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Cyclostationary Processes With Evolving
Periods and Amplitudes

Soumya Das and Marc G. Genton

Abstract—Wide-sense cyclostationary processes are an impor-
tant class of non-stationary processes that have a periodic structure
in their first- and second-order moments. This article extends the
notion of cyclostationarity (in the wide sense) to processes where
the mean and covariance functions might depart from strict peri-
odicities and constant amplitudes. Specifically, we propose a novel
and flexible class of processes that allows periods and amplitudes
of the mean and covariance functions to evolve and, therefore,
accommodates a much larger class of processes than the classical
cyclostationary processes. Thereafter, we investigate its properties,
provide methodologies for statistical inference, and illustrate the
presented methods using synthetic signals and a physical signal,
from the heavens, of the magnitudes of the light emitted from the
variable star R Hydrae.

Index Terms—Amplitude, cyclostationarity, non-stationarity,
periodic correlation, signal processing, time deformation.

I. INTRODUCTION

THE brightnesses of variable stars, as perceived from Earth,
are signals that change slowly over time. While some are

nearly periodic, others may not be quite so. Their amplitudes or
periods or even both may evolve over time, although the basic
underlying structures of the signals remain unaltered; see [1]–
[4]. For example, the period and amplitude of the signal of R
Hydrae, which is a Mira-type variable star in the constellation
Hydra, declined slowly in the period 1900–1950; see [5] and [6].

Another interesting aspect of variable stars, apropos of our
current study, is that the light emitted from these stars may
have periodically varying temporal correlations. For example,
consider the following two possible phenomena: 1) A variable
star has an orbiting companion that eclipses it in T days. For
ease of explanation, we consider T = 365 days or one Earth
year. Now, the emitted light measured on 15 January may be
statistically different from that measured on 1 May. However,
it can be reasonably presumed that the emitted light measured
on 1 May of different years is more or less identical and closely
correlated. That is to say, the light emitted from such a variable
star may display periodicity in its correlation structure. 2) A
Cepheid variable star periodically swells and shrinks, pulsating
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in brightness. Therefore, for a similar reason as above, it may
also show periodicity in its correlation structure. Now, because
the amplitudes and the periods of some variable stars fluctuate
over time, their correlation structures may also exhibit similar
departures. Here, we seek an approach to model such phenom-
ena, as discussed in the following paragraph.

We know that the signals observed from a physical system
(over time) that consists of both periodicity and randomness may
exhibit cyclostationarity; see [7]–[9]. However, as stated above,
some celestial phenomena require the amplitudes or periods or
both to change over time, unlike the classical cyclostationary
processes. The inadequate modeling of such phenomena moti-
vates us to extend the concept of cyclostationarity to processes
that have first- and second-order moments departed from strict
periodicities and constant amplitudes. We call such a process
an evolving period and amplitude cyclostationary (EPACS)
process.

In the literature, however, there are several instances, where
the authors relaxed the strict properties of cyclostationarity in
many different ways to fit into different real-life scenarios.
For example, [10] extended the notion of cyclostationary pro-
cesses to cyclo-non-stationary processes, that still goes through
periodic modulations whereas being nonstationary on a long
term basis. To describe such signals in rotating machinery with
non-uniform rotation speed, [11] showed that the optimal way
is to consider angle and time jointly instead of independently,
and proposed an angle-time covariance function in this regard;
see also [12] and [13]. The angle-time covariance function,
with its angle parameter an appropriate function of time, can
also be viewed as our covariance model when restricted to
a constant amplitude. Amongst a few other extensions of the
cyclic covariance functions, [14] studied a specific case of that
proposed in this article by considering a constant amplitude;
see also [15]. In contrast, [16] considered only an amplitude
modulated cyclostationary process. Also, while our analysis
deals with all the cycle frequencies, [55] investigated elaborately
a single cycle exploitation of a similar process.

