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H I G H L I G H T S  

• A temporal model to extrapolate hourly winds to turbine hub height is proposed. 
• The proposed model outperforms traditional vertical extrapolation methods. 
• A time-varying variance model improves extrapolation for stable/unstable regimes. 
• The temporal model reduces the absolute bias in capacity factors by 58–64%.  
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A B S T R A C T   

Accurate wind speed estimates at turbine hub height are critical for wind farm operational purposes, such as 
forecasting and grid operation, but also for wind energy assessments at regional scales. Power law models have 
widely been used for vertical wind speed profiles due to their simplicity and suitability for many applications 
over diverse geographic regions. The power law requires estimation of a wind shear coefficient, α, linking the 
surface wind speed to winds at higher altitudes. Prior studies have mostly adopted simplified models for α, 
ranging from a single constant, to a site-specific constant in time value. In this work we (i) develop a new model 
for α which is able to capture hourly variability across a range of geographic/topographic features; (ii) quantify 
its improved skill compared to prior studies; and (iii) demonstrate implications for wind energy estimates over a 
large geographical area. To achieve this we use long-term high-resolution simulations by the Weather Research 
and Forecasting model, as well as met-mast and radiosonde observations of vertical profiles of wind speed and 
other atmospheric properties. The study focuses on Saudi Arabia, an emerging country with ambitious renewable 
energy plans, and is part of a bigger effort supported by the Saudi Arabian government to characterize wind 
energy resources over the country. Results from this study indicate that the proposed model outperforms prior 
formulations of α, with a domain average reduction of the wind speed RMSE of 23–33%. Further, we show how 
these improved estimates impact assessments of wind energy potential and associated wind farm siting.   

1. Introduction and motivation 

The adverse impacts of fossil fuels on the environment and human 
health have led policymakers worldwide to adopt mitigating strategies 
and actively promote the replacement of these traditional energy sour
ces with wind, solar, wave and tidal energy. Of these renewable energy 
sources, wind energy has seen one of the largest deployments [1]. Wind 
energy already represents a significant share of some countries’ energy 

portfolio, with Denmark at the forefront at 43% of the country’s energy 
needs [2]. Many others have policies in place to increase its share over 
coming decades. For instance, several countries in Europe aim to 
generate 50% or more of their energy consumption from renewable 
energy sources, which include significant shares of wind power. Simi
larly in the United States, the electricity produced from renewable en
ergy sources is projected to surpass coal by 2030 with wind energy being 
a major contributor [3]. 
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Accurate wind resource assessments and identification of optimal 
turbine heights require a detailed characterization of vertical wind 
speed profiles [4,5], as wind power density varies with the cube of wind 
speed [6]. Challenges in characterizing wind speed at hub height relate 
to (i) difficulties in direct observations and (ii) limited high resolution 
model simulations. High resolution measurements of vertical wind 
speed profiles are limited in both space and time, and the sparsity of 
such observations remains a key challenge when seeking to identify 
optimal locations for wind resource harvesting on regional/national 
scales. Global model simulations and reanalysis products have also been 
used in the context of wind energy applications [6–9]; however, sig
nificant limitations remain due to spatial resolution, both horizontal (i. 
e., grid spacing ranging from 10 to 100 km) and vertical (i.e., generally 
coarser than 100 m). High resolution models, applied over a region of 
interest (i.e., regional models), represent an important tool to overcome 
the observation sparsity issue, although high computational cost often 
precludes applications over large areas for sufficiently long times [10]. 
There is thus a need to develop empirical statistical models capable of 
extrapolating wind speed observations from the surface to hub height. 
Fast and accurate models for vertical extrapolation allow for the 
assessment of suitability for wind farming over large areas in a more 
cost-effective fashion than measurement campaigns with wind towers, 
especially in regions with an emerging wind energy portfolio where such 
campaigns are not presently available. 

Prior studies have sought to identify the relationship between surface 
and higher altitude winds through the development of different theo
retical or empirical models, as well as artificial neural networks in 
different regions of the world, including over complex terrain, to 
improve estimates of wind speed at hub height [11,12]. A recent 
comprehensive review of more than 300 applications suggests that the 
power law is the most reliable and common model for extrapolation to 
typical turbine hub heights for wind energy applications [13]. A key 
parameter of the power law is the wind shear coefficient, α, which is 
known to vary with atmospheric stability [14]. Most wind energy 
assessment studies have adopted α = 1/7 for simplicity [15], although 
the underlying assumption of near-neutral atmospheric stability on a flat 
terrain is rarely satisfied and thus may lead to erroneous extrapolated 
wind profiles [13]. Constant wind shear exponents have mostly been 
adopted in prior studies; these prove to be generally suitable for wind 
power estimates over long time scale assessments (e.g., yearly), while a 
temporally varying α is needed to produce accurate wind power esti
mates at sub-daily level (e.g., hourly) [16]. A previous study [17] 
showed that the wind shear exponent exhibits significant diurnal and 
seasonal variability, based on 10-minute LiDAR observations at a site 
along Lake Erie, and found that a site-specific calibrated α, able to ac
count for such variations, significantly improved wind extrapolation. 
Similar results were found when the hourly averaged α was used to 
extrapolate wind speeds at 60 m from measured 10 m wind speed at 
three sites in Serbia [18]. 

Logarithmic law extrapolation models have also been widely used in 
the past. In these models, based on Monin-Obukhov similarity theory 
(MOST), the wind speed at hub height is a function of the terrain’s 
friction velocity and roughness length, with additional possible param
etrization of the Monin-Obukhov length dependent on stability condi
tions [19]. While the logarithmic law provides good physical 
interpretability as it is based on MOST, the need for additional surface 
measurements presents limitations to large-scale applications where this 
information may not be available. Moreover, a comprehensive review 
[13] found that such logarithmic models, despite their theoretical 
foundation, have a more limited extrapolation range capability than 
power law models. Non-parametric extrapolation methods have also 
gained popularity thanks to recent advances in machine learning and 
artificial intelligence applications. Recent literature studies have tested 
the performance of artificial neural networks both on their own [12] and 
in hybrid models with genetic algorithms [11]. Random forest [20] and 
symbolic regression methods [21] have also been tested. While these 

novel methods outperform the traditional power law, their non- 
parametric nature does not allow for a physical interpretation of the 
model results, which is of interest for the present project. 

