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Abstract

We present a preconditioned Monte Carlo method for computing high-dimensional multivariate normal and Student-¢ prob-
abilities arising in spatial statistics. The approach combines a tile-low-rank representation of covariance matrices with
a block-reordering scheme for efficient quasi-Monte Carlo simulation. The tile-low-rank representation decomposes the
high-dimensional problem into many diagonal-block-size problems and low-rank connections. The block-reordering scheme
reorders between and within the diagonal blocks to reduce the impact of integration variables from right to left, thus improving
the Monte Carlo convergence rate. Simulations up to dimension 65,536 suggest that the new method can improve the run
time by an order of magnitude compared with the hierarchical quasi-Monte Carlo method and two orders of magnitude com-
pared with the dense quasi-Monte Carlo method. Our method also forms a strong substitute for the approximate conditioning
methods as a more robust estimation with error guarantees. An application study to wind stochastic generators is provided
to illustrate that the new computational method makes the maximum likelihood estimation feasible for high-dimensional

skew-normal random fields.
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1 Introduction

The multivariate normal (MVN) probability appears fre-
quently in statistical applications. For example, the probabil-
ity density functions of several skew-normal (Genton 2004;
Azzalini and Capitanio 2014; Arellano-Valle et al. 2006) and
Bayesian probit (Durante 2019) models involve MVN cumu-
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lative distribution functions. It is also needed in computing
the excursion and contour regions discussed in Bolin and
Lindgren (2015). For many of these applications, the MVN
probability is regarded as a bottleneck and approximations to
the covariance matrix are often applied in high dimensions.
The MVN probability is one example of numerical integra-
tion, in which the quadrature-based methods are typically
not applicable in hundreds of dimensions. The Monte Carlo-
based methods are more flexible, but their convergence rate
is subject to several factors. In this paper, we aim to reduce
the time costs and extend the limits for computing MVN
probabilities.

The prevalent algorithm for computing MVN probabili-
ties is based on the separation-of-variable (SOV) technique
(Genz 1992), which converts the integration region to the
unit hypercube to improve the convergence rate. This method
is more robust than its improved variants but has poor
scalability, with the costs of O(n®) for the Cholesky fac-
torization and O (n?) per MC sample, where 7 is the MVN
problem dimension. State-of-the-art methods for comput-
ing MVN probabilities include the hierarchical quasi-Monte
Carlo (QMC) method (Genton et al. 2018), the minimax tilt-
ing method (Botev 2017), the two-step method (Azzimonti
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and Ginsbourger 2018), and the hierarchical conditioning
method (Cao et al. 2019). The hierarchical QMC method
reduced the costs per sample through the hierarchical rep-
resentation (Hackbusch 2015) of the Cholesky factor. Its
drawback is its incompatibility with variable reordering and
hence its inability to benefit from an improved convergence
rate. The minimax tilting method significantly improves the
convergence rate with importance sampling but needs to
solve an expensive optimization with O(n) parameters for
the proposal density. The two-step method decomposes a
high-dimensional MVN probability into a low-dimensional
one and a high-dimensional residual, which is only applica-
ble to orthant MVN probabilities that have constant upper
and lower integration limits. Cao et al. (2019) used the hier-
archical representation and the conditioning technique that
samples the integrand only once to achieve high computation
efficiency. However, this hierarchical conditioning method
only provides crude probability estimates without any error
estimation.

This paper builds on the original SOV method in Genz
(1992) and introduces a variant that has better performance
than the hierarchical QMC method in Genton et al. (2018).
Specifically, we combine the SOV method with the tile-low-
rank (TLR) representation (Weisbecker 2013; Mary 2017;
Akbudak et al. 2017), which improves efficiency from two
aspects. First, the TLR representation is compatible with
block-wise variable reordering and hence benefits from a
higher convergence rate. Secondly, the memory footprint of
the Cholesky factor under the TLR representation can be
smaller than that under the hierarchical representation, indi-
cating lower costs per QMC sample. In this paper, we only
compare our methods with the hierarchical QMC method
in Genton et al. (2018) because the other three state-of-the-
art methods are not directly based on the SOV algorithm.
As another extension, we propose an iterative version of the
original block reordering in Cao et al. (2019) that further
improves the convergence rate and performs the Cholesky
factorization simultaneously. The corresponding algorithm
for multivariate Student-r (MVT) probabilities is also devel-
oped. Finally, we demonstrate the capability of our methods
in tens of thousands of dimensions with two maximum likeli-
hood estimation (MLE) studies based on simulated data and
a wind dataset.

The remainder of this paper is structured as follows. In
Sect. 2, we review the SOV algorithm (Genz and Bretz 2009)
for MVN and MVT problems and describe the dense QMC
algorithms for both probabilities. In Sect. 3, we show that the
TLR representation is more aligned with block-wise variable
reordering than hierarchical representations. Additionally, an
improved version of the block reordering from Cao et al.
(2019) is proposed. In Sect. 4, we compare the dense QMC
method, the hierarchical QMC method, and the TLR QMC
methods with a focus on high-dimensional MVN and MVT
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probabilities. In Sect. 5, we estimate the parameters for sim-
ulated high-dimensional skew-normal random fields as well
as fit the skew-normal model to a large wind speed dataset
of Saudi Arabia to demonstrate the usage of our methods.
Finally, Sect. 6 concludes the paper. The execution times in
this paper are measured on a 4-core Intel Core i7 CPU with
64 GB memory without parallelization.

2 SOV for MVN and MVT probabilities

The SOV technique transforms the integration region into the
unit hypercube, where efficient QMC rules can improve the
convergence rate. The SOV of MVN probabilities is based
on the Cholesky factor of the covariance matrix (Genz 1992)
and this naturally leads to the second form of SOV for MVT
probabilities (Genz and Bretz 2002). The two forms of SOV
for MVT probabilities have been derived in Genz (1992)
and Genz and Bretz (2002). In this paper, we summarize the
derivations for completeness.

2.1 SOV for MVN integrations

We denote an n-dimensional MVN probability with ®,,(a,
b; n, X), where (a, b) defines a hyperrectangle-shaped inte-
gration region, p is the mean vector, and X is the covariance
matrix. The MVN probability has the form:

d,(a,b; u, X)

e ! ( ! Tyl )d (D
= — X — =X X X.

wn JaorE P2

Without loss of generality, we set 4 = 0 and denote the n-
dimensional MVN probability with @, (a, b; X). We use LL
to represent the lower Cholesky factor of ¥ = LL T and /; jto
represent the element on the i-th row and j-th column of L.
Following the procedure in Genz (1992), we can transform
®,(a, b; X) into:

1
®,(a,b; X) = (e1 — dl)/o (e2 — do)

1 1
--1/ @n—cm>/’dw, @
0 0

= Of(@ — YT\ ljyp/li) e = b —
Sz iy ik v = @7 Hdj +wjle; —dj)), and D) s
the cumulative distribution function (CDF) of the standard
normal distribution.

