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Abstract
Saudi Arabia has been seeking to reduce its dependence on oil by diversifying
its energy portfolio, including the largely underused energy potential from wind.
However, extreme winds can possibly disrupt the wind turbine operations, thus pre-
venting the stable and continuous production of wind energy. In this study, we assess
the risk of disruptions of wind turbine operations, based on return levels with a
hierarchical spatial extreme modeling approach for wind speeds in Saudi Arabia.
Using a unique Weather Research and Forecasting dataset, we provide the first high-
resolution risk assessment of wind extremes under spatial non-stationarity over the
country. We account for the spatial dependence with a multivariate intrinsic autore-
gressive prior at the latent Gaussian process level. The computational efficiency is
greatly improved by parallel computing on subregions from spatial clustering, and
the maps are smoothed by fitting the model to cluster neighbors. Under the Bayesian
hierarchical framework, we measure the uncertainty of return levels from the pos-
terior Markov chain Monto Carlo samples, and produce probability maps of return
levels exceeding the cut-out wind speed of wind turbines within their lifetime. The
probability maps show that locations in the South of Saudi Arabia and near the Red
Sea and the Persian Gulf are at very high risk of disruption of wind turbine operations.
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1 Introduction

Facing the rising demand in energy resulting from the industrial development, urban-
ization and growth of its population, Saudi Arabia is seeking to change the heavy
reliance on fossil fuels for its energy needs by investing in its largely underused
potential of renewable energy. According to KA-CARE (2012), Saudi Arabia is plan-
ning to build a capacity of 54 GW of renewable energy portfolio by 2032, of which
9 GW are expected to come from wind power. The NEOM project (NEOM Project
2017), initiated from the Saudi Vision 2030 (Vision 2030 2016), also aims at pursuing
a very large, self-sustainable city with a substantial reliance on wind energy.

Wind has an intermittent nature, and hence implies a high level of uncertainty in
assessing its intensity. Wind extremes are of particular interest as they can be destruc-
tive to the integrity of wind turbines, or force their shutdowns, thus bringing a threat
to the stability of the production of wind power. Shutdowns on a large number of
wind turbines, even on a small number of wind farms, can result in a deep and fast
drop in wind power output, which can have a large impact on the local electrical grid.
Therefore, an accurate assessment of wind extremes is crucial for risk management
purposes. Recently, several studies have been carried out to evaluate the wind power
potential over Saudi Arabia (Rehman and Ahmad 2004; Rehman et al. 2007; Shaahid
et al. 2014; Yip et al. 2016; Chen et al. 2018; Giani et al. 2020), yet little work has
focused on the risk assessment of extreme wind speeds. In this work, we aim to pro-
vide the first high-resolution risk assessment of disruption of wind turbine operations
in Saudi Arabia by modeling the spatial extremes of wind speeds. To do so, we use a
newly developed, unique dataset generated by the Weather Research and Forecasting
(WRF) model with 5 km × 5 km spatial resolution over Saudi Arabia, produced by
Yip (2018).

Historically, the generalized extreme-value (GEV) distribution and generalized
Pareto distribution (GPD) in Extreme-Value Theory (EVT) have been used in the
statistical modeling of extremes at individual locations. Since the univariate extreme
value analysis typically only uses the very limited observations in the tail, it is use-
ful to pool data from all locations to reduce the uncertainty of parameter estimates.
Furthermore, since extreme values are usually spatially correlated, it is important
to borrow information from neighboring locations. Recently, researchers have been
increasingly focusing on the modeling of spatial extremes, i.e., modeling the joint tail
behaviors of extremes in space by characterizing the spatial dependence of extremes
between locations. The classical methodologies for modeling spatial extremes can
be divided into three main classes: copula, max-stable and latent process models.
The copula and max-stable models directly apply a spatial model to the extreme val-
ues to capture the spatial dependence, whereas the latent process models assume a
latent spatial process embedded into the parameters of the marginal distribution at
each location; see Davison et al. (2012) for a review and comparison of these three
approaches. The so-called near-independence models (e.g., Ledford and Tawn 1996;
Ledford and Tawn 1997; Heffernan and Tawn 2004; Ramos and Ledford 2009) for
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spatial extremal data have also been developed to capture the decreasing dependence
for increasing rare events that classical models are not able to capture. For exam-
ple, the conditional extremes model of Heffernan and Tawn (2004) has been used in
several studies on spatial extremes (e.g., Winter et al. 2016; Towe et al. 2019). An
alternative method for modeling spatial extremes by borrowing strength across loca-
tions is regional frequency analysis (RFA) by Hosking and Wallis (1997) as applied
in Weiss et al. (2014).

Many studies evaluating the wind extremes over a spatial domain have applied
the extreme-value theory to data from climate model outputs, but assumed that the
extreme values across locations are mutually independent (e.g., Kharin and Zwiers
2000; Nikulin et al. 2011; de Winter et al. 2013; Kumar et al. 2015). Some studies
have modeled the spatial dependence in the extremes based on max-stable processes
(e.g., Huser and Davison 2014) or copulas (e.g., Sang and Gelfand 2010), but the
implementation of these models in large dimensions, such as for the spatial domain
of a WRF model, can be very difficult. The latent process approach is most naturally
performed in a Bayesian setting due to the hierarchical modeling procedure involved,
where Markov chain Monte Carlo (MCMC) algorithms can be used to quantify the
uncertainty (e.g., Banerjee et al. 2014). Davison et al. (2012) concluded that Bayesian
hierarchical models are well suited for computing marginal properties such as return
levels, which are often used to analyze the extreme behaviors of climate variables.
Therefore, the latent process approach is retained in the present paper for assessing
the wind speed return levels based on the large WRF dataset. We do not adopt the
RFA for our application since it does not provide a satisfactory method of uncer-
tainty quantification as stated in Cooley et al. (2007), who presented the first use of
Bayesian hierarchical models to produce a map characterizing precipitation extremes
across a geographic region with data from 56 stations. Later on, Cooley and Sain
(2010) developed a spatial hierarchical model for extreme precipitation data from a
Regional Climate Model (RCM) at 2,464 locations. Other similar applications, either
using station data or gridded data from climate models, include Gaetan and Grigoletto
(2007), Sang and Gelfand (2009), Turkman et al. (2010) and Jalbert et al. (2017).