Since EPACS processes are more flexible in nature than cy-
clostationary processes, they exhaust a larger class of processes.
For example, processes with discrete scale invariances belong to
this class; see Subsection II-B of this article and [17] for an in-
troduction to such processes. Therefore, in addition to modeling
certain celestial phenomena, the EPACS processes can also be
used to model a wide variety of real-life scenarios relating to, for
example, critical phenomena [18], climatology, environmetrics,
and the growth and genealogy of populations [17].
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After introducing the EPACS processes, the article presents
their different properties and builds a necessary theory to
conduct statistical inference. We provide semi-parametric
methodologies to estimate the mean and covariance functions of
an EPACS process and to test relevant hypotheses. To illustrate
the proposed methodologies, we provide one synthetic and one
physical signal example. For the physical example, we consider
the signal of the light emitted from the variable star R Hydrae in
the period 1900–1950 from [6]. In that paper, the authors used the
signal to fit a regression model where the mean had an evolving
period and amplitude structure but the errors were considered
uncorrelated. We will later show in the application that R Hydrae
has also an evolving period and amplitude correlation structure
that was not considered in their paper.

The remainder of this article is structured as follows.
Section II formally introduces the EPACS processes and presents
some immediate properties. Section III builds methodologies
for statistical inference, which are illustrated using synthetic
signals in Section IV and using a physical signal in Section V.
Section VI summarizes the findings of this article and discusses
its significance, limitations, and possible future extensions.

II. EPACS PROCESSES

A. Preliminaries and Definitions

Let {Xt, t ∈ D} be a univariate, second-order (i.e., finite
second moment), continuous-time stochastic process with mean
and covariance functions m(t) and R(s, t), respectively. Then,
the process {Xt, t ∈ D} is called wide-sense (or second-order)
cyclostationary or periodically correlated with period T if, for
every s, t ∈ D,

m(t) = E(Xt) = m(t+ T )

and

R(s, t) = cov(Xs, Xt) = R(s+ T, t+ T )

holds, where D ⊆ R and T is a fixed positive real number [19]–
[21]; see also [22]–[25] for an introduction to higher-order
cyclostationarity. Hereafter, by “cyclostationary” processes, we
will only refer to “wide-sense (or second-order) cyclostationary”
processes.

We generalize the notion of the cyclostationary processes,
as in Definition 1 below, to processes with time-varying periods
and amplitudes. Thereafter, Definition 2 defines jointly evolving
period and amplitude cyclostationary processes.

Definition 1: A second-order stochastic process {Xt, t ∈ D}
is called an evolving period and amplitude cyclostationary (ab-
breviated as EPACS) process if, for every s, t ∈ D,

m(t) = l(t)m0(g(t)) and R(s, t) = l(s)l(t)R0(g(s), g(t))
(1)

holds, where D ⊆ R, m0(t) and R0(s, t) are bounded periodic
functions with unit periods, that is,

m0(t) = m0(t+ 1) andR0(s, t)=R0(s+ 1, t+ 1), s, t ∈ D,

l(t) is a positive smooth function, and g(t) is a continuously
differentiable, strictly increasing function such that g′(t) > 0

for all t ∈ D. We call l(t) the amplitude modulation, g(t) the
phase function, and g′(t) the instantaneous frequency at time
point t of the process {Xt, t ∈ D}.

Definition 2: The second-order stochastic processes
{Xj

t , j = 1, . . . , N, t ∈ D} are called jointly EPACS if,
for every j, k = 1, . . . , N and s, t ∈ D,

mk(t) = E
(
Xk

t

)
= lk(t)m

k
0 (gk(t))

and

Rjk(s, t) = cov
(
Xj

s , X
k
t

)
= lj(s)lk(t)R

jk
0 (gj(s), gk(t))

holds, where mk
0(t), k = 1, . . . , N, and Rjk

0 (s, t), j, k =
1, . . . , N, are bounded periodic functions with unit periods
for all s, t ∈ D, lk(t), k = 1, . . . , N, are positive smooth func-
tions, and gk(t), k = 1, . . . , N, are continuously differentiable,
strictly increasing functions such that g′k(t) > 0, k = 1, . . . , N,
for all t ∈ D.