The integration region is transformed into [0, 1]" and effi-
cient sampling rules can be applied to simulate w, although
the integrand is difficult to compute in parallel because d;
and e; dependon {y;, j =1, ...,i — 1} while y; depends on

where d;
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d; and ¢;. Only univariate standard normal probabilities and
quantile functions are needed, which can be readily obtained
with the high efficiency of scientific computing libraries, for
example, the Intel MKL. The Cholesky factorization has a
complexity of O(n?®), but modern CPUs and libraries have
been developed to handle matrices with more than 10,000
dimensions with ease.

We use ‘mvn’ to denote the integrand function of Eq. (2),
whose pseudocode was originally proposed in Genz (1992).
Because the ‘mvn’ function is also the subroutine in other
functions of this paper, we summarize it here in Algo-
rithm 2.1a. The algorithm returns P, the probability estimate
from one sample, and y whose coefficients are described in
Eq. (2). Keeping a, b, and L unchanged, the mean and stan-
dard deviation of the outputs P from a set of well designed
w, usually conforming to a quasi-Monte Carlo rule, form the
probability and error estimates. In our implementation, we
employ the Richtmyer quasi-Monte Carlo rule (Richtmyer
1951), where the batch number is usually much smaller than
the batch size.

Algorithm 2.1a QMC for MVN probabilities
1: mvn(L, a, b, w)

2:n < dim(L),s < 0,y < 0,and P « 1

3:fori =1:ndo

4 if i > 1 then

5 s« LG, 1:i—Dy(l:i—1)
6: endif

7. d <—aé— and b’ < #7’?
8y < @7 [wi{@®) — @)}

9: P <« P -{®0)— D))
10: end for
11: return P and y

2.2 SOV for MVT integrations

We denote an n-dimensional MVT probability with 7}, (a,
b; n, X, v), where v is the degrees of freedom. Here, p is
the mean vector and X is the scale matrix. To simplify the
notations, p is again assumed to be 0. There are two common
equivalent definitions for 7},, of which the first one is:

NG

FVIZEI(m)"

v+n
by by, TE -2
/ / ( X) dx,

where I'(-) is the gamma function. Based on this definition,
Genz and Bretz (1999) transformed the integration into the
n-dimensional hypercube, where the inner integration limits

T}‘l(av b; Ea U) =

3

depend on the outer integration variables. However, the inte-
gration needs to compute the CDF and the quantile function
of the univariate Student-¢ distribution at each integration
variable. A second equivalent form defines 7}, as a scale mix-
ture of the MVN probability, specifically:

21;% /Oo 152,
I'(z3) Jo
sa sb
(ﬁ, ﬁ’ Z) dS, (43)
Sa Sb
_E [qpn (ﬁ’ — z)} (4b)

The density of a x-distribution random variable, S, with
—1,-5%/2
e

Tn(av b; Za V) =

degrees of freedom v, is exactly r( ) , 8 > 0.

Thus, T,(a,b; X, v) can be also written as Eq. (4b). The
integrand boils down to the MVN probability discussed in
the previous section. Hence, we can apply a quasi-Monte
Carlo rule in the (n + 1)-dimensional hypercube to approxi-
mate this expectation, where only the CDF and the quantile
function of the univariate standard normal distribution are
involved. It is worth pointing out that considering 7,, as a
one-dimensional integration of @, and applying quadrature
is much more expensive than integrating directly in (n + 1)
dimensions.

Algorithm 2.2a QMC for MVT probabilities based on Equa-
tion (3)

1: mvt_sov(L, a, b, v, w)

2: n < dim(L),s < 0,ssq < 0,y < 0,and P < 1

3:fori =1:ndo

4: if i > 1 then
5: s« LG 1:i—Dy(l:i—1)
6: end if )
. ai—s i —S
7od e Joing o and b Lo Jotssqg (1)
8 yi < T, [wi {Tori (@) — Tori (@)} + Topi(@)] - /1254

9 P P |Tyui®) — Tysi(a))
10:  ssq < ssq + yi2

11: end for

12: return P

Algorithm 2.2b QMC for MVT probabilities based on Equa-
tion (4a)
1: mvt_scale(L, a, b, v, wg, W)
ol o X (w0) Xy ' (wo)
2:a « Toa,b/ <« T(Jb
3: return mvn(L, a’, b’, w)

We describe the integrand functions based on the two
SOV schemes in Algorithms 2.2a and 2.2b, corresponding
to Egs. (3) and (4a), respectively. Algorithm 2.2a calls the
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Table 1 Relative error and time of the three algorithms

n 16 64 256 1,024 4,096
mvt_sov 0.0% 0.2% 0.7% 1.4% 4.2%
0.7s 3.0s 13.3s 58.7s 283.1s
mvt_scale 0.0% 0.0% 0.2% 0.4% 1.3%
0.0s 0.0s 0.2s 2.0s 40.8s
mvn 0.0% 0.0% 0.1% 0.4% 1.2%
0.0s 0.0s 0.2s 2.0s 40.1s

‘mvt_sov’, ‘mvt_scale’, and ‘mvn’ refer to Algorithms 2.2a, 2.2b, and
2.1a. The upper row is the average relative estimation error and the lower
row is the average computation time over 20 replicates. The covariance
matrix is generated from a 2D exponential kernel, exp(—|/h||/8), where
h is the distance vector, based on n locations on a perturbed grid in the
unit square. The lower integration limits are —oo and the upper limits are
independently generated from N (5.5, 1.25%). The degrees of freedom
v for MVT probabilities are 10. The Monte Carlo sample size is 10*

univariate Student-# CDF and the quantile function with an
increasing value of degrees of freedom at each iteration,
whereas Algorithm 2.2b relies on (wg, w) from an (n + 1)-
dimensional quasi-Monte Carlo rule and calls the ‘mvn’
kernel from Algorithm 2.1a with the scaled integration limits.
We use single-quoted ‘mvn’ and ‘mvt’ to denote the corre-
sponding algorithms to distinguish them from the uppercase
MVN and MVT used for multivariate normal and Student-¢
in this paper.

A numerical comparison between Algorithms 2.2a and
2.2b is shown in Table 1. The counterpart for MVN prob-
abilities (Algorithm 2.1a) is included as a benchmark. The
table indicates that the first definition as in Eq. (3) leads to an
implementation slower by one order of magnitude. Addition-
ally, the convergence rate from Eq. (3) is also worse than that
from Eq. (4a). Although the univariate Student-+ CDF and
quantile function are computed the same number of times as
their standard normal counterparts, their computation takes
much more time, likely because of the lack of optimized
libraries, and produces lower accuracy. Due to its perfor-
mance advantage, we refer to Algorithm 2.2b as the ‘mvt’
algorithm from this point on. It has negligible marginal com-
plexity over the ‘mvn’ algorithm since the only additional
step is scaling the integration limits.

3 Low-rank representation and reordering
for MVN and MVT probabilities

3.1 Overview
More flexible than quadrature methods, Monte Carlo (MC)
procedures provide several viable options for computing

MVN and MVT probabilities. The cost of these computa-
tions depends on the product of the number of MC samples,
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N, needed to achieve a desired accuracy and the cost per
MC sample. Under the standard dense representation of
covariance, the computational complexity for each sample is
O (n?) as shown in Algorithms 2.1a and 2.2b. Genton et al.
(2018) proposed using the hierarchical representation for the
Cholesky factor, illustrated in Fig. 1, which reduced the com-
plexity per sample to O (kn log n), where k is a nominal local
rank of the matrix blocks. Using nested bases in the hierar-
chical representation (Boukaram et al. 2019), it is possible to
reduce this cost further to an asymptotically optimal O (kn).