To our knowledge, Cooley and Sain (2010) performed the first study on spa-
tial hierarchical modeling of extremes for gridded data from an RCM. The spatial
non-stationarity was captured by modeling the spatially varying parameters of the
marginal extreme value distribution with latent Gaussian processes. Geophysically-
based covariates, such as the longitude, latitude and elevation, were incorporated into
the extremes modeling. The hierarchical procedure was implemented in a Bayesian
framework, and inference was based on the MCMC posterior samples.

One limitation of the model presented by Cooley and Sain (2010) is that it can
only be applied to small datasets, and is therefore not computationally feasible to our
much larger dataset over the climatologically more diverse spatial domain. In this
study, we apply a novel hierarchical spatial extremes model to wind speed data in the
new high-resolution WRF dataset from Yip (2018). Our main contributions can be
summarized as follows:

1) we provide smooth estimates of the spatial parameters by performing inference
with neighboring spatial clusters;
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2) we provide computationally affordable inference by means of appropriately-
divided subregions and parallelization, instead of focusing on a full spatial
analysis;

3) we provide the first high-resolution risk assessment of wind extremes over Saudi
Arabia, with uncertainty quantified in the Bayesian framework;

4) we provide evidence for the inadequacy of using a proper multivariate condi-
tional autoregressive (CAR) model to capture the spatial random effects in high
spatial-resolution datasets, and we demonstrate that the improper multivariate
intrinsic autoregressive (IAR) specification in the Bayesian framework is more
appropriate for capturing the irregular and strong spatial dependence.

The remainder of this paper is organized as follows: In Section 2, we describe the
newWRF dataset, as well as the preprocessing required to apply the spatial extremes
model. In Section 3, we introduce the methodology used in this work, including
the univariate extreme value analysis, the spatial clustering method and the spatial
extremes model. Section 4 provides the computational details. In Section 5, we sum-
marize the main results for parameter and return level estimations, and analyze the
risk of disruption of wind turbine operations in Saudi Arabia. We then draw some
conclusions and discuss future research directions in Section 6.

2 Data

Wind turbines operate at hub heights ranging from 50 to 140 meters and are highly
sensitive to the local surface topography. Hence, assessing the near-surface wind
resources and managing the risk of wind extremes require high-resolution data with
detailed local surface information. For regions such as Saudi Arabia, with sparse and
difficult access to data from monitoring stations, spatio-temporal gridded data sim-
ulated from General Circulation Model (GCM) experiments and Regional Climate
Model (RCM) experiments are usually used to infer global or regional wind climatol-
ogy. GCMs can only capture large-scale features of winds, due to the coarse spatial
resolution (typically hundreds of kilometers) applied. RCMs are able to reproduce
the localized wind variabilities, with spatial resolutions of tens of kilometers.

In this work, we use a newly obtained dataset with high spatial resolution over
Saudi Arabia, produced by Yip (2018) in the Atmospheric and Climate Modeling
group at KAUST. This new dataset was produced using the Weather Research and
Forecasting (WRF) model (specifically, WRF-ARW version 3.9.1), a state-of-the-art
mesoscale Numerical Weather Prediction (NWP) model developed at the National
Center for Atmospheric Research (NCAR) Mesoscale and Microscale Meteorology
Laboratory. The initial and boundary conditions are from the Integrated Forecast-
ing System (IFS) analysis dataset at the European Center for Medium-range Weather
Forecasting (ECMWF). The dataset is validated for various aspects of wind charac-
teristics (the mean and variability of wind speed and wind power generation, mean
episode length, etc.), using the Modern Era Retrospective-Analysis for Research
and Applications (MERRA) reanalysis dataset as the reference. The original WRF
data are provided on a spatial resolution of approximately 5 km × 5 km with
769×659 = 506,771 locations covering the Arabian Peninsula, over a period ranging
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from 2009 to 2014, with hourly temporal resolution. The temporal dimension is
limited to six years, due to the high computational demands of performing a numer-
ical simulation at such a fine spatial resolution. In this study, we focus on Saudi
Arabia, with 83,981 gridded spatial locations, bounded approximately by longitudes
34 − 56◦E and latitudes 15.5 − 33◦N. In order to avoid modeling the complex non-
stationarity over time due to seasonality, we restrict our attention to the three Summer
months, June, July and August (JJA), characterized by the strongest wind regimes of
the year (Yip et al. 2016; Tagle et al. 2019). Finally, we extrapolate the wind speed to
the hub height of 140 meters, a reference height for the latest generation of turbines
(Yip et al. 2016). For this, we adopt the commonly used power law method (Emeis
2005), which assumes that wind speed at a certain height z is approximated by:

w(z) = w(zr)

(
z

zr

)α

,

where zr is the reference height, w(zr) is the wind speed at zr and α is the power law
exponent. We assume that α = 1/7, a condition implying a stable boundary layer, an
appropriate condition over open land surfaces (Pryor and Barthelmie 2011) that has
been used in previous studies on wind in Saudi Arabia (Rehman et al. 2007; Tagle
et al. 2019).

3 Methodology

In this section, we illustrate the statistical methodology used in this work. First, we
introduce the approaches for univariate extreme value analysis. One of these (the
point process approach) is used as the first level of our hierarchical spatial extremes
model. We then illustrate how the domain is divided into smaller regions with clus-
tering. Lastly, we demonstrate how we can perform inference with our hierarchical
model.