Now, it is clear from Definition 1 above that the EPACS
processes have the potential to explain a wider range of real-life
phenomena than the cyclostationary processes. We also note that
the assumption there ofm0 andR0 being unit-periodic does not
restrict generality as, for any T -periodic functions m0 and R0

satisfying (1), we can always replace g(t) by g(t)/T , m0(t) by
m0(Tt), and R0(s, t) by R0(Ts, T t) to satisfy our assumption
of unit periodicity. Therefore, we avoid the difficulties of de-
tecting the period T , unlike the case of usual cyclostationarity.
Also, in this article, we limit ourselves to EPACS processes with
non-zero means.

Remark 1: (Non-identifiability issue) While (1) generalizes
the notion of the cyclostationary processes, it also admits the
drawback of non-identifiability. It is well known that the rep-
resentation of a given function might not be unique; even a
proper periodic function can be expressed as a function with
time-varying amplitude and phase. For example, cos(2πt) can
also be represented as (1 + a(t)) cos(2π(t+ f(t))) for appro-
priate a(t) and f(t); see [26].

To cope with this identifiability issue, we need to determine
the amplitude using a simple parametric function that changes
slower than the lengths of periods over time. We will sug-
gest parametric models for the amplitude modulation later in
Section III and impose l(t) = 1 at the initial time point to
incorporate the initial amplitude in m0(t) and not to duplicate
in l(t); see [6].

Next, we present two immediate observations through the
following propositions. In particular, Proposition 2 below states
a key connection between the EPACS and the cyclostationary
processes. For Proposition 2, it is required to establish that the
function R0(s, t) is a valid covariance function; Proposition 1
ascertains this requirement.

Proposition 1: Given that R(s, t) in (1) is a covariance func-
tion, the unit-periodic function R0(s, t) is also a covariance
function.

Proof: See Appendix A. �
Proposition 2: The process {Xt, t ∈ R} is EPACS satisfy-

ing (1) if and only if the time-deformed process {Yt : Yt =
Xg−1(t)/l(g

−1(t)), t ∈ R} is cyclostationary with period one,
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that is,

E(Yt) = m0(t) and cov(Ys, Yt) = R0(s, t)

holds.
Proof: The proof is trivial, as we recall that g(t) is an injective

function in R and l(t) is positive in its entire domain. �

B. (H, exp(1))-DSI Processes as an Example of EPACS
Processes

A real-valued stochastic process {Xt, t > 0} is said to have
a discrete scale invariance with scaling exponent H and scale λ
(abbreviated as (H,λ)-DSI) if

{Xλt, t > 0} L
= {λHXt, t > 0}

holds, where
L
= denotes “equality of the finite dimensional

distributions”; see [17]. This class of processes can be viewed
as a specific case of the self-similar processes [27]–[34].

In light of the above definition, we note that if {Xt, t > 0} is
(H, exp(1))-DSI, then

{Yt = c0 exp(−tH)Xexp(t), t ∈ R}
is a unit-periodic cyclostationary process and, conversely, if
{Yt, t ∈ R} is unit-periodic cyclostationary then

{Xt =
tH

c0
Yln t, t > 0}

is a (H, exp(1))-DSI process, where c0 is any non-zero real
number; see [17].

This further implies that if the process {Yt, t ∈ R} has mean
and covariance functionsmY (t) andRY (s, t), respectively, then
the (H, exp(1))-DSI process {Xt, t > 0} can also be viewed as
an EPACS process with mean and covariance functions

mX(t) =
tH

c0
mY (ln t) and RX(s, t) =

sHtH

c20
RY (ln s, ln t),

respectively. That is, the different functions of (1) can be identi-
fied as l(t) = tH

c0
, g(t) = ln t, m0(t) = mY (t), and R0(s, t) =

RY (s, t). The constant c0, however, should be chosen cautiously
to avoid the non-identifiability issue, as mentioned in Remark 1.
For example, we may choose c0 = tH0 , where t0 > 0 is the initial
time point.