In this paper, we assume the covariance matrix is gener-
ated from a set of spatial locations and a covariance kernel.
Small local ranks in off-diagonal blocks are obtained when
the row cluster and the column cluster are well separated spa-
tially, growing only weakly with the problem dimension, 7.
When the geometry is a subset of R? or R3, a space-filling
curve, or a spatial partitioning method in combination with
a space-filling curve, may be used for indexing to keep the
index distances reasonably consistent with the spatial dis-
tances. The spatial locations and the corresponding variables
are then further divided into blocks (clusters) according to
these indices to build the hierarchical representation. We also
use the terms ‘cluster’ to align with the literature of hierar-
chical matrices; see Hackbusch (2015) for more details.

The optimal ordering for reducing the cost per Monte
Carlo sample, however, is unfortunately generally not the
optimal ordering for reducing the total number of samples
N. A proper reordering scheme that takes into account the
widths of the integration limits of the MVN and MVT proba-
bilities can have a substantial effect on reducing the variance
of the estimates, making the numerical methods far more
effective relative to a default ordering (Schervish 1984; Genz
and Bretz 2009). Trinh and Genz (2015) analyzed ordering
heuristics and found that a univariate reordering scheme, that
sorts the variables so that the outermost integration variables
have the smallest expected values, significantly increased the
estimation accuracy. This heuristic was more effective over-
all than more expensive bivariate reordering schemes that
might further reduce the number of samples needed. In Cao
etal. (2019), a block-reordering scheme was proposed under
the hierarchical matrix representations used in high dimen-
sions. Specifically, within each diagonal block B;, univariate
reordering was applied and the blocks were reordered based
on their estimated probabilities using this univariate reorder-
ing scheme. This has less impact on the local ranks of the
hierarchical structure than the reordering schemes discussed
in Trinh and Genz (2015).

The important point here is that these reordering schemes
shuffle the variables based on their integration limits to
achieve better convergence for the integration, measured
by the number of samples needed to achieve the desired
accuracy. They produce different orders from the geometry-
oriented ordering obtained by spatial partitioning methods
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Fig.1 Structures of hierarchical
(left) and tile-low-rank (right)
matrices
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or space-filling curves. The reordering increases the local
ranks k of the hierarchical representation or broader low-rank
representations, making the per-sample computation more
expensive.

In this paper, we seek a better middle ground between the
geometry-oriented and the integration-oriented orderings by
combining a block-reordering scheme with the TLR repre-
sentation of covariance illustrated in Fig. 1. We also introduce
the TLR versions of the QMC algorithms for computing
MVN and MVT probabilities.

3.2 TLR as a practical representation for MVN and
MVT

To show the TLR structure has good compatibility with the
block-reordering scheme introduced in Cao et al. (2019), we
consider an MVN problem whose integration limits are inde-
pendent from the geometry. The geometry is a 128 x 128 grid
in the unit square whose locations are initially indexed with
the geometrical clustering method provided in HLIBpro v2.8
(Borm et al. 2003; Kriemann 2005; Grasedyck et al. 2008).
The partitioning of each cluster is cardinality balanced, i.e.,
the two child clusters have equal number of indices and the
minimum cluster size is set to 128. This geometrical indexing
isused as the benchmark for measuring the efficiency of three
low-rank structures discussed in Fig. 2. Assuming that the
integration limits are independent and identically distributed,
the block reordering is equivalent to shuffling the 128 clusters
previously computed. A cluster-wise shuffle of the firstindex-
ing is used for measuring the compatibility of the low-rank
representations with the integration-oriented ordering. Fig-
ure 2 describes the approximation of the Cholesky factors of
the two covariance matrices using the hierarchical structures
under the weak and the standard admissibility conditions as
well as the TLR structure while Table 2 lists the correspond-
ing time costs and memory footprints of the factorization.

We focus on the Cholesky factor instead of the covari-
ance matrix because the former’s memory footprint has a
linear relationship with the cost per sample in the compu-
tation of MVN probabilities. For each low-rank structure,
the covariance matrix is constructed and factorized using the
fixed-precision truncation with an absolute error of 10~#. Itis
worth mentioning that this truncation accuracy is unnecessar-
ily high for the TLR structure and the hierarchical structure
under the standard admissibility condition while necessary
for the Cholesky factorization of the hierarchical structure
under the weak admissibility condition (HODLR). There-
fore, in practice, we expect higher efficiency than what Fig. 2
indicates when using the former two low-rank structures. In
contrast, the fixed-rank truncation is less suitable for our pur-
pose because the local ranks have large variability. Choosing
a high fixed rank would waste memory while using a low
fixed rank could cause factorization failure. Furthermore, the
fixed-precision truncation with a relative error is empirically
found to be less efficient than that with an absolute error, gen-
erating higher memory footprints at the accuracy threshold
for a successful factorization.

The selected covariance kernel, exp(—|h|/0.3), has a
range parameter B = 0.3 and an effective range of 0.9,
indicating a strong correlation in the unit square. Over-
all, stronger correlation presents more challenge in terms
of Cholesky factorization because the covariance matrix
becomes more numerically singular. The exponential kernel
corresponds to the Matérn kernel with a smoothness param-
eter v = 0.5 and the correlation for small ||h|| (relative to 8)
increases asymptotically to one when v increases, for which
the singularity of the Matérn kernel generally grows with
v if the given locations are in a compact domain. There-
fore, smooth kernels are prone to having singularity issues,
in which case either increasing the truncation accuracy or
adding a nugget effect can enhance the factorization.

The admissibility condition measures the ratio of the dis-
tance between two clusters to a weighted average of their
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Fig. 2 Partition and local ranks of a 16,384-dimensional covariance
matrix represented with three low-rank structures. Red denotes dense
blocks and green is used for low-rank blocks whose ranks are the
numbers inside. For each structure, two indexing methods are com-
pared, namely a geometrical indexing (Geom) and the block reordering

(b) Standard & Geom

(e) Standard & Reorder

(¢) TLR & Geom

(f) TLR & Reorder

(Reorder). HODLR and STD are the hierarchical structures under the
weak and the standard admissibility conditions, respectively. TLR is
the tile-low-rank structure. The covariance matrix is built with a grid in
the unit square and the exponential covariance kernel, exp(—|/h]||/0.3),
where h is the vector connecting two locations. (Color figure online)

Table2 Cholesky factorization

. N . . factorize (Geom)
times and memory footprints for

factorize (Reorder) memory (Geom) memory (Reorder)

a 16,384-dimensional

) > HODLR 5.7s
covariance matrix under a
geometrical indexing (Geom) STD 0.6s
and block reordering (Reorder) TLR 4.55

46.0s 102MB 409MB
2.8s 60MB 82MB
2.9s 88MB 67MB

HODLR and STD are the hierarchical structures under the weak and the standard admissibility conditions,
respectively. TLR is the tile-low-rank structure. The covariance matrix is built with a grid in the unit square
and the exponential covariance kernel, exp(—||h||/0.3), where h is the vector connecting two locations

diameters. Hence, a big ratio indicates good separability and
a small local rank, whereas the HODLR structure has large
blocks in the low-rank format whose ratios are close or even
equal to zero, leading to high memory footprint. Additionally,
its increase is also the largest when switching from the geo-
metrical indexing to the block reordering because a shuffle
to the leaf clusters has stronger impact on the blocks whose
row and column clusters consist of a larger number of leaf
clusters. Contrarily, the memory footprint of using the TLR
structure even decreases when switching to the block reorder-
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ing. This may appear surprising, but an explanation is given
from two perspectives:

1. The overall local ranks in the TLR covariance matrix do
not change. The block reordering shuffles the leaf clus-
ters, which only rearranges the off-diagonal blocks since
the block size in the TLR representation is equal to the
size of leaf clusters.