3.1 Univariate extreme value analysis

The EVT (Fisher and Tippett 1928; Resnick 1987; Coles 2001; de Haan and Ferreira
2006) has played an important role in univariate extreme value analysis. For statistical
modeling of extremes based on EVT, one approach relies on the limiting distribution
families for sample block-maxima that satisfy the property of max-stability. Suppose
Z1, Z2, . . . is a sequence of i.i.d. continuous scalar random variables and let Mn =
max{Z1, . . . , Zn}. The Extremal Types Theorem (Fisher and Tippett 1928; Gnedenko
1943) states that if there exist sequences of constants an > 0 and bn such that, as
n → ∞, P{(Mn − bn)/an ≤ z} → G(z) for some non-degenerate distribution G,
then G can only have the following GEV distributional form:

G(z) =
{
exp

{
− (

1 + ξ
z−μ
σ

)−1/ξ
+

}
, ξ �= 0,

exp
{− exp

(− z−μ
σ

)}
, ξ = 0,
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where a+ = max(0, a), μ is the location parameter, σ > 0 is the scale parameter,
and ξ is the shape parameter determining the rate of tail decay, with ξ > 0 giving the
heavy-tailed (Fréchet) case, ξ = 0 giving the light-tailed (Gumbel) case, and ξ < 0
giving the short-tailed (reversed Weibull) case.

Another approach for modeling extremes is to investigate the exceedances over
a given threshold. Suppose that the block maxima Mn = max{Z1, . . . , Zn} are
approximately GEV(μ, σ, ξ). Denote an arbitrary term in Z1, Z2, . . . as Z. We can
then approximate the distribution of Z exceeding a well-chosen high threshold u by
the Generalized Pareto Distribution GPD(τ, ξ) (Pickands 1975; Davison and Smith
1990):

P(Z − u < z|Z > u) =
{
1 − (1 + ξ z

τ
)
−1/ξ
+ ,

1 − exp(− z
τ
),

ξ �= 0,

ξ = 0,

where ξ and τ > 0 are shape and scale parameters, respectively. Hence, the
distribution of Z is

P(Z ≤ z) =
{
1 − ζu

(
1 + ξ z−u

τ

)−1/ξ
+ ,

1 − ζu exp(− z−u
τ

),

ξ �= 0,

ξ = 0,
z > u,

where ζu = P(Z > u) is the probability of exceedance.
An alternative to the GPD approach for modeling threshold exceedances is the

Point Process (PP) approach (Smith 1989). Suppose that we observe ny (where y is
shorthand for years) block maxima, which are approximately GEV(μ, σ, ξ). Then the
point process {(i, Zi); i = 1, . . . , n} is well approximated above some high threshold
u by a Poisson point process with mean measure

�([t1, t2] × (z, ∞)) = ny(t2 − t1){1 + ξ(z − μ)/σ }−1/ξ
+ , z > u, 0 ≤ t1 < t2 ≤ 1.

Let u be a high threshold ensuring that the points in [0, 1] × (u, ∞) are well
approximated by a Poisson point process. The Poisson process likelihood is

L(μ, σ, ξ |z1, . . . , zn) ∝ exp
{
−ny

(
1 + ξ

u−μ
σ

)−1/ξ
+

}
∏Nu

i=1

{
1
σ

(
1 + ξ

z(i)−μ

σ

)−1/ξ−1

+

}
, (1)

where z(1), . . . , z(Nu) are the Nu observations exceeding the threshold u.

3.2 Spatial clustering

The main difficulty of applying a spatial extremes model to our large spatial domain
is the computational infeasibility. We choose to divide the study region into small
clusters and fit the model to the subregions instead of the whole Saudi Arabia. This
allows us to capture the locally stationary features of our model while also reducing
the computational burden with parallel computing.

In this study, we use the simple and fast k-means clustering method that par-
titions N observations of dimension p into k clusters in which each observation
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belongs to the cluster with the nearest mean, serving as a prototype of the cluster.
Specifically, given a set of observations x1, x2, . . . , xN , where each observation is
a p-dimensional real vector, k-means clustering aims to partition the N observations
into k (k ≤ N) sets, S = {S1, S2, . . . , Sk}, in order to minimize the within-cluster
sum of squares; the objective is to find

argmin
S

k∑
i=1

∑
x∈Si

‖x − μi‖2,

where μi is the mean of the points in Si .
Due to the large and climatologically diverse spatial domain of our interest, a

model with a constant shape parameter ξ would not be adequate, neither would a
simple formula for characterizing the variability of ξ , such as a linear regression on
the latitude and longitude, be adequate. Therefore, we spatially model ξ , in addition
to the location parameter μ and the scale parameter σ . In order to characterize the
spatial variability of ξ , we use this property as our main factor for clustering. Specif-
ically, we use the marginal estimates for ξ , such as the maximum likelihood estimate
(MLE), obtained independently in each grid cell. However, empirical studies have
shown that absurd values for ξ can be generated by MLEs, especially in small sam-
ples. In order to restrict ξ to a statistically and physically reasonable range, Martins
and Stedinger (2000) suggested to use the generalized MLE (GMLE), obtained by
maximizing the generalized log likelihood with a prior for ξ added to the log like-
lihood. We follow Martins and Stedinger (2000) by using a beta density prior, but
instead of using the beta parameters (6, 9), as they did, we use the parameters (6, 4)
which are better adapted to the wind-speed application.