Numerical weather prediction models are powerful tools to investi
gate physical mechanisms dictating vertical wind speed profiles. For 
example, simulations of the Weather Research and Forecasting (WRF) 
model have revealed a sensitivity of vertical wind profiles to planetary 
boundary layer (PBL) parameterizations [22] and a dependence on 
stability [23]. WRF skills in capturing wind speeds are found to depend 
on stability conditions, with higher performance during unstable con
ditions [24], as well as on horizontal resolution and terrain complexity, 
which impact wind speed extrapolation at hub height [22]. 

Capturing temporal variability in α is thus critical to provide accu
rate estimates of extrapolated wind speeds. Prior studies have mostly 
focused on specific sites/limited areas and on short time periods, thus 
preventing assessments of the full range of variability of α during 
different atmospheric conditions and seasons, at national scales. This 
study aims to fill a current literature gap by proposing a general statis
tical, yet physically-interpretable, model for α, capable of capturing its 
hourly variability, as opposed to prior studies that have adopted fixed α 
in time and/or space. The proposed model focuses not just on the ability 
to extrapolate wind speeds, but also to capture different hourly vari
ability by accounting for a temporally varying variance. Further, it 
provides robust conclusions as it is tested over a range of elevations, land 
use, and synoptic conditions over an entire country. With this work we 
address the following research objectives:  

1) Develop a novel statistical temporal model which generalizes the 
power law, and is able to both extrapolate the wind speed at hub 
height and explain its variability with a sub-daily time varying 
(heteroskedastic) error.  

2) Quantify the role of atmospheric stability and geographic features in 
dictating vertical wind speed profiles.  

3) Quantify the impact of the proposed relationship for applications in 
wind energy estimates, and how they vary in space and time from 
hourly to seasonal scales. 

To achieve these, we analyze vertical wind speed profiles from both 
direct observations and yearlong high resolution WRF simulations per
formed over Saudi Arabia, a large country characterized by a range of 
geographic features, including complex terrain and coastal regions, 
which to date has been only sparsely investigated [9,25], despite the 
recent growing commitment to install extensive wind farms [26,27]. 
The paper is structured as follows. Section 2 describes the observed and 
simulated data used for this analysis, Section 3 introduces the proposed 
model, and Section 4 presents key research results and implications for 
regional scale wind energy assessments. We include concluding remarks 
in Section 5. The R code for the model implementation for a sample 
dataset is available in a public GitHub repository at the following link: 
github.com/Env-an-Stat-group/21.Crippa.APEN. 

2. Observed and simulated meteorological data 

A yearlong simulation with the WRF model [28] is performed and 
analyzed in this work. Specifically, the non-hydrostatic dynamics core of 
WRF is applied at 6 km horizontal resolution with 40 vertical layers up 
to 50 hPa over the entire Arabian Peninsula for all of 2016. The model 
defines pressure levels spaced by around 20 m, starting at around 10 m 
from the surface, to capture wind speed variability with height and near 
hub-height. Lateral boundary conditions for meteorology are imposed 
using the operational high-resolution European Centre for Medium- 
Range Weather Forecast model (HRES-ECMWF, [28,29]) every 6 h. 
Key model parameterizations adopted are summarized in Table S1 and 
are chosen to follow a setup that enables high skill in reproducing wind 
speed profile observations [4]. 

In this work we analyze hourly vertical wind speed profiles up to 
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~110 m (layer 6 in our WRF simulations) for the entire year. Annual 
average wind speeds for levels 1 and 6 of the WRF simulations can be 
found in Fig. S1. The WRF level 1 heights vary across the domain and the 
year between 9 m and 11.5 m, with average around 10 m. Level 6 
heights vary between 100 m and 125 m, with average around 110 m. 
Since this within-layer height variability is relatively small, we perform 
our analysis with data on levels 1 and 6 of the WRF simulation and their 
corresponding, variable, heights instead of interpolating to fixed heights 
(except for when comparing WRF to observations at specific heights), in 
order to avoid introducing interpolation errors. The choice of these 
heights relates to boundary layer dynamics where turbine hubs are 
located. Indeed [4] found that site specific optimal hub heights range 
between 75 and 134 m over Saudi Arabia, with the optimal configura
tion to meet the country’s wind energy target deploying turbines with 
hub heights lower than 100 m. The WRF wind profiles up to layer 6 are 
used to estimate the parameters necessary for the methodology in Sec
tion 3. Wind speeds at higher altitudes are avoided because during 
nighttime hours (8 pm to 7 am local time) low-level atmospheric in
versions extend from near-surface to 150–250 m on average (Fig. S2); 
therefore, the inclusion of wind speeds at altitudes beyond the inversion 
layer would make the power law model presented in the next section 
unsuitable and non-physically representative. Hourly output of potential 
temperature (θ) is also used to quantify atmospheric stability. Specif
ically we compute the potential temperature gradient (i.e., dθ

dz) between 
heights z2 and z1 associated with WRF model layers 6 and 1. According 
to the static stability definition, values of dθ

dz < 0 occur under unstable 
atmospheric conditions, dθ

dz = 0 correspond to neutral conditions, while 
dθ
dz > 0 is associated with stable conditions [30]. 

In order to evaluate estimates of model parameters derived from the 
WRF simulations and thus to identify possible model biases in space and 
time, we compare our WRF output with vertical wind speed profiles 
monitored by the King Abdullah City for Atomic and Renewable Energy 
(K.A.CARE) monitoring network (Fig. 1). Hourly wind speed observa
tions from P2546A Cup Anemometers are available at ten sites 
(Table S2) at 40, 60, 80, and 100 m during January 1 – November 30, 
2016. K.A.CARE wind data follow international standards and guide
lines to ensure data quality [31]. 