2. Secondly, the magnitude of the Schur complement
decreases faster with the block column index under the
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block reordering. The Schur complement at block col-
umn 7, Zi:")i:r - Zi:”>13i*]Z;z‘l—l,lzi—lZ;:rr,lzifl’ is the
conditional covariance matrix for variables in clusters
i to r given variables in clusters 1 to i — 1. We argue
that for general spatial kernels, the conditional covari-
ance matrix tends to have smaller magnitude, e.g., the
Frobenius norm, when the locations of the conditioning
variables are more scattered. This is treated as a heuristic
without proof since it is not the focus of the paper.

Therefore, the block reordering maintains the local ranks
of the TLR covariance matrix while increasing the magni-
tude decay of its Cholesky factor, which collectively reduce
the memory footprint of the TLR Cholesky factor under the
fixed-precision truncation with an absolute error. The combi-
nation of geometrical indexing and the standard admissibility
condition produces the smallest memory footprint and fac-
torization time. However, it is unable to benefit from an
improved convergence rate. Under the block reordering, the
standard admissibility condition produces a fine block par-
tition that approaches the TLR structure and has a higher
memory footprint than the TLR structure. The reason is that
not satisfying the standard admissibility condition does not
guarantee that the block’s dense representation is more eco-
nomical than its low-rank representation, and in fact, the
opposite is true for many dense blocks.

We conclude that under the block reordering, the TLR
structure has the highest efficiency among the three low-rank
structures discussed above and is only slightly less efficient
than the combination of geometrical indexing and the stan-
dard admissibility condition. Additionally, the TLR structure
is conceptually simpler than the other two and hence, more
likely to benefit from parallel hardware architectures.

3.3 Reordering schemes and TLR factorizations

The block-reordering scheme was proposed in Cao et al.
(2019) and shown to improve the estimation accuracy of
the conditioning method at a lower cost than the univari-
ate or bivariate reordering scheme introduced in Trinh and
Genz (2015). In this paper, we improve the original block-
reordering scheme by ordering the clusters of variables
iteratively. The new iterative block reordering, similar to the
block version of the univariate reordering scheme in Trinh
and Genz (2015), enjoys a higher convergence rate and pro-
duces the Cholesky factor simultaneously.

Algorithm 3.3a describes the original block-reordering
scheme proposed in Cao et al. (2019) while Algorithm 3.3b
is the iterative version that produces the Cholesky factor.
We use X; ; to represent the (i, j)-th size-m block of X.
Similar notations are also used for a and b. The symbol =
indicates the switching of coefficients, rows, or columns.
Variables can be overwritten by themselves after compu-

tations for performance benefits. When i # j, X;; is
stored in the low-rank format. The blue lines in Algo-
rithm 3.3b mark the matrix operations that are also in the
TLR Cholesky factorization (Akbudak et al. 2017). If we
ignore the cost for steps 5 and 9, the complexity of Algo-
rithm 3.3b is the same as the TLR Cholesky factorization.
Although the complexity for accurately computing ®,, and
the truncated expectations is high, the univariate conditioning
method (Trinh and Genz 2015), with a complexity of O (m?),
can provide an estimate for both that is indicative enough.
Algorithm 3.3a ignores the correlation between the size-m
clusters and also uses the univariate conditioning method for
approximating ®,,. Therefore, the block-reordering scheme
has a total complexity of O (nm?) but requires a succeeding
Cholesky factorization while the iterative block reordering
has additional complexity of O (n?m) over the TLR Cholesky
factorization but produces the Cholesky factor simultane-
ously.

Algorithm 3.3a Block reordering

: bodr(X, a, b, m)

rr=n/m

cfor j=1:rdo

pli]1 ~ @, (ar, by; Xy )

: end for

:for j=1:rdo

J = argmin (pl/D, L =j,....r } }

: _ plj = jland block-wise X[j = j, j = jl. alj = jl.blj =
J1

: end for

Nel

Algorithm 3.3b Block reordering during Cholesky factor-
ization
1: rbodr(X, a, b, m)

2:r=n/m

3:for j=1:rdo

4. forl=j:rdo

5 pll] ~ @, (a;, by; Xy 1)

6:  end for

7 j:argminl(p[l]),l =,

8:  Block-wise X[j = j, j = jl,a[j = jl.blj = j]

9: y; =~ Em[YIY ~ Np (0, ijj)’ Ye (aj’ b])]
10:  X; ; = Cholesky(X;, ;)
11: fori=j+1:rdo

12: %j=%,;0%;]

13: a=a — X%, jOy;,bi=b; — % ; Oy,
14:  end for

15: for ji=j+1:rdo

16: forij=j+1:rdo

17: i =Xy ©Lij O E;‘:,j

18: end for

19:  end for

20: end for
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The truncated operations, ® and &, indicate that matrix
product and matrix subtraction are followed by truncation to
smaller ranks while maintaining the required accuracy, given
that the block-wise ranks may generally expand as a result
of the operations. Here, X;, ; © Z;J, and %; ; © Ej_j have
complexities of O (mk?) and O (m?k), respectively, where m
is the tile size and k is the local rank. The © operation uses
ACA truncated at an absolute tolerance to keep the result low
rank. For the studies in Sects. 4 and 5, we set the tolerance to
1075, Prior to the TLR Cholesky factorization, we construct
the TLR covariance matrix with ACA given the covariance
kernel, the underlying geometry and the indices of variables.
Therefore, the total memory needed for computing MVN and
MVT probabilities is O (kn®/m).

3.4 Preconditioned TLR QMC algorithms

Algorithms 3.4a and 3.4b describe the TLR versions of the
‘mvn’ and ‘mvt’ algorithms. To distinguish them from the
dense ‘mvn’ and ‘mvt’ algorithms, we expand the storage
structure of L, the TLR Cholesky factor, as the interface of
the TLR algorithms. The definitions of B;, U; j, and V; ; are
shown in Fig. 1.