In the k-means clustering, we impose contiguous spatial clusters for better inter-
pretability, hence longitude and latitude are also included for clustering. We then
choose the value for k and assign weights for the three clustering factors in order
to yield appropriate contiguous clusters that are 1) big enough for the identifiabil-
ity of model parameters, 2) small enough for computational feasibility for fitting the
spatial extremes model in each of the k cluster neighbors (whose definition will be
introduced later), and 3) similar in size for easier implementation of parallel com-
puting. Extensive sensitivity analysis on the spatial clustering reveals that the spatial
patterns of clusters are quite similar for different calibrated values of k and differ-
ent assigned weights that put more weight on ξ ; see Fig. 8 in Appendix A. Table 2
shows the range of cluster sizes for each of the selected settings. We find that a con-
figuration of k = 200 with assigned weights (0.2, 0.2, 0.6) (for longitude, latitude
and GMLEs of ξ , respectively) achieves a reasonable compromise among the above
noted considerations. The choice of k = 250 with the same weights is a potential
alternative, which will be used for further sensitivity analysis on the end results from
our Bayesian hierarchical model in Section 5. Figure 1a depicts the mean of marginal
GMLEs for ξ within each cluster. We can see a clear non-stationarity and a contin-
uously varying pattern of the shape parameter over the spatial clusters. Figure 1b
provides a detailed representation of one randomly selected spatial cluster with six
locations in that cluster, which will be used in Section 4.
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Fig. 1 a Cluster means for marginal GMLEs of the shape parameter ξ over Saudi Arabia. b Zoom-in
elevation (in meters) map for the randomly selected cluster and six locations labeled as “+” and numbered
as 1, 2, . . . , 6

Fitting the model to each of the k = 200 spatial clusters independently and com-
bining the results would produce discontinuities on the boundaries between clusters.
Instead, we fit the model independently to cluster neighbors (i.e., the locations in each
cluster as well as its neighboring clusters), and retain only the results for that sin-
gle cluster. We illustrate how this algorithm works in one randomly selected cluster
neighbor shown in Fig. 9 in Appendix A. In order to obtain the estimates for locations
in the central cluster in Fig. 9, instead of fitting our model in that single cluster only,
we fit our model in its cluster neighbor (i.e., all the seven clusters shown), but only
the estimates in the central cluster are retained. By doing so, we can see in Section 5
that the boundary effect can be eliminated as there is no visible discontinuity on
the boundaries of clusters, and the maps can be greatly smoothed with information
borrowed from the neighboring clusters.

3.3 The hierarchical spatial extremesmodel

In this section, we introduce the Bayesian hierarchical extremes model to be applied
to each of the subregions. This model consists of three levels: data, process and prior.

– Data level
The threshold exceedances at each location are assumed to follow the PP

model with the modified Martins and Stedinger (2000) prior, as described
in Section 3.2, and the observations are conditionally independent, given the
marginal PP parameters. Hence, the generalized likelihood function linked to
Eq. 1 is given by

N∏
i=1

⎡
⎣exp

{
−ny

(
1 + ξi

ui − μi

σi

)−1/ξi

+

} Nui∏
k=1

{
1

σi

(
1 + ξi

zi,k − μi

σi

)−1−1/ξi

+

}

× �(10)

�(6)�(4)
(0.5 + ξi)

5(0.5 − ξi)
3

⎤
⎦ ,
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where N is the number of grid cells in the spatial domain of interest (i.e., each
of the aforementioned cluster neighbors), ny is the number of years of observa-
tions at each location, and zi,k, k = 1, . . . , Nui

, are the observations exceeding
the threshold ui in grid cell i, i = 1, . . . , N . In this study, the range for N

(the number of grid cells in each of the 200 cluster neighbors) is [963, 4063],
and ny = 6 (the number of years of wind speed data at each location) for all
the cluster neighbors. To set the thresholds ui, i = 1, . . . , N , one fast way is
by using a rule of thumb to choose the r largest observations, where the 90%
quantile is commonly used (DuMouchel 1983; Scarrott and MacDonald 2012).
In this work, since the amount of data is large (hourly wind speeds in Sum-
mer with 13,248 time points at each location), we choose a higher quantile, i.e.,
the 95% quantile as the threshold. The QQ-plots for marginal GPD fitting at
9 randomly selected locations (see Fig. 10 in Appendix A) show that the 95%
quantile is sufficiently high for the GPD to adequately model the exceedances.
Graphical approaches for choosing a threshold, such as the mean residual life
plot and parameter stability plot, are far more time-consuming than using a rule
of thumb, especially for our large data set. We further de-cluster the threshold
exceedances and only the cluster maxima are used with a common length of
the cluster interval of 24 hours (Smith 1985). The resulting time series (i.e., the
cluster maxima), at each location, exhibit lengths ranging from 39 to 162 (i.e.,
Nui

∈ [39, 162], i = 1, . . . , N), and are found to be stationary, based on simple
diagnostics such as the Auto-Correlation Function (ACF) plots, the Augmented
Dickey-Fuller test and Ljung-Box test (results not reported here). To provide
quantitative justification for using 95% quantile rather than 90% quantile as the
threshold, we compare the values of threshold and goodness of fit for the GPD
model used for marginal extremes based on the KL divergence at each location;
see Fig. 11 in Appendix A. The thresholds are much lower and the KL diver-
gences are much higher for most of the locations using 90% quantile than those
using 95% quantile, which indicates that the common choice of 90% quantile
may not be adequate here. A higher quantile than 95% could be chosen, but
it would result in fewer exceedances and thus lead to higher uncertainty in the
parameter estimates. In addition to the marginal fitting, the choice of threshold
would also influence the end results of applying our spatial extremes hierarchical
model, which will be discussed in Section 5.