As the potential temperature gradient is used herein as the primary 
metric for atmospheric stability, we also quantify model performance in 
capturing dθ

dz from the surface to 100 m as measured by radiosondes twice 
daily (at 00 UTC and 12 UTC). Locations of the radiosonde sites, as well 

as geographical information including proximity to the coast and 
elevation, are reported in Fig. 1 and Table S3. Throughout this work, 
both in situ measurements and radiosonde data will be used to evaluate 
the WRF simulations, and all analysis of the proposed model will be 
performed solely relying on the WRF output. 

3. Methodology 

3.1. Heteroskedastic time varying power law 

In order to assess wind power at hub height, it is necessary to mea
sure the wind speed at that altitude. This is however practically infea
sible, since measurements or simulations of full vertical wind profiles 
are typically not available. In lieu of direct measurements, we aim to 
develop statistical relationships linking surface wind speeds to wind 
speed at hub height that are able to account for both spatial and tem
poral (hourly) variability. 

There is a vast literature on extrapolation methods [13], and the 
most popular approach is to model the vertical wind speed profile as a 
power law. If for a generic location we indicate by ν(z1, t) and ν(z2, t) the 
wind speeds at height z1 and z2, respectively, at time t, then the power 
law can be expressed as 

ν(z2, t) = ν(z1, t)
(

z2

z1

)α

+ εt,

εt ∼ N
(
0, σ2),

(1)  

where α is the wind shear coefficient and σ2 is the error variance, both 
unknown and to be estimated. The coefficient α is variable in space and 
time, height interval, nature of the terrain and atmospheric stability, 
with values usually ranging from 0.1 over smooth surfaces or bodies of 
water to 0.4 in urban areas with turbulence induced by buildings 
[32–34], although more recent studies have also identified cases in the 
Middle East where α may take on negative values [35]. When detailed 
knowledge of the site is not available, the convention is to consider this 
coefficient equal to 1/7, even though the use of this value is only 
appropriate for smooth terrain and neutral atmospheric stability [36]. 
More sophisticated approaches predicate a time varying coefficient 
across the day, or a semiparametric estimation [14,19] depending on 
stable/unstable atmospheric conditions. While those works provide a 
wide array of alternatives, the vast majority of them have focused on 
extrapolation of wind at hub height as a point prediction problem, 
without embedding the uncertainty in a general statistical framework. 

In this work, we formulate the power law as a nonlinear statistical 
model, and hence provide a generalization to explain hourly changes in 
the wind shear coefficients, as well as the hourly wind variability via a 
heteroskedastic model. The functional form of the model allows for a 
periodic daily pattern of both the wind shear coefficient, as well as its 
variance, and to embed additional external covariates when available: 

ν(z2, t) = ν(z1, t)
(

z2

z1

)α(t)

+ εt,

α(t) = α0 +
∑K

i=1

(

βisin
(

2πti
24

)

+ β’
i cos

(
2πti
24

))

+
∑P

j=1
γjXj(t),

εt ∼ N
(
0, σ2

t

)
,

log
(
σ2

t

)
= r0 +

∑̃K

i=1

(

risin
(

2πti
24

)

+ r’
i cos

(
2πti
24

))

.

(2) 

The model (2) presents three fundamental changes from the standard 
power law (1):  

1) The wind shear coefficient α(t) varies in time according to a periodic 
daily pattern controlled by a mean component α0 and K harmonics. 

Fig. 1. Simulated domain and location of the KA.CARE (triangles) and radio
sonde (dots) sites analyzed in this study. The color shading is the Log10 of 
Terrain Ruggedness Index (TRI) for each grid cell, defined as the sum of the 
difference in slopes (from the default WRF terrain data, Table S1) between said 
grid cell and the eight surrounding ones. 
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To select K, Fig. S3a and S3b shows the map and domain average of 
change in a model selection metric, the Bayesian Information Cri
terion (BIC), for incremental increases in harmonics. Here it appears 
evident that the BIC of K = 5 is lower than the one of all the previous 
K and very similar to the BIC of higher K, therefore K = 5 harmonics 
results in a sufficiently flexible yet parsimonious model. 

2) It allows for incorporation of other site-specific, time-varying cova
riates Xj(t). In this work, we consider the case with no covariates and 
the case of P = 1 covariate X1(t) = dθ

dz (t), the vertical potential 
temperature gradient. While this information is in practice unavai
lable and not simple to estimate, we consider this model as an 
idealized case to investigate whether a proxy for atmospheric sta
bility, expressed here as potential temperature gradient, provides 
additional predictive power. Geostrophic winds have also been 
found to improve wind forecasting [37], and could thus be included 
as a covariate as well when this information is available. 

3) The model variance is assumed to also vary temporally with a peri
odic daily pattern controlled by K̃ harmonics. The case for a heter
oskedastic model can be gleaned from the considerable difference in 
variance of the wind shear coefficient between stable and unstable 
regimes as seen in Fig. 2, and is further shown in Fig. S4, where the 
variance of the wind detrended from model (2) is shown. In the same 
figure, we show the fitted daily variance pattern as a function of the 
number of harmonics, and throughout this work we fix K̃ = 5 as it 
captures the major patterns in daily variations. The addition of a 
heteroskedastic term for the error allows for considerably more 
flexible and realistic uncertainty quantification (and hence confi
dence intervals) for the extrapolated wind, as will be shown in Sec
tion 4. 

The parameters that the model fits are therefore, 

1. For α(t): a mean component α0, coefficients βi and βi
’ for the har

monics, and coefficients γj for the influence of any covariates (in our 
case, atmospheric stability). 

2. For the error variance of α(t), σ2
t : a mean component r0 and co

efficients ri and ri
’ for the harmonics. 

All parameters are real unbounded values and unknown. We expect 
that the uncertainty in the estimation of α(t) is going to be non-negligible 
compared to the magnitude of σ2

t . A proper and complete study would 
require assumptions on the asymptotic distribution of the parameter 
estimates and a prohibitively expensive computational study, beyond 
the scope of this work. While the new model as introduced in (2) does 
not have an explicit spatial component, the spatial innovation in this 
study lies in the training of the model with high-resolution, gridded 

wind speed data from WRF over the entire country of Saudi Arabia, 
spanning a range of terrain and climate conditions, allowing for prac
tically continuous results of sub-daily α(t) over the whole territory, 
which is unprecedented. 