Similar to Algorithm 3.3b, we use subscripts to represent
the size-m segmentofa, b, y, and w. The two algorithms com-
pute the integrand given one sample w in the n-dimensional
unit hypercube. In our implementation, the Richtmyer rule
(Richtmyer 1951), recommended by Genz and Bretz (2009),
is employed for choosing w. Here, ‘tlrmvn’ is called by
‘tlrmvt,” where the additional inputs, v and wg, bear the
same meaning as those in Algorithm 2.2b. The TLR struc-
ture reduces dense matrix vector multiplication to low-rank
matrix vector multiplication when factoring the correlation
between size-m clusters into the integration limits. The TLR
structure reduces the complexity of matrix vector multi-
plication, hence the cost per MC sample, at the step of
block updating the integration limits (Lines 6 and 7 in Algo-
rithm 3.4a). The TLR QMC is a variant of the SOV algorithm
from Genz (1992) that belongs to the same category as the
hierarchical QMC (Genton et al. 2018). Algorithms 3.4a and
3.4b can be either preconditioned by the block reordering or
the iterative block reordering. We examine the performance
of the TLR QMC algorithms in Sect. 4.

4 Numerical simulations

Table 3 summarizes the performance of the dense (Genz
1992), the hierarchical (Genton et al. 2018), and the TLR
QMC methods for computing MVN and MVT probabilities.
Methods are assessed over 20 simulated problems for each
combination of problem dimension n and correlation strength
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Algorithm 3.4a TLR QMC for MVN probabilities

I: tirmvn(B, U, V, a, b, w)
2:y<«0,and P < 1
3:fori =1:rdo

4 if i > 1 then

5 for j =i:rdo

6: A= Uj,ifl(VJT.,-_lyl'fl)
7: aj=a;—Ab;=b;—A
8 end for

9:  endif

10:  (P’,yi) < MVN(B;, a;, b;, w;)
11: P < P-P

12: end for

13: return P

Algorithm 3.4b TLR QMC for MVT probabilities
1: tirmvt(B, U, V, a, b, v, wp, W)
24 XJ\'/(&UO)& b < x.?‘(:uo)b

3: return TLRMVN(B, U, V, a’, b, w)

B. B =0.3,0.1, and 0.03 correspond to the effective ranges
of 0.90, 0.30, and 0.09, respectively, representing strong,
medium, and weak correlation strengths in the unit square.
The tile size m for the TLR QMC methods is set as /7 for
the optimal complexity per sample, O (n3/?). Overall, smaller
blocks are more easily represented in the low-rank format,
i.e., having lower local ranks, but a partition that is too fine
may compromise the memory savings while bigger blocks
can lead to higher local ranks and higher memory footprint
for the diagonal blocks. For ease of comparison, the diagonal
block size for the hierarchical QMC methods is also set as
/n. We apply a fixed-precision truncation of 10~ to 8 = 0.3
and of 1073 to the other correlation strengths to guarantee the
success of Cholesky factorization while enhancing computa-
tion efficiency. It is worth mentioning that the error caused by
the truncation to a lower rank is typically invisible compared
with that from the Monte Carlo integration since the differ-
ence between the estimates of the same MVN/MVT problem
in Table 3 is well explained by their Monte Carlo standard
errors. The sample size is N = 10 for the methods without
any preconditioner and N = 103 for the four preconditioned
methods to highlight their computation times for reaching
the same accuracy. The listed time in Table 3 covers only the
integration algorithm, not including the construction of the
covariance matrix, the block reordering, and the Cholesky
factorization. The computation time for Cholesky factoriza-
tion is indicated in Table 2, generally smaller than that of the
Monte Carlo integration with 10* samples by more than one
order of magnitude. The iterative block reordering has the
same order of complexity, O (n°?), as the (TLR) Cholesky
factorization when m = ./n while the block reordering has
the same complexity as the first iteration of the iterative block
reordering. The complexity for constructing the covariance
matrix is negligible, one order smaller than the Cholesky fac-
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Table 3 Performance of the dense, hierarchical, and TLR methods for computing MVN/MVT probabilities

n mvn hmvn tirmvn rtirmvn rrtlrmvn mvt hmvt tirmvt rtirmvt rrtlrmvt
B = 0.3 (strong correlation)
1024 0.5% 0.5% 0.5% 0.4% 0.4% 0.7% 1.5% 1.6% 1.7% 1.6%
2.55 1.1s 1.7s 0.1s 0.1s 2.6s 1.1s 2.0s 0.2s 0.2s
4096 1.1% 1.1% 1.0% 0.9% 1.0% 1.0% 1.6% 1.4% 1.1% 1.2%
42.4s 9.7s 14.1s 1.4s 1.3s 41.1s 7.9s 12.7s 1.2s 1.2s
16384 2.2% 2.3% 2.2% 2.0% 1.8% 4.5% 4.3% 4.2% 2.8% 2.4%
1233.5s 56.2s 93.9s 8.2s 8.2s 1198.3s 49.9s 90.0s 7.8s 7.8s
65536 N.A. 5.8% 4.7% 3.5% 2.6% N.A. 13.5% 13.7% 6.3% 5.9%
N.A. 309.5s 596.2s 50.8s 51.2s N.A. 294.9s 594.7s 49.9s 50.4s
B = 0.1 (medium correlation)
1024 0.4% 0.4% 0.4% 0.4% 0.3% 0.5% 0.6% 0.5% 0.6% 0.7%
2.4s 1.0s 1.6s 0.1s 0.1s 2.4s 0.8s 1.6s 0.1s 0.1s
4096 1.3% 1.3% 1.4% 1.0% 1.2% 1.1% 1.1% 1.3% 1.2% 1.2%
38.5s 5.2s 9.3s 1.0s 1.0s 38.4s 5.0s 9.9s 1.1s 1.0s
16384 4.4% 4.3% 4.1% 4.1% 3.5% 3.1% 3.6% 2.8% 3.4% 3.2%
1188.2s 37.0s 78.7s 6.6s 6.6s 1176.8s 36.3s 79.6s 6.6s 6.6s
65536 N.A. 34.4% 31.1% 12.0% 11.6% N.A. 17.2% 17.0% 7.7% 7.4%
N.A. 286.8s 562.9s 47.8s 49.55 N.A. 254.7s 531.6s 44.9s 45.4s
B = 0.03 (weak correlation)
1024 0.1% 0.2% 0.2% 0.1% 0.1% 0.2% 0.2% 0.2% 0.4% 0.4%
2.4s 0.9s 1.5s 0.1s 0.1s 2.3s 0.8s 1.6s 0.1s 0.1s
4096 0.7% 0.7% 0.8% 0.5% 0.5% 0.7% 0.7% 0.8% 0.7% 0.8%
38.1s 4.9s 8.9s 0.9s 0.9s 37.7s 4.4s 9.1s 0.9s 0.9s
16384 3.5% 3.6% 4.0% 2.8% 2.4% 2.6% 2.4% 2.3% 1.7% 1.6%
1118.5s 29.4s 64.5s 5.4s 5.4s 1097.4s 27.5s 65.0s 5.5s 5.4s
65536 N.A. 67.0% 75.3% 13.7% 14.2% N.A. 13.5% 13.5% 8.8% 8.1%
N.A. 201.1s 450.2s 37.9s 37.9s N.A. 203.6s 459.8s 39.0s 38.6s

‘mvn’ and ‘mvt’ are the dense QMC methods, ‘hmvn’ and ‘hmvt’ are the hierarchical QMC methods, ‘tlrmvn’ and ‘tlrmvt’ are the TLR QMC
methods, ‘r’ indicates the block-reordering preconditioner, and ‘rr” indicates the iterative block-reordering preconditioner. The upper row is the
average relative estimation error and the lower row is the average computation time over 20 replicates. The covariance matrix is generated from
a 2D exponential kernel, exp(—|/h]||/8), where h is the distance vector, based on n locations on a perturbed grid in the unit square. The lower
integration limits are —oo and the upper limits are independently generated from N (5.5, 1.252). The degrees of freedom v for MVT probabilities
are 10. The QMC sample size for preconditioned methods is 10* and 103 for others

torization. The highest dimension in our experiment is 2.
Considerations for higher dimensions include the truncation
precision required for Cholesky factorization and the sample
size needed to reach the desired accuracy.