– Process level
The three PP parameters are assumed to be spatially varying and modeled

with latent Gaussian processes:

μi ∼ N (XT
i βμ + φi,μ, 1/τ 2μ), i = 1, . . . , N,

log(σi) ∼ N (XT
i βσ + φi,σ , 1/τ 2σ ), i = 1, . . . , N,

ξi ∼ N (XT
i βξ + φi,ξ , 1/τ 2ξ ), i = 1, . . . , N,

where Xi is a vector of covariate information for location i, and βθ (θ =
μ, σ or ξ ) is the vector of regression coefficients. We incorporate some
geophysically-based covariates, i.e., longitude, latitude and elevation, all rescaled
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to a range of [0, 1]. Here τ 2θ (θ = μ, σ or ξ ) is a fixed precision, and φ =
(φT

1 , φT
2 , . . . , φT

N)T (φi = (φi,μ, φi,σ , φi,ξ )
T , i = 1, 2, . . . , N) is the spatial

random effect.
The spatial random effects φ can be modeled with a proper multivariate

conditional autoregressive (CAR) prior or an improper multivariate intrinsic
autoregressive (IAR) prior (Besag et al. 1995; Besag and Kooperberg 1995;
Gelfand and Vounatsou 2003; Kavanagh et al. 2016). In this study, we show
that the proper CAR model is inadequate for capturing the irregular and strong
spatial dependence given the high spatial resolution in our data; see discussion
and Figs. 12 and 13 in Appendix A. Hence, we use the multivariate IAR model
for φ, and impose a sum-to-zero constraint on φ as a remedy for the impro-
priety. The correlation structure is specified via the full conditionals, which are
computationally convenient when using Gibbs sampling for drawing posteriors:

(φi |φ−i , W , �) ∼ N3

(∑N
k=1 wkiφi∑N
k=1 wki

,
�∑N

k=1 wki

)
,

where φ−i denotes the set of spatial random effects except those at the ith loca-
tion, W = (wij ) is the adjacency matrix, and � is the cross-variables covariance
matrix. We use the common binary specification for W , where its entry wij = 1
if the grid cells i and j are adjacent, and is zero otherwise.

– Prior level
Each of the intercepts β0,θ (θ = μ, σ, or ξ ) is assigned an independent

and conjugate Gaussian prior distribution, with mean being the GMLEs for
each parameter θ and with variance 100. For each regression coefficient βk,θ

(θ = μ, σ, or ξ ), we assign a conjugate zero-mean Gaussian prior with variance
10. A conjugate inverseWishart prior with 4 degrees of freedom is assigned to the
matrix �, as suggested by Lee (2013), with mean being the diagonal matrix with
main diagonal (var(μ̂), var(log(σ̂ )), var(ξ̂ )), which corresponds to the respective
empirical variabilities in the marginal GMLEs of the three PP parameters; here
we use the data from the neighboring cluster for specifying the hyperparameters
in � to avoid using the data twice in a given cluster. Lastly, the fixed precisions
in the regressions are set to be (τ 2μ, τ 2σ , τ 2ξ ) = (4, 200, 500), which reflect the dif-
ference in scale between the three PP parameters, but are also chosen so that most
of the variability would have to be explained by the spatial random effects φ.

4 Computational details

In this section, we provide computational details for the inference, using our data and
the hierarchical spatial extremes model. For drawing posterior samples of the parame-
ters, we adopt a Gibbs sampling scheme with Metropolis Hastings (MH) steps for the
conditional distributions that do not have a closed form. Specifically, the parameters
μi, σi, ξi, i = 1, . . . , N , are updated with the MH algorithm, where the candidates
for the three PP parameters are drawn as a block for each location from a uniform
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distribution centered at current values. The parameters in β and φ are updated as
a block by sampling from the posterior multivariate normal distributions, using the
methods depicted in Rue and Held (2005) (see their page 35 for the algorithm of
sampling from a Gaussian Markov random field defined from its canonical represen-
tation). The parameters in � are updated as a block by sampling from the posterior
inverse Wishart distribution. In addition, the starting values for the three PP parame-
ters are set to be the marginal GMLEs because they may serve as a good guess and
lead to faster convergence.

The procedure of fitting the model to each of the k = 200 cluster neighbors inde-
pendently can be performed in parallel, using multi-cores; this greatly improves the
computational efficiency. Trace plot diagnostics (not shown) show a good conver-
gence of all parameters after a burn-in period of 5,000 iterations. We then use the
subsequent 5,000 iterations as posterior samples for inference purposes. For illustra-
tion, we randomly select one spatial cluster and six locations in that cluster, as shown
in Fig. 1b. In Fig. 2, only those for the three PP parameters at the six locations within
that cluster are represented. Trace plots for the other parameters are not shown, due
to the length limit of this paper.

Fig. 2 Trace plots of 10,000 MCMC iterations for the three PP parameters at six randomly selected
locations
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5 Results

In this section, we show the results of the model in Section 3.3 with the WRF wind
dataset in Saudi Arabia. In Fig. 3, the posterior means of the three PP parameters
from our spatial extremes modeling are shown on the right, and the marginal GMLEs
are shown on the left for comparison. The estimations from spatial fitting are close to
those from marginal fitting, while the former are smoother than the latter, especially
for the shape parameter.

With the posterior distributions fromMCMC samples for the three PP parameters,
the inference on the wind extremes can then be made to assess the risk of disruption
of wind turbine operations over Saudi Arabia. Extremal behaviors are usually sum-
marized by return levels. The M-year return level is often described informally as an
extreme event that would be expected to occur once in M years. More precisely, the
M-year return level is the level which is exceeded in any one year with probability

Fig. 3 Left: GMLEs of the three PP parameters over Saudi Arabia from marginal fitting; Right: poste-
rior means of the three PP parameters from MCMC samples with Bayesian hierarchical spatial extremes
modeling
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1/M , which is simply the 1− 1/M quantile of the fitted PP. Specifically, the M-year
return level at each location is given by

R̂i = μ̂i + σ̂i

ξ̂i

[
{− log(1 − 1/M)}−ξ̂i − 1

]
, i = 1, . . . , B,

where μ̂i , σ̂i , ξ̂i , i = 1, . . . , B, are the posterior samples for the PP parameters from
the Bayesian hierarchical spatial extremes model. In this work, we are interested in
the risk of disruption of wind turbine operations within its lifetime, which is typically
30 years. Hence, we compute the 30-year return levels, and perform the inference
based on the posterior distributions of return levels. Figure 4 represents the poste-
rior mean, median, 5% quantile and 95% quantile of 30-year log return levels from
MCMC samples.