C. Properties of EPACS Processes

Below, we present some properties of the EPACS process (1),
which can also be used as models to generate EPACS processes.
While stating the following properties, we assume that the
amplitude modulation and the phase function are appropriately
defined as in Definition 1. Proofs of the following properties are
provided in Appendix B.

Property 2.3.1: Let {Yt, t ∈ R} be a random periodic signal

satisfying Yt
L
= Yt+1 for all t ∈ R. Then, the stochastic process

{Xt = l(t)Yg(t), t ∈ R} is EPACS with amplitude modulation
l(t) and phase function g(t).

Property 2.3.2: Uncorrelated EPACS processes with the same
amplitude and phase functions are closed under addition.

Property 2.3.3: EPACS processes are closed under multi-
plication by a scaled and shifted version of a unit-periodic
deterministic signal {ht, t ∈ R}, {ft = e(t)hg(t), t ∈ R}, with
a phase function identical to that of the initial process; here, e(t)
represents the corresponding amplitude function.

Property 2.3.4: Let {Xj
t , j = 1, . . . , N, t ∈ R} be jointly

EPACS processes with identical amplitude and phase functions
l(t) and g(t), respectively, and consider deterministic signals
{f jt = e(t)hjg(t), j = 1, . . . , N, t ∈ R}, wherehjt = hjt+1. Then

the process Yt =
∑N

j=1 f
j
tX

j
t is EPACS.

Property 2.3.5: The scaled and shifted process {Yt =
a(t)Xf(t), t ∈ R} of an EPACS process {Xt, t ∈ R} satisfy-
ing (1) is also EPACS. In particular, if a(t) = (l(g−1(t)))−1 and
f(t) = g−1(t), then the process {Yt, t ∈ R} becomes cyclosta-
tionary with period one.

D. Representation of EPACS Processes

We know that the cyclostationary signals are produced from
the mixing of stationarity and periodicity; see [9]. Since EPACS
processes are a simple extension of cyclostationary processes,
we expect to observe a similar behavior upto changing amplitude
and phase functions. The two propositions in this subsection
lead to an infinite-dimensional stationary representation of the
EPACS process (1).

However, before presenting the propositions, we recall that a
unitary operator U on a Hilbert space H satisfies 〈Ux,Uy〉 =
〈x, y〉 for x, y ∈ H. For the unitary operators considered here-
after, the time domain HY is considered as

HY = sp{Yt : Yg(t) = Xt/l(t), t ∈ R},
where the closure is in the mean-square sense.

Proposition 3: A second-order process {Xt, t ∈ R} is
EPACS if and only if there exists a unitary operator V and a
unit-periodic signal {Pt, t ∈ R} taking values in HY such that,
for every t,

Xt = l(t)V g(t)Pg(t) (2)

holds, where l(t) and g(t) are the amplitude and phase functions,
respectively, of the EPACS process {Xt, t ∈ R}.

Proof: See Appendix C. �
Proposition 4: A second-order process {Xt, t ∈ R} is

EPACS satisfying (1) if and only if there exists an infinite-
dimensional stationary signal Zt = {Zj

t } such that

Xt =
∞∑

j=−∞
l(t)Zj

g(t) exp (i2πjg(t)). (3)

Proof: See Appendix D. �

III. SEMI-PARAMETRIC INFERENCE FOR EPACS PROCESSES

We discuss methodologies to estimate the mean and covari-
ance functions of an EPACS process and to test relevant hypothe-
ses. To that end, we shall adopt a semi-parametric approach.
This is because a complete parametric model for the mean
and covariance functions will limit the novel flexibility of such
processes and, on the other side, a complete non-parametric
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method may make the estimation and the testing impossible if no
additional assumption is made. To be specific, we determine the
functions l(t) and g(t) parametrically and the functions m0(t)
and R0(s, t) non-parametrically.