Considering only the methods without any preconditioner,
the low-rank methods are more scalable than the dense meth-
ods and the time difference already reaches two orders of
magnitude when n = 16,384. The hierarchical methods
are more efficient than the TLR methods although Table 2
indicates slightly higher memory footprint for the hierarchi-
cal Cholesky factor under the weak admissibility condition.
This is because the hierarchical methods involve fewer but
larger matrix-matrix multiplications compared with the TLR
methods, beneficial from modern optimized Level 3 BLAS
functions. However, this weakness of the TLR methods

is amenable to the future optimized multiplication routine
between TLR and dense matrices. Furthermore, hierarchical
methods are more sensitive to strong correlation, demand-
ing higher truncation precision and hence, higher local ranks
when the covariance matrix approaches singularity. After
using the (iterative) block-reordering preconditioner, the
TLR methods reach even lower estimation error with one-
tenth of the previous sample size, shortening the computation
time by up to one order of magnitude compared with the hier-
archical methods. Additionally, the iterative block reordering
has slightly bigger improvement on the Monte Carlo con-
vergence rate than the non-iterative one, which is seen more
clearly in Fig. 3. Itis worth mentioning that the block reorder-
ings are more effective when the MVN/MVT problem is
more asymmetric. An extreme scenario where reorderings
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Fig. 3 Relative error for probabilities and log-probabilities. For each
n, the three boxplots, from left to right, correspond to the TLR method,
the TLR with the block reordering method, and the TLR with the iter-
ative block-reordering method. The relative error for log-probabilities
is based on 10 estimations of the same replicate. Each boxplot consists
of 20 replicates. The covariance matrix is generated from a 2D expo-

become ineffective is that the correlation is constant and the
integration limits are the same across the variables.

MVN and MVT probabilities much smaller than those
in Table 3 may appear in high-dimensional applications
(Botev 2017). For example, the model and data used in
Sect. 5.3 produce a likelihood smaller than 10~%°. Overall,
the convergence rate decreases if the integration region is
pushed towards the tail while keeping the covariance struc-
ture unchanged, for which standard scientific workstations
may ultimately fail to reach the desired accuracy using a rea-
sonably large sample size N. For example, whenn = 65,536
and 8 = 0.03, the MVN methods without block reorder-
ing are unable to control the relative error with 10* QMC
samples, rendering even the most significant digit of the
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nential kernel, exp(—|/h||/8), where h is the distance vector, based on
n locations on a perturbed grid in the unit square. The lower integration
limits are —oo and the upper limits are independently generated from
N (4.0, 1.5%). The degrees of freedom v for MVT probabilities are 10.
The QMC sample size is 10*

probability estimate unreliable. In Fig. 3, we keep the lower
integration limits unchanged but use smaller and more dis-
persed upper integration limits to visualize one example
where 10* QMC samples are insufficient for keeping the
relative errors low. The dense and hierarchical methods are
notincluded because the non-preconditioned methods should
have the same error level when using the same QMC sample
size. Figure 3 shows that all methods have a relative error
close to or greater than one in 16, 384 dimensions. Nonethe-
less, the relative error grows more slowly with n for the
preconditioned methods, with the iterative block reordering
slightly more effective than the non-iterative one. A sec-
ond observation is that the relative errors of the estimated
log-probabilities are on a much smaller magnitude, indi-
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cating right-skewness in the distribution of the MVN/MVT
probability estimates. Therefore, we may still trust the mag-
nitude of the probability estimates when the relative error is
approaching one. The relative errors listed in this paper are
the ratios of the Monte Carlo standard errors to the means of
the Monte Carlo estimates, and for log-probabilities whose
errors are not directly available, we estimate the same prob-
lem 10 times to provide replicates of the estimation.

5 Application to stochastic generators
5.1 A skew-normal stochastic generator

One area that benefits from the methods developed in this
paper is the likelihood estimation for the statistical mod-
els whose probability density function (PDF) involves the
MVN/MVT (cumulative) probabilities, and in this section,
we use a skew-normal stochastic generator to demonstrate
this advantage. Stochastic generators model the space—time
dependence of the data in the framework of statistics and
aim to reproduce the physical process that is usually emu-
lated through a system of partial differential equations. The
emulation of the system requires tens of variables and a very
fine grid in the spatio-temporal domain, which is extremely
time-and-storage demanding (Castruccio and Genton 2016).
For example, the Community Earth System Model (CESM)
Large ENSemble project (LENS) required ten million CPU
hours and more than four hundred terabytes of storage to
emulate one initial condition (Jeong et al. 2018). Castruccio
and Genton (2016) found statistical models could become
efficient surrogates for reproducing the physical processes in
climate science and concluded that extra model flexibilities
would facilitate the modeling on a finer scale; see Castruccio
and Genton (2018) for a recent account.

The significance of the MVN and MVT methods in this
context is an improvement in flexibility by introducing skew-
ness since the majority of statistical models are elliptical.
Generally speaking, there are three ways of introducing
skewness to an elliptical distribution, all of which involve
the CDF of the distribution. The first is through reformula-
tion, which multiplies the elliptical density function by its
CDF. The second method introduces skewness via selec-
tion, i.e., (XT, YT)—r are jointly elliptical and X | Y > u
is a skewed elliptical distribution, where p is the skewness
parameter. Arellano-Valle and Genton (2010) studied the link
between PDF reformulation and selection distributions. The
third method introduces skewness through constructing a
stochastic representation, typically, Z = X + [Y|, where X
and Y are two independent elliptical random vectors. Zhang
and El-Shaarawi (2010) studied the skew-normal random
field based on the third construction and used the Monte

Carlo EM (Levine and Casella 2001) algorithm for model
selection to avoid the intractable likelihood function.

We use the third method to construct a skew-normal
stochastic generator, given its intuitive representation and
simplicity for simulation. However, models in this category
have intractable PDFs when Y has a non-trivial covariance
structure. To avoid this complexity, we use a diagonal covari-
ance structure for Y while adding a coefficient matrix to Y],
whose PDF is tractable based on the properties of 4" random
vectors developed in Arellano-Valle et al. (2002). Specif-
ically, a € random vector can be written as the Hadamard
product of two independent random vectors, representing the
sign and the magnitude, respectively. When Y is a ¢ random
vector and X is independent from Y, G(X,Y) | Y > 0 has
the same distribution as G (X, |Y|) for any function G(-).
We propose the following stochastic generator that has the
flexibility of modeling the correlation between the elliptical
component and the skewness component:

Z* = £1, + AX + B|Y|. 5)

Here, & € R is the location parameter, X and Y are inde-
pendent standard normal random vectors, and A and B are
parameter matrices. Choosing G(X, Y) to be AX + BY, the
PDF of Z* is tractable and is written explicitly in Eq. (6) with
further parameterizations for A and B.