3.2. Inference and methodology for validation 

Inference for model (2) is performed for every grid cell indepen
dently and in two steps. First, wind shear harmonics α(t) are estimated 
with weighted least squares, with weights inversely proportional to the 
hourly variance of the wind speed aloft. Once the trend is estimated, the 
residuals are computed, and the harmonics for σ2

t are estimated. The 
process could in principle be performed in one step, either with full or 
profile maximum likelihood, but this would have resulted in a more 
computationally burdensome inference, with little to no additional gain 
in predictive power. The normality assumption underpinning the model 
(2) can be directly assessed through a quantile-quantile (QQ) plot of the 
model’s standardized residuals for two representative locations in 
Fig. S5. 

We fit the model to the WRF wind speeds at level 1 and 6 and their 
respective heights z1 and z2 (approximately 10 and 110 m, respectively) 
using the hourly data for each day. Specifically, 80% of the days of the 
simulated year are randomly selected as the training set, while the 
remaining 20% of the days are used as test set, i.e., to evaluate the skills 
of proposed model (2). The comparison against the standard power law 
(1) is performed similarly, focusing on the same sampled days for 
training and testing. Model performance is quantified in terms of Root 
Mean Squared Error (RMSE), Mean Fractional Bias (MFB) and Mean 
Absolute Error (MAE). In order to produce robust statistics of model 
performance, we perform an ensemble of 100 iterations of the random 
splitting of training and testing sets for our model evaluation, and 
compute the ensemble mean of the model performance metrics of in
terest. In order to assess the model’s ability to quantify the uncertainty, 
we compute the empirical coverage, i.e., the number of elements in the 
testing set whose true level 6 wind speed falls inside the confidence 
intervals (computed from the training set) for the same height. The 
model is able to correctly quantify the uncertainty to the extent that the 
empirical coverage is approximately equal to the nominal confidence 
level of the interval, in this case 95%. 

Our model evaluation also includes comparison against a stability- 
specific wind shear coefficient which varies as a function of atmo
spheric stability based on the Pasquill definition [38]. We first use WRF 
simulated wind speed at 10 m and varying patterns for the daytime 
insolation, to classify each hour of 2016 and each grid cell into one of the 
Pasquill stability categories, and also compute the α value between WRF 
levels 1 and 6 using the power law fit (1) at each grid cell and hour of 
2016. We then compute the domain average α for each different Pasquill 

Fig. 2. Diurnal variability of the estimated wind 
shear exponent (α̂, left axis) and atmospheric 
stability (expressed as dθ

dz [◦C m− 1], right axis) 
from KA.CARE observations and WRF simulations 
at the same sites. α̂ is obtained from the power 
law in equation (1) to hourly observed and 
modeled wind speeds at 40, 60, 80, and 100 m 
averaged over the year 2016. dθ

dz is shown only 
from the WRF output as the sites do not measure 
vertical profiles of temperature. Solid lines 
represent averages and the shadings indicate the 
full variability (min-max) across the ten mea
surement sites. The dashed grey line indicates the 
reference value of α = 1/7.   
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stability category (Table S4) based on the α values derived from the 
power law fit at each grid cell and hour. These Pasquill-dependent 
average α will be used to extrapolate the wind speed from 10 m to 
110 m. Insolation patterns are divided into two seasons, with the sum
mer season defined from April to September and the winter season for 
the remaining 6 months of the year, based on the sunrise and sunset 
times in Saudi Arabia during different months. Specifically, we define 
the two hours after sunrise as “Slight”, 2–3 h after that as “Moderate”, 
4–5 h in the middle of daytime as “Strong” insolation, and then back to 
“Moderate” and “Slight” until sunset. Due to the typical low cloudiness 
of the region [39], the daytime insolation pattern remains constant 
within each season and nighttime hours are assumed to be mostly clear 
(cloud cover ≤ 3/8). 

4. Results and discussion 

In this section, we assess the spatio-temporal variability of the wind 
shear coefficient for the WRF dataset and compare it with met-mast 
observations, as well as its empirical relationship with atmospheric 
stability validated against radiosonde data. Our proposed model for 
wind speed extrapolation with height is then evaluated using WRF 
simulated data and its skills are compared to approaches widely used in 
the literature and industrial practice: a model with constant α = 1/7; a 
model with site-specific but constant-in-time α; and a model with time- 
variable α based on Pasquil stability. In order to distinguish between the 
parameters for the power laws in (1) and (2) and their estimates, we 
denote by α̂ the wind shear coefficient inferred directly from the WRF 
data using all levels up to ~110 m (i.e., levels 1 through 6). 

4.1. Diurnal variability of the wind shear coefficient and atmospheric 
stability 

Here we focus on the standard power law for every hour, and char
acterize the diurnal variability exhibited by the wind shear exponent in 
both observations and simulated wind speed profiles. Both the WRF data 
and the met-masts indicate a strong diurnal pattern at KA.CARE sites, 
which suggests an important role played by daily atmospheric dynamics 
in dictating vertical wind speed profiles. Highest wind shear exponents 
(i.e.,  α̂ > 0.2) occur during more stable atmospheric conditions, mostly 
during 7 pm to 7 am (Fig. 2). Some locations, including Al-Jouf in the 
North and Sharurah in the South (see Fig. 2 and Table S2 for their 
location) exhibit a more pronounced diurnal cycle with α̂ oscillating 
between 0.35–0.40 and 0.03–0.04 during the most stable and unstable 
conditions, respectively. 