Figure 5a shows the map of probabilities of the 30-year return levels that exceed a
general cut-out wind speed fromMCMC samples, at each location, reflecting the risk
of disruption of wind turbine operations within their lifetime. The cut-out wind speed
denotes the speed at which the turbine shuts down by some sort of stalling or braking
mechanism to avoid damage from further operation in high winds. The general cut-
out wind speed is 25 m/s for a typical modern wind turbine, as well as for some
of the most promising turbines for the study of sustainability in Saudi Arabia, such
as the GE Energy 3.4-137 turbine, the Nordex N117/3000 turbine and the Nordex
N131/3600 turbine, whose power curves are shown in Fig. 6. The wind usually has to
return to a much lower speed, called the cut-back-in wind speed, which is typically

Fig. 4 Posterior mean, median, 5% quantile and 95% quantile of 30-year return levels (m/s) from MCMC
samples with Bayesian hierarchical spatial extremes modeling over Saudi Arabia. Maps are plotted in log
scale
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Fig. 5 a Probability map over Saudi Arabia showing the risk of disruption of wind turbine operations from
MCMC samples with Bayesian hierarchical spatial extremes modeling, using 25 m/s as the cut-out wind
speed. b Probability map of the Summer wind speeds that exceed 9 m/s. “prob” stands for “probability”.
The location of the first wind farm at Dumat Al-Jandal in Saudi Arabia is labeled as “∗”

20 m/s at which the blades are reverted to move in the wind, for a certain amount of
time before the turbine will restart to generate power. Figure 5a indicates a large area
over Saudi Arabia that would suffer from high risks of disruptions of wind turbine
operations, mostly located in the South, and near the Red Sea and the Persian Gulf.
To site a wind farm and improve the stability of wind power generation, one must
take into account the risk of shutdowns of wind turbines over a possibly long period
of time. Figure 5b shows the map of probabilities of the Summer wind speeds that
exceed 9 m/s, at which the aforementioned three representative wind turbines would
operate with at least half of the maximum power rate (called the rated output power).
It shows that the west coastal regions exhibit high winds in Summer. These locations
were also identified by Yip et al. (2016) and Chen et al. (2018) as having a high
wind power potential. Saudi Arabia is planning to build its first wind farm at Dumat
Al Jandal (labeled as “∗” in Fig. 5) with an installed capacity of 400-megawatts
(MW) (Dumat Al Jandal wind farm 2017). The probability of disruption of wind
turbine operations at this location is very low (0.72%) albeit with an average mean
wind speed in Summer that is not too high (about 6 m/s). Hence, the country’s first
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Fig. 6 Power curves for the three representative wind turbines
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wind farm would ensure stability of operations, and choosing appropriate turbines is
important in order to increase the power production (e.g., choosing turbines that have
smaller cut-in speed at which the turbines first start to rotate and generate power).

Figure 7 highlights the 375 grid cells over Saudi Arabia where the wind speeds
exceed 9 m/s for at least half of the time in Summer, and the risk of disruption of
wind turbine operations is lower than 1%. These locations may be potentially best
sites to launch wind farms that could generate high wind power persistently with low
risk of being disrupted from operations.

As we have mentioned in Sections 3.2 and 3.3, here we present a sensitivity
analysis on the choices of k and the threshold. We compare the performance of
the Bayesian hierarchical model in four scenarios with different choices of k (i.e.,
k = 200 and k = 250) and threshold (i.e., 90% and 95% quantiles) based on the
deviance information criterion (DIC) defined as DIC = 2D(θ) − D(θ), where θ

is the vector of the three GPD parameters and D(θ) = −2 logp(z|θ) + C is the
deviance function, where C is a constant that cancels out when comparing different
models. Based on the posterior MCMC samples, D(θ) is calculated as the average of
D(θ) over the samples of θ , and D(θ) is the value of D(θ) evaluated at the average
of the samples of θ . The scaled DIC (i.e., total DIC divided by 83,981, the number
of grid cells) and the total computation time (with 25 cores on a cluster of 2.4 GHz
processors) for each of the four scenarios is shown in Table 1. Interestingly, the total
computation time is about the same for the four scenarios. Based on DIC, the choice
of k = 200 and 95% quantile as the threshold yields the lowest DIC, though the set-
up of k = 250 and threshold at 95% quantile performs comparatively well. For the
end results of the “best” locations with high Summer winds and low risk of disruption
of wind turbine operations, these two settings have identified 324 common locations,
which consist of approximately 87% of the total number of the “best” locations (see
Fig.14 in Appendix A).