As a trade-off of the tractable PDF, Eq. (5) may have cer-
tain drawbacks for modeling skewed distributions. Firstly, its
extension to other skewed elliptical distributions, including
the skewed MVT distribution, is not straightforward because
the sum of independent elliptical distributions may no longer
belong to the same distribution family. Secondly, Z* is typ-
ically not a random field for most parameterizations of A
and B, which makes the inference at new locations difficult.
Fortunately, for stochastic generators, the model is usually
simulated on a fixed spatial domain without the need for pre-
diction at unknown locations. In this section, we show that
the preconditioned TLR QMC method is more suitable for
estimating the parameters of Eq. (5) than two other state-of-
the-art methods and that the fitted skew-normal model is a
more realistic stochastic generator for the wind data in Saudi
Arabia than the Gaussian random field.

5.2 Estimation with simulated data

In the spirit of parsimony, A is assumed to be the lower
Cholesky factor from an exponential kernel, 012 exp(—|/h||/
B1) and B is assumed as the covariance matrix from another
exponential kernel, 022 exp(—|h]||/B2), both generated from
n pre-specified locations on the 2D plane. Hence, there are
five parameters in total, (£, o1, By, 02, B2). The assumption
on A makes AX a MVN distribution, in fact, Gaussian ran-
dom field, with an exponential covariance structure while B
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is parameterized as a covariance matrix, not a Cholesky fac-
tor, for two reasons. Firstly, the row sums of alower Cholesky
factor have great variability in their magnitudes, causing dif-
ferent levels of skewness among the random variables in Z*.
Secondly, due to the first reason, the likelihood would depend
on the ordering of the random variables. When B is a covari-
ance matrix, the row sums usually have similar magnitudes
and the likelihood function becomes independent from the
ordering within Z*. The PDF of Z* = z can be derived based
on the properties of 4 random vectors:

2"¢y(z — E1,; AAT + BBT)D,
{—00, (I, + CTO)'CTA 2 - £1,); (I, + CTO)7'},
(©6)

with C = A~'B.

To simulate Z*, we first generate n locations on a per-
turbed grid that expands with n. Specifically, for n = 4" and
r =4,5,6,7, aregular grid in R2 of dimensions 2" x 2" is
first generated with the unit distance of 1/15. Then inde-
pendent disturbances uniformly distributed in (0, 0.8/15)
are added to all locations on the grid in both axis ori-
entations to form the perturbed grid, based on which A
and B are constructed with (o7 = 1.0,8; = 0.3) and
(02 = 1.0, B2 = 0.3), respectively. Notice that the ordering
of the n locations does not affect the probabilistic distri-
bution of Z*. Finally, £ is assumed zero without loss of
generality and Z* is generated based on Eq. (5). For each
realization of Z*, z € R", we use the Controlled Random
Search (CRS) with local mutation (Kaelo and Ali 20006),
a global optimization algorithm without gradient usage, to
estimate the five parameter values that maximizes Eq. (6).
In the optimization, the maximum number of iterations
is 1,000, the searching ranges for {&, o1, 81, 02, B2} are
{(—=1.0, 1.0), (0.1, 2.0), (0.01, 0.9), (0.0, 1.0), (0.01, 0.3)},
respectively, and the initial values are the lower bounds of the
searching ranges. For each n, thirty independent realizations
are generated, producing a total of thirty estimation results,
which are combined into boxplots in Fig. 4. Overall, the esti-
mation appears asymptotically unbiased and converges to
the true values as the dataset dimension n increases. The out-
liers indicate that there is sometimes a local maximum, with
big (o1, B1) and small o, and hence, the fitted skew-normal
model is close to a Gaussian random field.

As benchmarks, we consider two other state-of-the-art
methods frequently used when the likelihood is not tractable
or computationally demanding, namely the Monte Carlo
EM (MCEM) (Levine and Casella 2001) and the variational
Bayes (SGVB) algorithms (Kingma and Welling 2013).
In MCEM, sampling techniques, represented by Markov
chain Monte Carlo (MCMC) methods, are used in the E-
step to approximate the intractable expectation, in our case
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Ey|z+ ¢llog fz+ y|e(z,y)], through sampling from the pos-
terior distribution of the latent random vector, fyz+¢(y).
Here, we use f(-) and # as the general notations for the den-
sity function and model parameters, respectively. However,
sampling with MCMC can be very expensive and further-
more, this sampling procedure should ideally be repeated in
each iteration during optimization, for which only the esti-
mation with n = 256 observed locations is performed for
our comparison, whose estimated parameters are included in
Fig. 5. We use the Hamiltonian Monte Carlo method (Hoff-
man and Gelman 2014) with a burn-in size of 3,000 and a
total sample size of 4,000 to sample fy|z+ ¢(y) and compute
Eyz+ gllog fz+ y|¢(z,y)], which amounts to the logarithm
of the MVN PDF. In the M-step, we use the BEGS (Nocedal
1980) algorithm to optimize the five parameters until con-
vergence. We set an upper limit of 10 iterations between the
E-steps and the M-steps, under which the EM algorithm typ-
ically cannot reach convergence. To compensate for this, the
initial parameter values are set to their true values, under
which the MCEM’s estimation quality is comparable to that
of the maximum likelihood estimators, but its computation
cost is significantly higher as discussed later in this section.
The variational Bayes algorithm maximizes the varia-
tional lower bound as a surrogate of the marginal proba-
bility based on an approximate posterior distribution, often
variable-wise independent, of the latent random vector (Y |
7*,0); see Kingma and Welling (2013) for more details.
Its error from the true marginal probability is the Kullback—
Leibler (KL) divergence between the approximate and the
true distributions of (Y | Z*, #), changing with € and hence,
the optimal parameter values for the marginal probability can
be different from those for the variational lower bound. As
in Kingma and Welling (2013), we approximate fy|z+ ¢ (y)
with gy (y) = [1/—; #(y: — & 6%) and repeat the simulation
study above by maximizing the variational lower bound:

~ Drr oy )| fre )+ f log{fz1v.6 @lay Wdy, (7)

where & and & are optimization parameters of length n and
Dk is the KL divergence. The KL divergence in Eq. (7) is
tractable while the integration part is evaluated with Monte
Carlo samples of Y, which has the same order of complexity
as the dense QMC method for MVN probabilities. Given a
sample set of Y, Eq. (7) can be differentiated with respect
to its parameters (&€, o1, f1, 02, B2, é, o) explicitly, allow-
ing faster convergence to the local maximum. Similarly to
the MCEM algorithm, we also use the gradient-based BFGS
algorithm for the optimization with two sets of initial val-
ues for (&, o1, B1, 02, B2), one at their true values and one
randomly chosen from their searching ranges, to show that
the true values may not be the global minimizer of Eq. (7).
The initial values for é and o are 0 and 1, respectively. In
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Fig. 5 Boxplots of 30 estimation results from the Monte Carlo EM
(MCEM) estimators (shaded with dashed lines) and the variational
Bayes (SGVB) estimators. Each estimation is based on one realization

principle, a different starting point can be also added to the
MCEM algorithm, but this may not be necessary since the
experiment for MCEM is confined to n = 256 due to high
computation costs and its estimation bias is already visible
from Fig. 5. Thirty estimation results for each n are sum-
marized in Fig. 5, indicating bias of the variational Bayes
estimators as well. Furthermore, the estimation is not nec-
essarily improved after increasing n, raising doubts on the
consistency of the estimators.