A. Models for Phase and Amplitude Functions

We note that if g(t) is the phase function of a unit-periodic
function h(t) at time point t, then g′(t) can be seen as the
instantaneous frequency and 1/g′(t) as the instantaneous period
ofh(t) at that time point t (provided g′(t) is sufficiently small for
all t belonging to the observation time interval). This statement
follows from the observation that, for small u > 0,

h (g(t+ u)) = h (g(t) + g′(t)u+ o(u)),

which uses Taylor series expansion of g(·) around t. That is,

h (g (t+ 1/g′(t))) ≈ h (g(t) + 1) = h (g(t)) ;

see [35], [36].
Now, to make the model easily interpretable, it is helpful to

consider the phase function g in such a way that the time-varying
period 1/g′(t) is fairly simple. One possible choice of such a
phase function could be

g(t|α) = α−1
2 log

(
1 + α−1

1 α2t
)
, α1 > 0, α2 ∈ R,

for all t > −α1/α2 if α2 > 0 and t < −α1/α2 if α2 < 0 (the
conditions on the time domain are required to ensure that
the argument of the logarithm and g′(t|α) are positive). This
implies that 1/g′(t|α) = α1 + α2t. That is, the period of the
corresponding EPACS signal is α1 at time t = 0 and it changes
linearly with respect to time. Similarly, the choice

g(t|α) = α−1
1 t+ α2t

2, α1 > 0, α2 ∈ R,

for all t > −(2α1α2)
−1 ifα2 > 0 and t < −(2α1α2)

−1 ifα2 <
0, suggests a reciprocal linear period (with the initial period α1)
and can easily be extended to higher-order polynomials. Another
noteworthy choice of g is

g(t|α) = (α1α2)
−1 {1− exp(−α2t)} , α1 > 0, α2 ∈ R,

for all t ∈ R. In this case, the time-varying period, 1/g′(t|α) =
α1 exp(α2t), (with the initial period α1) has a simple exponen-
tial structure. Finally, we note that all these three models boil
down to a simple linear model, g(t|α) = t/α1 for all t ∈ R, as
α2 → 0.

In most realistic scenarios, when a signal is observed over a
time interval [0, n] at an approximately constant rate, only the
initial period (i.e., α1 for the models considered above) would
be considered fixed with respect to n; the other parameters (i.e.,
α2 for the models considered above) are generally assumed
decreasing to 0 with n. More specifically, α2 should decrease in
such a way thatn|α2| <∞. This ensures g(t|α) does not change
by an order of magnitude over the observation time interval;
see [6].

The choices for l can be similar to the above. But, to avoid
identifiability issues, as discussed in Remark 1, we impose
l(t) = 1 at time t = 0. Taking this into account, one possible
choice of the amplitude modulation could be a simple linear

model:

l(t|β) = 1 + βt, β ∈ R,

for all t > −1/β if β > 0 and t < −1/β if β < 0. The con-
straints here on the time domain are required to ensure l(t|β) >
0.

Another typical choice could be an exponential model:

l(t|β) = exp (β1t+ · · ·+ βqt
q), β1, . . . , βq ∈ R,

which takes, by construction, positive values throughout the real
line.

For the models of the amplitude modulation also, the parame-
ters should be considered in such a way that supn supj n

j |βj | <
∞; see [6].

B. Estimation

The parametric model assumptions of the amplitude and phase
functions boil down the estimation problem to estimating the
parametersα andβ and the functionsm0(t) andR0(s, t). While
we might use non-parametric methods, such as kernels, directly
to model these functions, to begin with we focus on estimating
the parametersα andβ using an iterative algorithm, as presented
below. This is because, once the parameters are estimated, we
can always obtain the time deformation of the underlying process
using Proposition 2 to make it cyclostationary and therefore
use the standard techniques to estimate the functions m0(t)
and R0(s, t). This observation also provides a basis for the
algorithm, which essentially finds an α and a β, which together
make the deformed process the “most” cyclostationary. Similar
methods of making the deformed process the most cyclostation-
ary were also adopted in [35], [36]. However, the algorithms
presented there consider only a single cycle frequency, where the
underlying cyclostationary or almost-cyclostationary signal ex-
hibits strong cyclostationarity. In contrast, the method proposed
here accounts for all the cycle frequencies of the underlying
cyclostationary signal. This can be seen as an advantage of our
algorithm while, at the same time, being aware of its drawback
of regarding the measurements of weak harmonics in spite of
being, generally, more noisy.