Fig. 7 Potential best locations for siting wind farms over Saudi Arabia where the wind speeds exceed 9
m/s for at least half of the time in Summer, and the risk of disruption of wind turbine operations is lower
than 1%. “prob” stands for “probability of the 30-year return levels that exceed 25 m/s”
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Table 1 DIC and computation
time for the Bayesian
hierarchical model using
different values of k and
thresholds. The lowest DIC is in
bold

Scenarios DIC Computation time

k = 200, Threshold = 90% quantile 143.5 6.7 h

k = 200, Threshold = 95% quantile −144.2 6.5 h

k = 250, Threshold = 90% quantile 129.9 8.2 h

k = 250, Threshold = 95% quantile −141.0 6.1 h

6 Conclusion and discussion

In this work, we assessed the risk of disruption of wind turbine operations over Saudi
Arabia, using a hierarchical spatial extremes model in a Bayesian setting. We used
hourly wind speed data from a unique WRF dataset with high spatial resolution. For
computational feasibility, we divided our study region into subregions, using the spa-
tial clustering method, and then fitted the model to each subregion. Instead of fitting
the model to one single spatial cluster at a time, we borrowed information from the
neighboring spatial clusters for the purpose of spatial smoothing. The computational
efficiency was largely improved by parallel computing on the subregions. Lastly, we
showed the inadequacy of using a multivariate CAR prior for capturing the strong
dependence in spatial random effects, and that the multivariate IAR appears to be
more appropriate for our high-resolution data. The risk maps show that a large area
over Saudi Arabia would suffer from high risks of disruptions of wind turbine opera-
tions, mostly in the South and near the Red Sea and Persian Gulf. We also identified
locations with high winds in Summer and a low risk of turbine disruptions, which
can be potentially good locations for harvesting a persistent wind energy.

One limitation for our methodology is that the uncertainty due to the clustering
was not taken into account. Reich and Shaby (2019) proposed a method for areal
extremes that accounts for spatial dependence using latent clustering of neighboring
regions. However, there the spatial dependence parameter φ in the Potts model for
the cluster labels is difficult to estimate even for moderate sample size. Reich and
Shaby (2019) proposed an informal way to estimate φ, which is largely uncertain,
and then fixed it for their remaining analysis. Methods to estimate φ, such as MCMC
or cross-validation, are cumbersome to implement for large datasets. Another restric-
tion of the method in Reich and Shaby (2019) is that the uncertainty for the number
of possible clusters, k, is not quantified; instead, k is fixed (as the number of grid
cells) for simplicity, which may be inappropriate especially for data (such as our high-
resolution WRF data) with strong spatial dependence where a far smaller number of
possible clusters is sufficient. Furthermore, including the clustering method of Reich
and Shaby (2019) into our model would largely increase the computation complex-
ity and is almost infeasible for our large dataset. For one subregion (i.e., the NEOM
region) in the northwest of Saudi Arabia with 2,254 locations in our dataset where we
have tried to fit our model with the clustering included and k is fixed at a small value
(i.e., k = 50), it takes around 3 hours per 1,000 iterations. Therefore, we decided
to choose the value of k for spatial clustering prior to the Bayesian hierarchical
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modeling. However, it may still be necessary to account for the uncertainty of the
clustering in a more sophisticated way than the sensitivity analyses done in this study.

Another limitation is that the spatial clustering is performed using the marginal
shape estimates ξ , which in practice, are largely uncertain, and this may influence
the clustering result. Since the accuracy for a marginal estimate ξi at location i is
negatively correlated with the length, Nui

, of the temporal cluster maxima (Nui
∈

[39, 162]) used to fit the GPD model marginally, we redid the clustering where
locations with Nui

< 50 (i.e., with highly uncertain shape estimates) are removed.
Figure 15 in Appendix A indicates that the clustering results are quite similar with or
without those locations with highly uncertain marginal ξ estimates. In order to take
the uncertainty of marginal ξ estimates into account in a more comprehensive way,
clustering methods for uncertain data, such as those in Kriegel and Pfeifle (2005a,
b), could be used, but they are computationally cumbersome for our large dataset.
Since we are not directly interested in the clustering, and as we can see from our sen-
sitivity analyses that the clustering result would not largely affect the end results for
applying our model, we think that this is a minor issue in our study.

Finally, given only 6 years of data, there is a concern that many large-scale cli-
mate drivers (e.g., NAO, AMO) that would have some impact on the region of Saudi
Arabia work on larger time scales (e.g., AMO works on a 60-year time scale), and
therefore it is quite likely that the simulated WRF data are only from a particular
regime. A more accurate quantification of wind extremes over Saudi Arabia may be
achieved by combining the high spatial-resolution data with long-term climate sim-
ulations (e.g., the simulations from GCMs running for centuries at relatively coarse
spatial resolutions) which are able to capture the large-scale dynamics of the atmo-
sphere. However, Mann et al. (2020) found no evidence of internal multidecadal
and interdecadal oscillations, such as an AMO, in climate model simulations, and
they claimed that the only dynamic signal distinguishable from background noise
was ENSO, which typically occurs every 2 to 7 years. These findings may provide
justifications for our study based on only 6 years of data.

Future work directions could provide information about the duration of wind extremes
events that would be helpful to understand how long a wind turbine will be out of
action. Methods such as that in Telesca et al. (2018) could be used to analyze the
temporal properties of wind extremes. A subsequent problem is an estimation of the
economic loss due to the disruption of wind turbines in the electrical grid, using the
power curves associated with individual turbines. Additionally, based on Zhu et al.
(2014) and Xie et al. (2014) who incorporated advanced space-time wind forecasts
into electric power system scheduling, we may include wind extremes in the power
system dispatch problem. In addition to wind speed, many other environmental fac-
tors, such as temperature, air pressure, turbulence intensity, wind shear and humidity,
can potentially disrupt wind turbine operations. Therefore, it would be valuable,
in future research studies, to provide a risk assessment of wind turbine operations,
using a multivariate spatial extremes model that incorporates multiple environmental
factors.
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Appendix A: Supplementary figures, tables and discussions

Fig. 8 Cluster means for GMLEs of the shape parameter ξ with different values of k and different assigned
weights for longitude, latitude and GMLEs for ξ , respectively
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Table 2 Range of cluster sizes
with different values of k and
different weights. The two
“best” configurations are in bold

k Weights Range of cluster sizes

longitude latitude ξ

150 0.2 0.2 0.6 [283,1035]

200 0.2 0.2 0.6 [242,695]

250 0.2 0.2 0.6 [190,560]