Table 4 compares the computation costs of the MLE
with dense or TLR matrix representations, the MCEM algo-
rithm and the SGVB algorithm. In terms of per optimization
iteration, the MLE using the TLR matrix representation
(‘MLE-TLR’) is the fastest, but both MLE methods cannot
utilize the numerical gradient because the MVN probability
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of the n-dimensional skew-normal model. The red dashed line marks
the true value used for generating random vectors from the skew-normal
model. (Color figure online)

estimates are not sufficiently accurate, for which they may
need more iterations to converge. Notice that matrix oper-
ations, specifically those O (n>) matrix operations required
by Eq. (6), account for the major cost of the MLE meth-
ods, and hence, the ‘MLE-TLR’ method is further amenable
to optimized linear algebra libraries for TLR matrices. The
MCEM algorithm overall has the highest computation cost
due to the MCMC sampling in the E-step, for which its appli-
cability is limited to small dataset dimensions. The SGVB
algorithm converges fastest among all and its cost can be fur-
ther reduced by low-rank matrix representations. However,
it may oversimplify the model, causing estimation bias and
inconsistency. We proceed with the ‘MLE-TLR’ method for
the study of wind data in Saudi Arabia because of its com-
putation feasibility and higher estimation quality.
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Ifi'f&fﬁ?ﬁiﬁﬁiﬁ ‘llnmt;e n =256 n=1024 n = 4,096 n = 16,384
maximum likelihood estimation MCEM 42095 N.A. N.A. N.A.

SGVB 0.11s 2.7s 68s 1206s
MLE-Dense (0.31s, 0.28s) (3.0s, 1.7s) (118s, 19s) (10,784s, 541s)
MLE-TLR (0.81s, 0.67s) (6.5s, 3.9s) (48s, 17s) (533s, 104s)

Both Monte Carlo EM (MCEM) and Variational Bayes (SGVB) optimize the approximated likelihood in
each iteration while MLE-Dense and MLE-TLR optimize the exact likelihood of Eq. (6) with dense and TLR
matrix representations, respectively. For the paired times in MLE-Dense and MLE-TLR, the left is the average
time per iteration while the right is the time for computing the MVN probability

Table5 Parameter

specifications and estimations § o hi o p2
based on the skew-normal SN)  papoe (-2,2) (0.1,2.0) (0.1,5.0) (0.0,2.0) (0.01, 1.0)
model and the Gaussian random .
field (GRF) Initial value 0.000 1.000 0.100 1.000 0.010
SN —1.211 1.028 4.279 0419 0.065
GRF 0.338 1.301 4.526 N.A. N.A.
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Fig.6 Heatmap based on one simulation and the functional boxplot of
the empirical semivariogram based on 100 simulations. Top to bottom
are the fitted skew-normal model and the Gaussian random field. The
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green curve denotes the empirical semivariogram based on the wind
speed data. The distance is computed as the Euclidean distance in the
longitudinal and latitudinal coordinate system. (Color figure online)
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ZEZIEIG C f(if;;ﬁi;nomems Mean Variance Skewness Kurtosis BIC
Wind data 0.042 0.932 —0.445 2.873 N.A.
SN (—1.079, 1.360) (0.308, 1.054) (—0.644, 0.449) (2.274, 3.595) 22986
GRF (—1.644,1.911) (0.612, 2.594) (—0.717,0.489) (2.116, 3.705) 21565

SN denotes the skew-normal model and GRF denotes the Gaussian random field. The intervals represent the
5% to 95% quantile intervals based on 100 simulations

5.3 Estimation with wind data from Saudi Arabia

The dataset we use for modeling is the daily wind speed over
aregion in the Kingdom of Saudi Arabia on August 5, 2013,
produced by the WRF model (Yip 2018), which numeri-
cally predicts the weather system based on partial differential
equations on the mesoscale and features strong computation
capacity to serve meteorological applications (Skamarock
etal. 2008). The dataset has an underlying geometry with 155
longitudinal and 122 latitudinal bands. Specifically, the lon-
gitude ranges from 40.034 to 46.960 and the latitude ranges
from 16.537 to 21.979, both with an incremental size of
0.045. Before fitting the skew-normal model, we subtract
the wind speed at each location with its mean over a six-year
window (six replicates in total) to increase the homogeneity
across the locations. The vectorized demeaned wind speed
data is used as the input dataset, Z*, for the maximum like-
lihood estimation. The dataset has a skewness of —0.45 and
is likely to benefit from the skewness flexibility introduced
by the model in Eq. (5). It is worth noting that B|Y| has a
negative skewness under our parameterization.

Same as in Sect. 5.2, the likelihood function is Eq. (6)
and the optimization parameters are (£, o1, B1, 02, B2). To
highlight the contribution of the skewness flexibility, we
compare the skew-normal model with the classical Gaus-
sian random field, which is also a special case of the former
with oo = 0. Thus, the Gaussian random field has three opti-
mization parameters (o1, B1, &). Theinitial parameter values,
searching ranges, and optimized values are summarized in
Table 5, where certain lower bounds are above zero to prevent
singularity. We first compare the two fitted models with the
functional boxplots (Sun and Genton 2011) of the empirical
semivariogram based on 100 simulations, which is shown in
Fig. 6. The skew-normal model has significantly smaller band
width than the Gaussian random field while both cover the
empirical semivariogram of the original data. Two heatmaps
of the fitted models are also shown in Fig. 6, but their dis-
tinction is not as obvious as in the functional boxplots. Next,
based on the same 100 simulations, we compare the quan-
tile intervals of the empirical moments in Table 6, where we
also include the BIC values to indicate that the skew-normal
model is a better fit. Except for variance, the two models
have similar quantile intervals that contain the moments of
the wind dataset, but since the empirical moments ignore

the correlation between the spatial locations, they may not
measure the fitting quality in a comprehensive manner.

6 Conclusion

In this paper, we first summarized the SOV methods from
Genz (1992) and Genz and Bretz (1999) for MVN and
MVT probabilities. Two definitions of the MVT probability
were compared, and one was shown to have better numer-
ical properties than the other. Next, we demonstrated that
the TLR structure (Weisbecker 2013; Mary 2017; Akbu-
dak et al. 2017) is more aligned with variable reordering
than the HODLR structure used in Genton et al. (2018) as
well as the hierarchical structure under the standard admis-
sibility condition, allowing it to benefit from both a reduced
cost per sample and an improved convergence rate. Addi-
tionally, we introduced an iterative version of the block
reordering proposed in Cao et al. (2019) that further improves
the convergence rate and produces the TLR Cholesky factor
simultaneously. A third contribution is the observation that
when the estimation errors are of the same magnitude as the
probability estimates, we can still trust the magnitudes of esti-
mates to a certain extent, e.g., for the maximum likelihood
estimation of a high-dimensional skew-normal model.
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