Consider a trajectory of an EPACS process {(t, xt), t ∈ D};
we write the trajectory in this way to emphasize that the data
point xt is observed at time point t. Here, D denotes a set of
discrete time points in R, not necessarily regularly spaced, at
which the data points are collected. The algorithm to estimate
α and β then goes as follows:

Step 1) Fix α = α0 and β = β0.
Step 2) Conduct a time deformation rt = g(t|α0) and con-

sider yt = xt/l(t|β0) of the signal {(t, xt), t ∈ D}
to obtain {(rt, yt), t ∈ D}. Let rmin = mint∈D rt and
rmax = maxt∈D rt.

Step 3) Smooth {(rt, yt), t ∈ D}, i.e., {(rt, yt), rt ∈
[rmin, rmax]}, using an interpolating cubic spline
and denote the produced curve by f(t).

Step 4) Divide the time frame [0, 
rmax�] into 
rmax� disjoint
intervals, each of length one unit, where 
rmax� de-
notes the greatest integer not greater than rmax.
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Step 5) In thekth interval of the time frame, predict the values
of f(t) at points {rt − 
rt�+ k − 1, t ∈ D} for k =
1, . . . , 
rmax�.

Step 6) Estimate m0(rt), for all t ∈ D, by
m̂

(0)
0 (rt|α0,β0) =

1

rmax�

∑
rmax�
k=1 f(rt − 
rt�+

k − 1).
Step 7) Calculate the residual sum of squares (RSS),

RSS =
∑

t∈D{xt − l(t|β0)m̂
(0)
0 (rt|α0,β0)}2.

Step 8) Change the values of α and β in Step 1 and redo
Steps 2–7 until the minimum RSS is found. Denote
the corresponding parameters that minimize the RSS
by α̂ and β̂.

We minimize the RSS in Step 8 using a differential evolution
algorithm, which can be found readily implemented in the
DEoptim package [37] in the statistical software R [38]. The
differential evolution algorithm requires an objective function
and the lower and upper bounds of the concerned parameter
space as inputs. In our case, the objective function is the RSS
as defined in Step 7 above. The lower and upper bounds of the
parameter space, from our experience, can be any feasible finite
vectors. For example, if we consider the amplitude and phase
functions,

l(t|β) = 1 + βt, β ∈ R,

and

g(t|α) = α−1
2 log

(
1 + α−1

1 α2t
)
, α1 > 0, α2 ∈ R,

respectively, then the DEoptim is capable of searching
the target vector (that minimizes the RSS) from a domain
[(−M, 0,−M)T, (M,M,M)T] of (β, α1, α2)

T, whereM could
be sufficiently large such as 103. However, as we also mentioned
in Subsection III-A, the parameters other than α1 could be
considered decreasing to 0 with the sample size n in most
realistic scenarios (i.e., of the form k/n, e.g., β = 1/n and
α2 = 20/n). We also remark that, in certain scenarios, the al-
gorithm may result in boundary values. This problem, however,
can easily be resolved by running the DEoptim algorithm a
few times (say, 10 times) and taking the best outcome (i.e., the
vector corresponding to the minimum RSS amongst those 10
replicates).

After the estimates of the parameters are found, we may trans-
form the trajectory to make it cyclostationary and use standard
techniques to estimate the mean and covariance functionsm0(t)
and R0(s, t), respectively. However, for the mean function
m0(t) we can consider the estimator corresponding to the final
parameters α̂ and β̂ obtained in Step 6. For the estimation of
R0(s, t), readers are referred to [39, p. 147] where the author
discusses a “direct” and an “indirect” method to estimate the
covariance function of any cyclostationary process; see also [9],
[40]–[42].