The WRF simulation reproduces both the diurnal cycle and the range 
of the wind shear coefficient from the observations well, although it 
slightly overestimates the spread among sites. Sites closer to the coast 
present lower α̂ (Table S2), possibly as a result of the role of low level 
jets [40,41] associated with land and sea breezes which weaken the 
power law relationship between surface and elevated winds [42,43]. We 
observe more variability in the temperature gradient during nighttime 
hours, corresponding to stable, well-stratified atmospheric layers, while 
higher turbulence in the daytime results in a very well mixed layer, 
where the potential temperature is almost constant with height, with a 
gradient close to 0. Early mornings (late afternoons) see the transition 
between stable and unstable (unstable and stable for the transition in the 
evening) regimes as indicated by lower/higher temperature gradients 
compared to adjacent hours (Fig. 2 and Fig. S6). The exact occurrence of 
these transition hours shifts throughout the day by a couple of hours 
depending on the season and times of sunrise and sunset. This analysis 
thus suggests that the assumption of near-neutral stability and associ
ated α = 1/7 is rarely observed over the Arabian Peninsula, hence 
highlighting the need for more flexible approaches. 

As the KA.CARE sites do not record vertical temperature profiles, we 
quantify WRF skills in capturing potential temperature gradients from 

the surface up to 100 m by comparison with data from eight radiosonde 
sites. Our statistical analysis indicates high skill of WRF with low values 
of RMSE = 0.03, MFB = 0.09 and MAE = 0.02, [44] and a correlation 
coefficient 0.4 when averaged among sites during nighttime (00 UTC or 
3 am local time, Table S3). Similar results are found during daytime (12 
UTC, 3 pm local time), although lower correlations are observed 
(Table S3). During such hours of strong convection and mixing, the 
potential temperature gradients are very close to zero and the variations 
between the observed and simulated values, responsible for the low 
correlation coefficients, are negligible compared to the diurnal vari
ability in dθ

dz, that is indeed well captured by the model. 
To further explore the temporal patterns of α̂ and its relationship 

with atmospheric stability, we compare its map with that of dθ
dz calculated 

using the potential temperatures at layer 1 (~10 m) and layer 6 (~110 
m). The wind shear exponent (Fig. S7) follows a similar diurnal and 
spatial pattern to the temperature gradient. As expected, yearly aver
aged values show that the daytime hours are mostly unstable, and the 
nighttime hours are stable. The unstable hours, with deep atmospheric 
mixing during the daytime, show α̂ close to 0, meaning that wind speed 
is essentially constant with height. The stable hours of the night show 
higher α̂ in the places where higher dθ

dz are also observed, further sug
gesting the existence of a strong association between the two. 

4.2. Spatial variability of the wind shear coefficient 

The range of variability in α̂ during a stable hour (i.e., 3 am) is shown 
in Fig. 3. While large portions of the domain present low/negative 
values of α̂ (but with a low coefficient of determination, R2, see Fig. S8) 
when looking at the 2.5th percentile (domain average α̂ = − 0.22 and R2 

= 0.11), a good fit is instead found for the 50th percentile (domain 
average α̂ = 0.34 and R2 = 0.95) and the 97.5th percentile (domain 
average α̂ = 0.78 and R2 ~ 1). This indicates that for specific days/ 
events, more complex vertical wind speed structures/dynamics occur; 
thus the power law relationship is not always an appropriate model to 
describe such profiles. Small portions of the domain present extremely 
low or extremely high values of the wind exponent (above |1|) for the 
2.5th and 97.5th percentiles respectively, which would result in unre
alistic variations of the wind speed over the lowest 100 m of the atmo
sphere. Fig. S9 shows that such cases, possibly resulting from terrain 
complexity or a failure of the power-law model to capture the true 
profile, are generally outliers across the domain while the great majority 
of the territory does exhibit physical behavior. 

Conversely, very unstable hours do not show large variability in the 
distribution of α̂ as the domain averaged 2.5th and 97.5th percentiles 
are − 0.0097 (R2 = 0.40) and 0.0708 (R2 ~ 1), respectively (Fig. S10). 
This may be at least partially attributed to fully mixed wind speed 
profiles and constant temperature gradient. An example of the hourly 
variability through the analyzed year in the goodness of fit of the power 
law in model (1) at two KA.CARE sites (Jeddah and Hafar-Al-Batin) is 
presented in Fig. S11. As mentioned earlier, the power law fit (expressed 
as R2) is generally very good (median R2 ~ 1) for very stable and very 
unstable hours, while variable performance is found for transition hours. 
Further, Fig. S11 also highlights the large intra-daily variability in the 
R2, which implies that the power law is not always the most suitable 
model to capture the vertical wind speed profile. 

Over the analyzed year and throughout the simulated domain, the 
atmosphere is unstable/neutral for ~40% of the time and stable for the 
remaining time. The coastal regions show a lower percentage of unstable 
hours, particularly along the Persian Gulf coast. Grid cells with high 
Terrain Ruggedness Index (TRI, Fig. 1) also present the weakest fits of α̂ 
(Fig. 3, Fig. S10). This indicates terrain influence on the wind speed 
profile, attributable to turbulence by surface friction. The negative 
values of α̂ are observed most frequently along the places with highest 
TRI (Fig. 3b) and do not negatively impact wind energy applications in 
the region, as prior work has deemed these sites unsuitable for wind 

P. Crippa et al.                                                                                                                                                                                                                                  



Applied Energy 301 (2021) 117378

6

farm operations [4]. 

4.3. Model fit, evaluation and inter-comparison 

Here we fit our proposed new model as described in (2) for capturing 
a heteroskedastic wind with time-varying α, with the final aim of 
showing its superior extrapolation performance against the standard 
model in (1). 

We quantify model skills in predicting wind speed at ~110 m based 
on the RMSE, MFB and MAE computed for all points belonging to spe
cific ranges of TRI and distance from the coast (Table S5). The RMSE 
ranges between 1.5 and 1.9, while both the MFB and MAE are relatively 
small independently of geographic location. The very low MFB statistics 
presented are the result of compensating errors occurring at different 
hours of the day (see example in Fig. S12), with hours in the middle of 
the day, corresponding to unstable boundary layer, presenting the 

Fig. 3. Range of variability in the wind shear exponent and coefficient of determination (R2) at 3 am local solar time (stable conditions). The top row indicates the (a) 
2.5th, (b) 50th, and (c) 97.5th percentile of α̂ for each grid cell, while the bottom row indicates the (d) 2.5th, (e) 50th, and (f) 97.5th percentile for the corresponding 
R2 over all days in 2016. 

