
we fit a model on the training set and evaluate it on the test set. We repeat this 
procedure ten times by changing the test set and evaluating it in the same man-
ner. For the prediction scores, we consider the MAE. Since, for the transformed 
random field, the conditional median is the optimal predictor, it is fair to compare 
the MAE values. Table 3 shows that Model B has the highest MAE value overall, 
which is consistent with the log-likelihood and BIC values, whereas Model C 
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outperforms both Models A and B in prediction. Furthermore, we use (i) other 
randomly selected test sets and (ii) selected regions of two adjacent latitudinal 
bands over the domain as the prediction regions, and their prediction results are 
similar. In particular cases (from different ensemble members), Model A had a 

Table 2  The number of parameters, log-likelihood, BIC, and maximum likelihood estimates for Models 
A, B, and C

Standard errors are given in parentheses. The best model is in bold

Model # of pars �̂�1 �̂�1 ê1 𝛿1 �̂�1
�̂�1

A 12 0.195 1.057 0.044 0.780 106.829 3.223
(0.164) (0.077) (0.037) (0.024) (9.450) (0.211)

Log-likelihood BIC �̂�2 �̂�2 ê2 𝛿2 �̂�2
�̂�2

− 233.1 549.7 1.995 3.865 0.103 1.510 181.651 2.305
(1.006) (1.063) (0.176) (0.247) (17.805) (0.113)

Model # of pars �̂�1 �̂�1 – – �̂� �̂�1

B 8 0.631 2.053 – – 131.502 2.884
(0.364) (0.149) – – (7.371) (0.113)

Log-likelihood BIC �̂�2 �̂�2 – – �̂�12 �̂�2

− 268.2 597.6 0.682 1.685 – – 0.356 2.758
(0.293) (0.095) – – (0.014) (0.112)

Model # of pars �̂�1 �̂�1 ê1 𝛿1 �̂� �̂�1

C 12 0.050 1.274 0.000 0.765 140.731 2.705
(0.197) (0.101) (0.045) (0.025) (8.378) (0.109)

Log-likelihood BIC �̂�2 �̂�2 ê2 𝛿2 �̂�12 �̂�2

− 198.8 489.4 0.510 2.068 0.224 1.121 0.286 2.622
(0.383) (0.305) (0.034) (0.078) (0.015) (0.106)

Table 3  (A ten-fold cross-validation) Comparison between Models A, B, and C in terms of the number 
of parameters, log-likelihood, BIC, and prediction scores (averages across 10 folds are presented)

Here, MAE
i
 represents the MAE associated to variable i, for i = 1, 2 , i.e., RU and RV, respectively. 

Standard deviations of values across 10 folds are given in parentheses. The best model is in bold

# of parameters Log-likelihood BIC MAE MAE1 MAE2

Model A 12 − 3125.2 6332.7 0.916 0.849 0.983
(48.4) (96.8) (0.109) (0.132) (0.121)

Model B 8 − 3148.5 6358.3 1.270 1.380 1.159
(59.5) (119.0) (0.122) (0.173) (0.110)

Model C 12 − 3116.4 6323.4 0.831 0.847 0.815
(50.8) (101.7) (0.132) (0.170) (0.111)
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slightly better model fit than Model C when the two spatial range parameters were 
estimated to be very different, and a correlation coefficient between some selected 
sets of RU and RV was negligible. However, the overall prediction performance 
of Model C tended to outperform Model  A. Indeed, for this specific data set, 
Model C shows a better performance than Model A in terms of predictions.

6  Discussion

In this paper, we have discussed a general framework of multivariate transformed 
Gaussian processes. The framework can be applied to multivariate time series, mul-
tivariate spatial random fields, and possibly multivariate spatio-temporal processes. 
The proposed multivariate transformed Gaussian framework coupled with TGH or 
SAS transformations has shown a better statistical performance than using either 
multivariate Gaussian processes or independent univariate transformed Gaussian 
processes, for time series or spatial processes, as a benchmark. It is evident that, 
in both estimation and prediction, the joint modeling approach of the transformed 
processes has some advantages, e.g., flexibility in capturing distributional features 
of skewness and tail behavior and the relationship between variables, compared to 
either the independent modeling approach with multivariate processes or the joint 
modeling with multivariate Gaussian processes.

We have not included regression and white noise terms in our framework since 
the problem is not trivial and beyond the scope of this paper. One direction for 
incorporating additional trend and white noise terms is to adopt the data/process/
parameter hierarchical framework (Cressie and Wikle 2011) by treating the trans-
formed Gaussian model as a noiseless process while regression and noise terms can 
be included in the data hierarchy. Another direction could be to add a non-Gaussian 
noise term modeled by the transformed Gaussian process to the regression term. 
Furthermore, the framework could be applied beyond the spatial and/or temporal 
setting by extending the index � to the more general covariate/feature space. Then 
a regression problem translates directly into a trans-Gaussian process, which is 
especially relevant to methods in the machine learning field. At last, domain-spe-
cific knowledge can be crucial for choices to incorporate regression and white noise 
terms.

Although for both simulation and data example only bivariate or trivariate pro-
cesses ( k = 2 or 3) with limited time points or spatial locations over the spatial 
domain were examined, applications with larger sample size, and more than two 
variables can be handled similarly. One issue, in particular for spatial and spatio-
temporal processes, is that our framework is depending on the Gaussian process, 
and thus computation can be easily intensive as the dimensionality of the data sets 
and number of parameters for more than two variables increase. The computational 
issue is a critical topic in the spatial statistics and environmental science communi-
ties. There have been great efforts to model large data sets via various approaches. 
For more details and references, we refer the reader to Sun and Genton (2012), Gen-
ton and Kleiber (2015), and Heaton et al. (2019).
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There are some further directions the authors are currently pursuing. We need 
to investigate theoretical properties for our new framework, such as restrictions for 
the cross-correlation structure of Y after transformation. In general, the transfor-
mation weakens the correlation and the correlation corr{Yj1 (�i1 ), Yj2 (�i2)} is always 
weaker than corr{Zj1 (�i1 ), Zj2 (�i2)} . Therefore, Y cannot accept any prescribed valid 
cross-correlation structure, and the restriction depends on the transformation used. 
Another technical issue is to find optimal prediction considering uncertainty in 
parameter estimation, such as in De Oliveira (2006) for the log-Gaussian random 
fields. Also, when we perform the predictions based on co-kriging, it is necessary 
to evaluate the probabilistic prediction performance other than by an optimal point 
predictor. So more reasonable prediction scores are required, in particular, multi-
variate versions of continuous rank probability scores (Gneiting and Raftery 2007). 
In application, working with anisotropic or nonstationary multivariate covariance 
models with appropriate transformation is another exciting direction to investigate.
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