Because the estimates of the parametersα andβ are produced
through an iterative algorithm with many intermediate steps,
they are not explicit. Therefore, although the algorithm is easy
to implement, a rigorous proof of theoretical properties, such as
consistency, is difficult. Nevertheless, using a simulation study
as presented in Section IV, we show that the estimators of the

parameters are indeed consistent; that is, as the sample size
increases, the estimates tend to the true values of the parameters.

On a lighter note, if one estimates the mean function m0(t)
using a kernel method for given α and β and then minimizes
the mean integrated squared error to obtain the parameters, the
consistency may be proved using a similar way to that given
in [6]. However, for simplicity, we consider the above algorithm,
which produces satisfactory numerical results; see Section IV.
Also, we remark that, in a closely related context of time-warped
cyclostationary or almost-cyclostationary processes, [35], [36],
[43] presented methods based on maximizing an appropriately
modified version of the cyclic correlogram to estimate the time-
warping function, which can be viewed as an analogous to our
phase function, g(t); see also [44].

C. Hypotheses Tests

To present our approach, we consider a trajectory of an EPACS
process {(t, xt), t ∈ D}with amplitude and phase functions, for
ease of understanding and brevity,

l(t|β) = 1 + βt, β ∈ R,

and

g(t|α) = α−1
2 log

(
1 + α−1

1 α2t
)
, α1 > 0, α2 ∈ R,

respectively. However, the discussion, as in the sequel, can be
modified accordingly for other choices of l(t|β) and g(t|α).
We recall, from Subsection III-A, that the above choice of phase
function results in a linear (time-varying) period,

1/g′(t|α) = α1 + α2t.

Given the above choices of amplitude and phase functions,
hypotheses that might be of interest are to test for

1) constant amplitude (i.e., H0 : β = 0),
2) constant period (i.e., H0 : α2 = 0), and
3) cyclostationarity (i.e., H0 : β = 0 and α2 = 0).
We recall from the previous subsection that an EPACS process

for given α and β can be deformed to a cyclostationary process.
Following the same idea, to test a hypothesis (say, H0), we de-
form the underlying process underH0 and check if the resulting
signal is cyclostationary. A similar idea was implemented in [33]
to test for the self-similarity index H of a self-similar process
where the authors exploited the link between self-similar and
stationary processes given by Lamperti [45] and transformed
the signal under H0 to test for stationarity.

To circumvent any possible doubt, we remark that the defor-
mation of an EPACS process with incorrect choices of parame-
ters must not lead to a cyclostationary process (this can be clearly
seen from the construction), unlike the scenario in [33] for testing
the self-similarity index. Regarding the test for cyclostationarity,
one may choose amongst the many available test procedures; see,
for example, [46]–[50]. Here, we use a slightly modified version
of [49], where the authors evaluated the diagonal exceedance
percentages of the sample squared coherences from a nominal
threshold; we recall that the sample squared coherence of a signal
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{zt, t = 1, . . . , N} is defined as [47]

|C(u, v,M)|2 =

∣∣∣∣
M−1∑
m=0

dN (ωu+m)dN (ωv+m)

∣∣∣∣
2

M−1∑
m=0

|dN (ωu+m)|2
M−1∑
m=0

|dN (ωv+m)|2
,

where dN (ωk) =
1√
N

∑N
t=1 zt exp(−iωkt) is the discrete

Fourier transform of {zt, t = 1, . . . , N}, M is the smoothing
parameter, and ωk = 2πk/N for k = 0, . . . , N − 1.

To explain the algorithm, we test for a constant amplitude.
Therefore, our hypothesis of interest can be formulated as

H0 : β = 0 vs. H1 : β = 0

and tested using the following steps:
Step 1) Obtain the estimates of β, α1, and α2 using the

method described in the previous subsection. De-
note the corresponding estimates by β̂, α̂1, and α̂2,
respectively.