Fig. 4. Diurnal variability of the RMSE between our model and the actual WRF wind speed at level 6 (a-b) and the associated empirical coverage percentage (c-d) for 
two representative sites: Jeddah (a,c) and Hafar-Al-Batin (b,d). The spread in the boxplots derives from the 100 random samples of 20% of the data used for 
evaluation purposes, as described in Section 3.2. 
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lowest and least variable values. A similar pattern is observed for the 
RMSE in the first row of Fig. 4, albeit with larger values. The coefficient 
of determination R2 for the power law (1) is reported in Table S5, and it 
indicates that coastal locations and areas of complex terrain are char
acterized by lower values. This can be explained by the occurrence of 
low-level jets from the ocean breeze and more complex flow over 
elevated peaks that are thus not consistent with the expectation of 
monotonic increase of wind speed with height. Regardless of the irreg
ularity of the profile, our model still captures the winds aloft well, as 
indicated by the low MFB and MAE. As land/sea breezes are charac
terized by relatively consistent temporal patterns (i.e., they generally 
occur at similar hours through the day at each location), the time 
component of our model appears to be able to account for those irregular 
wind vertical profiles (Table S5). Coastal locations may also see less 
inter-seasonal variability due to ocean proximity. This is further 
confirmed by a sample coastal location, Jeddah, which shows less 
variability in the hourly variance of the wind speed at WRF level 6 than 
the inland site of Hafar-Al-Batin (Fig. S4). 

The model is also able to correctly assess the uncertainty of the 
extrapolation. The second row of Fig. 4 shows the empirical coverage of 
a nominal 95% confidence interval throughout all 24 h for both Jeddah 
and Hafar-Al-Batin, with every boxplot representing the variability 
throughout different days selected by the 100 random sampling itera
tions as described in Section 3.2. Overall, the empirical coverage is very 
close to the nominal confidence level, and the median of each boxplot is 
aligned with 95%. 

We also compared the performance of our proposed model in (2) 
(henceforth αST) against the performance of the standard power law in 
(1) using (i) a constant value of α = 1/7 (henceforth αC), valid for neutral 
stability and flat terrain; (ii) a site-specific wind shear coefficient con
stant in time (henceforth αS); and (iii) a stability-varying wind shear 
coefficient based on the site’s hourly Pasquill stability classification 
(henceforth αP), as detailed in Section 3.2. We computed RMSE, MFB 
and MAE for model performance with respect to the WRF simulated 
level 6 wind speeds, as reported in Table 1. As one might expect αC 
performs the worst and shows the largest RMSE and MFB, whereas site- 
specific coefficients, αS and αP, provide slightly improved performance. 
Our proposed model instead has median RMSE and MAE which are 40% 
smaller than αC, and median MFB which is almost an order of magnitude 
smaller. These results highlight that accounting for the temporal vari
ability in α is crucial to properly extrapolate wind speed at different 
altitudes and assuming a power law constant in time leads to significant 
biases that may impact wind energy resources assessments (see more 
discussion in Section 4.4). 

We also test an idealized model (2) with P = 1 covariate X1(t) =
dθ
dz (t), thereby incorporating temperature gradient as additional infor
mation about atmospheric stability (henceforth αST-S). As discussed in 
Section 4.1, the temporal evolution of atmospheric stability and α are 
highly correlated, and the temperature gradient is the driver of atmo
spheric dynamics and turbulence features which inevitably impact the 
wind vertical profiles. Model αST-S outperforms αST, the same model 
without temperature gradient, although this difference in performance 

is small compared to the improvement from previous models αS, αP and 
αC. While this provides compelling evidence for the use of the temper
ature gradient, in a real-life scenario such information needs to be either 
measured at hub height, hence effectively being as challenging to 
measure as the model output itself, or estimated from the surface with 
additional uncertainty. For these reasons, our energy assessment appli
cation will focus on the more practical case of αST. 

4.4. Implications for wind energy resource assessments 

Fig. 5 (panels a-d) shows the spatial patterns of the RMSE of the 
extrapolated wind speeds at ~110 m compared to the original WRF 
output for the four models: αC, αS, and αP, as well as our time-varying 
heteroskedastic model αST. The traditional approximation αC for 
neutral conditions shows a systematic, large, positive bias (i.e., the 
neutral approximation greatly underpredicts the wind speeds around 
110 m), over most of the domain (Fig. 5a), a condition only marginally 
improved by αS and αP (Fig. 5b and c), while our αST model performs 
better for inland and lower-elevation areas; the degree of improvement 
is smaller for elevated regions and coastal areas (Fig. 5d). Models αC, αS, 
and αP present similar spatial patterns, with largest errors in the south- 
eastern and in portions of the central-east regions, both of which are 
extensively characterized by low elevation and relatively flat terrain. 
Despite the relatively flat terrain, for which we would expect simple 
models for α to work relatively well, this result instead suggests that 
these areas experience major temporal variability in the wind patterns. 
We hypothesize that the large values may be attributable to the strong 
seasonal variability in wind patterns (both speed and direction). For 
example, during summer (and occasionally in winter) the Shamal trade 
winds are responsible for a northwesterly flow which mostly impacts the 
north-central regions of the peninsula, while a southeasterly flow, 
associated with the onset of the Indian monsoon, occurs in spring and 
primarily impacts wind fields in the south-east of the Peninsula [9]. Our 
model outperforms the other approaches systematically over the entire 
domain, with a domain average reduction of the RMSE of 33%, 27% and 
23% compared to αC, αP, and αS, respectively. 