150 0.1 0.1 0.8 [286,1006]

200 0.1 0.1 0.8 [153,862]

250 0.1 0.1 0.8 [154,673]

21

22

23

24

44 45 46
lon

lat

Fig. 9 Example for a cluster neighbor. Each color represents one single cluster, and all the seven clusters
represent the cluster neighbor of the central cluster in blue
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Fig. 10 QQ-plots of marginal GPD fitting for 9 randomly selected locations, using 95% quantile as the
threshold

Discussion on CAR and IAR specifications for spatial random effects

There have been discussions on whether the proper or improper CAR (referred to
as IAR) specification should be used in practice (e.g., Besag et al. 1995, Besag and
Kooperberg 1995, Gelfand and Vounatsou 2003 and Banerjee et al. 2014). As Besag
et al. (1995) showed, the marginal maximal bivariate correlation that can be captured
with a proper Gaussian field is around 0.6. Besag and Kooperberg (1995) pointed
out a common disadvantage of a proper CAR that appreciable correlations between
the spatial random effects at neighboring sites require parameter values extremely
close to a particular boundary of the parameter space. Gelfand and Vounatsou (2003)
demonstrated that IAR is analogous to the nonstationary or random walk case in
familiar autoregressive time series models and can be advantageous in accommo-
dating more irregular spatial behaviors. Banerjee et al. (2014) also claimed that the
breadth of spatial patterns may be too limited if the proper CAR is used, and the
improper IAR choice may actually enable a wider scope for posterior spatial patterns.
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Fig. 11 Values of threshold and KL divergence for marginal extremes using 90% (top) and 95% (bottom)
quantile, respectively, as a rule of thumb in the GPD model

Here we first implement our hierarchical model with the proper CAR prior used
for the spatial random effects φ. The multivariate CAR model (Kavanagh et al. 2016)
we used is given by:

φ ∼ N3N

(
0, [Q(W , ρ) ⊗ �−1]−1

)
,

where Q(W , ρ) = ρ[diag(W1) − W ] + (1 − ρ)I (1 is the N × 1 vector of ones,
I is the N × N identity matrix) is the N × N precision matrix for the joint distri-
bution corresponding to the CAR prior proposed by Leroux et al. (2000), while �

is a 3 × 3 cross-variables covariance matrix. The matrix Q(W , ρ) controls the spa-
tial autocorrelation structure of the random effects, and is based on a non-negative
symmetric N × N neighborhood (or adjacency) matrix W , and a spatial dependence
parameter ρ. We use the common binary specification for W , where its entry wij = 1
if the grid cells i and j are adjacent, and is zero otherwise. The parameter ρ is a
spatial autoregressive parameter, with ρ close to one corresponding to strong spatial
dependence and ρ = 0 corresponding to independence in space. When ρ = 1, we
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Fig. 12 Trace plot of 10,000 MCMC iterations for the parameter ρ in the MCAR model in a random
spatial cluster as selected in Fig. 1 in the main text

obtain the multivariate IAR model. The correlation structure is specified via the full
conditionals:

(φi |φ−i , W , �, ρ) ∼ N3

(
ρ

∑N
k=1 wkiφi

ρ
∑N

k=1 wki + 1 − ρ
,

�

ρ
∑N

k=1 wki + 1 − ρ

)
,

where φ−i denotes the set of spatial random effects except those at the ith location.
With the choice of the matrix W , the conditional expectation of spatial random effect
at one location is a weighted average of the random effects in its adjacent locations,
and the covariance is weighted by the number of adjacent locations.

In our Bayesian hierarchical model, a Uniform[0, 1] prior is assigned to the spa-
tial autoregressive parameter ρ, as the negative spatial autocorrelation is rarely seen
in practice in spatial areal unit data (Tobler 1970), and ρ ∈ [0, 1) is a sufficient con-
dition for the covariance matrix of the joint distribution to be nonsingular (Banerjee

Fig. 13 Posterior mean of the spatial autoregressive parameter ρ in the MCAR model from MCMC
samples with Bayesian hierarchical spatial extremes modeling
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Fig. 14 Potential best locations for siting wind farms over Saudi Arabia where the wind speeds exceed
9 m/s for at least half of the time in Summer, and the risk of disruption of wind turbine operations is lower
than 1% for the setting of a k = 200, Threshold = 95% quantile and b k = 250, Threshold = 95%
quantile. “prob” stands for “probability of the 30-year return levels that exceed 25 m/s”

et al. 2014). The parameter ρ is updated with the MH algorithm, where the candidate
for ρ is drawn from a truncated normal distribution in the unit interval so as to bound
ρ in [0, 1). Other settings for priors and computational details are the same as in the
main text. The posterior density from MCMC samples for ρ is peaked near ρ = 1 for
all subregions (see Figs. 12 and 13), suggesting that there is more spatial dependence
in the data than the model can capture. Therefore, we replace the multivariate CAR
with the multivariate IAR in order to capture the irregular and strong spatial depen-
dence in our high-resolution data. Although the IAR is improper, we are only using
it as a prior; the posterior will typically still emerge as proper, so Bayesian inference
can still proceed. On the other hand, we can impose a sum-to-zero constraint on φ as
a remedy of impropriety, which is numerically convenient in the MCMC sampling
procedure.

Fig. 15 Cluster means of shape GMLEs with a all data and b locations with highly uncertain marginal
shape estimates (i.e., where the length of temporal cluster maxima, Nui

, is less than 50) removed
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Appendix B: Supplementary R codes

The datasets generated and/or analyzed during the current study were used under
license, and so are not publicly available. Data are available however from the
corresponding author upon reasonable request. The R codes related to this article
can be found online at the github repository: https://github.com/wanruofenfang123/
Bayesian-Hierarchical-Spatial-Extremes.
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