Besides its superior predictive ability, the temporal hetero
skedasticity of αST also allows for the correct quantification of uncer
tainty in the daily variation of wind, as previously demonstrated in 
Fig. 4, where αC, αS, and αP would have produced overly small or large 
confidence intervals, depending on the hour of the day. Fig. 5 (panels e- 
h) show the map of the empirical coverage for all four methods. While αC 
and αP result in an overall underestimation of the uncertainty (Fig. 5e 
and Fig. 5g), noticeably in the south-west areas, αS results in severe 
overestimation, with the vast majority of the domain showing overly 
large confidence intervals with 100% empirical coverage (Fig. 5f). Our 
αST model is instead able to capture the correct extent of the uncertainty 
for the majority of the country, with exception of the complex and 
elevated terrain in the western part of the country (Fig. 5h). This lack of 
correct uncertainty quantification is attributable to the same causes of 
the relatively poor fit of the power law for sites with high TRI, as 
highlighted in Table S5. Finally, we used the four models presented here 
to extrapolate winds at WRF level 9 (~200 m), to explore model per
formance at higher altitudes than the ones available for training. Anal
ogously to the results in Fig. 5, αST outperforms the models αC, αP and αS 
when extrapolating to 200 m (Fig. S13). 

The improved predictive abilities of αST on wind speed are expected 
to be reflected, to a larger extent, on wind energy potential quantifica
tion, as biases in the wind speed scale up with a cubic relationship when 
considering the energy produced. Fig. 6 presents the difference in annual 
capacity factors between those derived using different extrapolation 
models and the ones derived using the WRF output (Fig. S14). Specif
ically, for each grid cell of our domain, we compute the annual capacity 
factors, defined as the annual average of the hourly wind power 
generated divided by the turbine’s rated peak power. We do not account 
for other losses (e.g. due to wake effect or decay in efficiency during 

Table 1 
Performance metrics of different models in extrapolating wind speed at 110 m 
(level 6) from 10 m (level 1) compared to the WRF simulated wind speed at level 
6. The median value in space is reported for each metric (the 2.5th and 97.5th 
percentiles are in parentheses). The performance metrics are computed based on 
100 samples of 20% of randomly extracted days.  

Model RMSE MFB× 102  MAE 

αC 2.86 (1.81; 3.59) − 16.09 (− 27.73; 22.07) 2.30 (1.51; 2.90) 
αS 2.82 (1.68; 3.62) 0.35 (− 0.8; 1.20) 2.42 (1.26; 3.16) 
αP 2.63 (1.68; 3.26) − 15.95 (− 26.60; 21.05) 1.96 (1.31; 2.44) 
αST-S 1.70 (1.24; 2.16) − 1.18 (− 6.41; 9.10) 1.13 (0.85; 1.42) 
αST 1.84 (1.30; 2.28) − 2.52 (− 8.59; 9.11) 1.24 (0.89; 1.50)  
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turbines’ lifetime) which may occur during real operations, thus the 
presented capacity factors may be larger than the operational ones. In 
this analysis, we consider a range of commercially-available wind tur
bines and we assume optimal turbine type and height (and thus the 
associated power curve) for each location, as identified in prior work 
based on the same WRF simulations as the ones presented here [4]. The 
extrapolation to hub height is performed with αC, αS, αP, and αST (Fig. 6 
panels a, b, c, and d, respectively), while the WRF output is derived at 
the exact turbine hub height via linear interpolation between the two 

layers that contain the hub height. It is readily apparent how our model 
systematically underestimates the actual annual capacity factors and 
displays a median spatial absolute bias of 0.05. Conversely, the tradi
tional extrapolation methods present more complex spatial patterns of 
the bias, both over- and under-estimating the capacity factor depending 
on the region (Fig. 6) and showing more spread among sites, with 
interquartile range for αC (0.1), αP (0.093), and αS (0.047) being much 
larger than that of αST (0.022, Table S6 and Fig. S15). Quantifying such 
biases is key as they may lead to significant economic losses from the 

Fig. 5. First row: RMSE computed on 20% of data and 100 iterations for winds extrapolated to 110 m using (a) αC, (b) αS, (c) αP, and (d) αST relative to the original 
WRF output. The second row shows the associated coverage difference. 

Fig. 6. Difference between capacity factors computed based on (a) αC model, (b) αS model, (c) αP model (d) αST model and the reference capacity factors computed 
based on the WRF output. The white areas are excluded from the analysis as not suitable for wind farm location (see [4] for further details). 
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wind energy providers [9] and grid operation management. 

5. Conclusions 

This work introduces a new method to extrapolate wind speeds from 
the surface to higher altitudes, a topic particularly relevant for wind 
energy applications, as an accurate characterization of the wind speed at 
hub height is crucial for both accurate wind energy assessments and 
improved wind power forecasts needed by wind farm operators. The 
proposed model is flexible enough to capture the observed strong hourly 
variability of the wind shear coefficient α, which can be explained with 
boundary layer dynamics and atmospheric stability and generalizes 
standard literature approaches based on a power law method. We vali
date our model using WRF hourly output, applied at 6 km resolution 
over Saudi Arabia for an entire calendar year. The large spatial domain 
and relatively large temporal scale enable testing under different sea
sonal conditions and a variety of geographical/terrain features including 
coastlines, desert areas, complex terrain, and plateaus. Previous studies 
using both modelled and reanalysis wind data have found a low inter- 
annual variability of wind speeds in the Arabian Peninsula, meaning 
that the applicability and conclusions of our study may be extended 
beyond the year of data used for model development. Further, we 
perform a comparative analysis between our model and prior literature 
studies. Our model is found to outperform the power law under the 
traditional assumption of α = 1/7, which is valid for near-neutral at
mospheric conditions on open flat terrain, conditions that are rarely 
satisfied throughout the day and over different geographical regions. 
Our model also presents higher skills than a power law with site specific 
α (either constant through time or varying based on atmospheric sta
bility) with significant implications for the predictive skills of wind ca
pacity factors. Indeed, we estimate that our model reduces the absolute 
bias in the estimated capacity factor on average by 58% and 64% over 
the entire country, compared to the assumptions of α = 1/7 and a 
Pasquill-stability varying α. While the domain averaged mean absolute 
bias of our model is similar to that of a spatially varying yet time 
invariant α, our new approach shows a systematic negative bias and a 
smaller spread of error, facilitating country-scale bias correction. The 
proposed work is general and applicable to any country where sub-daily 
information on the vertical wind speed profiles is available for a certain 
time period. Our new model’s improved accuracy in hub-height 
extrapolation also offers an opportunity to revisit the implications for 
future wind energy potential in Saudi Arabia discussed in prior studies 
that adopted the neutral assumption for the power law. 

The method presented in this work is arguably more flexible than 
traditional methodologies, yet it is still reliant on the power law. Evi
dence suggests that the use of a predefined functional form may be 
limiting, and a fully non-parametric specification with neural networks 
may result in higher predictive skills. Despite these improvements in 
point prediction, wind extrapolation from the surface to hub height is 
bound to have high uncertainty by the nature of the problem, so further 
improvements should always stress the importance of correctly assessing 
model uncertainty. 

Future work will be focused on quantifying the model skills in other 
geographical regions and climate to provide a broader and more general 
assessment of the range of improvements that this approach brings 
against the standard power law. For countries where limited observa
tions and no simulations of wind speed profiles are readily available, it is 
still possible to provide a coarse assessment of our model with global 
data products, such as reanalysis data from the Modern-Era Retrospec
tive analysis for Research and Applications, Version 2 (MERRA-2) which 
is characterized by 6-hourly data and 50 km resolution global coverage 
and possibly integrated with high resolution vertical profile information 
(such as from radiosondes). 

CRediT authorship contribution statement 

Paola Crippa: Conceptualization, Supervision, Investigation, 
Writing – original draft. Mariana Alifa: Formal analysis, Data curation, 
Writing – review & editing. Diogo Bolster: Conceptualization, Super
vision, Writing – original draft. Marc G. Genton: Supervision, Writing – 
original draft. Stefano Castruccio: Conceptualization, Supervision, 
Methodology, Writing – original draft. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This publication is based upon work supported by the King Abdullah 
University of Science and Technology (KAUST) Office of Sponsored 
Research (OSR) under Award No: OSR-CRG 7 2018-3742.2. The authors 
thank the King Abdullah City for Atomic and Renewable Energy (K.A. 
CARE) for providing the wind speed observational data. HRES-ECMWF 
operational analysis data were downloaded from the ECMWF data 
portal (https://www.ecmwf.int/en/forecasts/datasets/set-i.) through 
the KAUST ECMWF licence. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.apenergy.2021.117378. 

References 

[1] REN21, ed. Renewables 2020: Global Status Report. Renewable Energy Policy 
Network for the 21st Century: Paris; 2020. p. 302. 

[2] WWEA. Wind power capacity reaches 539 GW, 52.6 GW added in 2017. World 
Wind Energy Association; 2018. 

[3] EIA. Annual Energy Outlook 2017 with projections to 2050, U.S.E.I. 
Administration, Editor. 2017, U.S. Energy Information Administration; 2017. p. 64. 

[4] Giani P, et al. Closing the gap between wind energy targets and implementation for 
emerging countries. Appl Energy 2020;269:115085. 

[5] Lantz EJ et al. Increasing Wind Turbine Tower Heights: Opportunities and 
Challenges. United States; 2019. 

[6] Lu X, McElroy MB, Kiviluoma J. Global potential for wind-generated electricity. 
Proc Natl Acad Sci 2009;106(27):10933–8. 

[7] Jeong J, Castruccio S, Crippa P, Genton MG. Reducing storage of global wind 
ensembles with stochastic generators. Ann Appl Statist 2018;12(1). https://doi. 
org/10.1214/17-AOAS110510.1214/17-AOAS1105SUPP. 

[8] Miller LM, Kleidon A. Wind speed reductions by large-scale wind turbine 
deployments lower turbine efficiencies and set low generation limits. PNAS 2016; 
113(48):13570–5. 

[9] Tagle F, Castruccio S, Crippa P, Genton MG. A Non-Gaussian Spatio-Temporal 
Model for Daily Wind Speeds Based on a Multi-Variate Skew-t Distribution. J Time 
Ser Anal 2019;40(3):312–26. 

[10] Gutowski WJ, Ullrich PA, Hall A, Leung LR, O’Brien TA, Patricola CM, et al. The 
Ongoing Need for High-Resolution Regional Climate Models: Process 
Understanding and Stakeholder Information. Bull Am Meteorol Soc 2020;101(5): 
E664–83. 

[11] Islam MS, Mohandes M, Rehman S. Vertical extrapolation of wind speed using 
artificial neural network hybrid system. Neural Comput Appl 2017;28(8):2351–61. 

[12] Vassallo D, Krishnamurthy R, Fernando HJS. Decreasing Wind Speed Extrapolation 
Error via Domain-Specific Feature Extraction and Selection. Wind Energ Sci Discuss 
2019;2019:1–17. 

[13] Gualtieri G. A comprehensive review on wind resource extrapolation models 
applied in wind energy. Renew Sustain Energy Rev 2019;102:215–33. 

[14] Gualtieri G. Atmospheric stability varying wind shear coefficients to improve wind 
resource extrapolation: A temporal analysis. Renewable Energy 2016;87:376–90. 

[15] Peterson EW, Hennessey JP. On the Use of Power Laws for Estimates of Wind 
Power Potential. J Appl Meteorol 1978;17(3):390–4. 

[16] Kubik ML, Coker PJ, Barlow JF, Hunt C. A study into the accuracy of using 
meteorological wind data to estimate turbine generation output. Renewable 
Energy 2013;51:153–8. 

[17] Li J, Wang X, Yu X. Use of spatio-temporal calibrated wind shear model to improve 
accuracy of wind resource assessment. Appl Energy 2018;213:469–85. 

P. Crippa et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.apenergy.2021.117378
https://doi.org/10.1016/j.apenergy.2021.117378
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0020
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0020
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0030
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0030
https://doi.org/10.1214/17-AOAS110510.1214/17-AOAS1105SUPP
https://doi.org/10.1214/17-AOAS110510.1214/17-AOAS1105SUPP
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0040
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0040
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0040
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0045
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0045
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0045
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0050
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0050
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0050
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0050
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0055
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0055
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0060
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0060
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0060
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0065
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0065
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0070
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0070
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0075
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0075
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0080
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0080
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0080
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0085
http://refhub.elsevier.com/S0306-2619(21)00781-9/h0085


Applied Energy 301 (2021) 117378

10
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