Step 2) Deform the signal using the estimates to have {(rt =
g(t|α̂1, α̂2), yt = xt/l(t, β̂)), t ∈ D} and, underH0,
{(rt = g(t|α̂1, α̂2), yt,H0

= xt/l(t, 0)), t ∈ D}.
Step 3) Smooth both the signals and interpolate at equidistant

time points over the interval [0, rmax] each at ε unit
distances (the distance between points should be cho-
sen in a way to ensure that we have enough points for
further proceedings). Therefore, the lengths of these
two deformed and regularly spaced signals become
l = 
rmax/ε�+ 1.

Step 4) Compute the sample squared coherence,
|C(u, v,M)|2, for allh = |u− v| ∈ {1, . . . , 
l/2� −
1}, and calculate the ratio of the number
of sample squared coherences that exceed a
pre-defined threshold along each diagonal line
h ≥ 1 to the number of points to be evaluated
on that diagonal line [49] for both the deformed
signals, {(rt, yt), t ∈ D} and {(rt, yt,H0

), t ∈ D}.
Denote the corresponding diagonal exceedance
ratios by {ph, h = 1, . . . , 
l/2� − 1} and
{qh, h = 1, . . . , 
l/2� − 1}, respectively.

Step 5) Reject the null hypothesis if the Euclidean dis-
tance (hereafter denoted by D(·, ·)) between the two
vectors of ratios p = (p1, . . . , p
l/2�−1)

T and q =
(q1, . . . , q
l/2�−1)

T is greater than a pre-specified
positive scalar. That is, if

D2(p, q) = ‖p− q‖2 > δ.

A choice of δ will later be illustrated in Section IV.
We remark that Step 1 of this algorithm depends on the

effectiveness of the previous algorithm presented in Subsection
III-B. In Section IV, nevertheless, we establish the efficacy of
that algorithm numerically.

IV. SYNTHETIC EXAMPLE

To illustrate the theories developed in Section III, we present
a detailed synthetic example as follows.

A. General Settings

The unit-periodic function m0 was chosen to be sinusoidal,
that is, m0(t) = sin(2πt) for t ∈ R. To understand the effect of
the underlying correlation structure on the inference procedure,
three different models for R0 were considered, namely,

1) R0(s, t) = exp{−|s− t|},
2) R0(s, t) = (1 + |s− t|) exp{−|s− t|}, and
3) R0(s, t) = min{s, t},

for (s, t) ∈ [0, 1]2, and extended to the two-dimensional (real)
space by periodicity. In other words, we considered the above
correlation structures with their arguments ‘s’ and ‘t’ replaced
by ‘s modulo 1’ and ‘t modulo 1,’ respectively. We remark that
the first two models of R0 are stationary autocovariance func-
tions, which can be found in many different contexts [51], while
the third model can be viewed as the autocovariance function
of the Wiener process within the time interval [0, 1]. For the
amplitude and phase functions, we chose

l(t|β) = 1 + βt, β ∈ R,

and

g(t|α) = α−1
2 log

(
1 + α−1

1 α2t
)
, α1 > 0, α2 ∈ R,

respectively. We took n regularly spaced time points over
the interval [0, n] with n = 100, 400, 700, and 1000, and the
corresponding signals were generated from a Gaussian distri-
bution, Nn(m,R), where m = (m(1), . . . ,m(n))T and R =
(R(s, t))ns,t=1. Finally, the parameters of interest were chosen
to be

β = n−1, α1 = 20, and α2 = 20n−1.

B. Relative Biases and Mean Squared Errors of the Estimators

The relative biases and mean squared errors (MSEs), which
were calculated over 200 simulations, of the parameters are
presented in Table I; the relative bias and MSE of an estimator
θ̂ of some representative parameter θ are calculated as

bias(θ̂) =

1
200

200∑
j=1

θ̂j − θ

θ
and MSE(θ̂) =

1
200

200∑
j=1

(
θ̂j − θ

)2

θ2
,

respectively, where θ̂j is the estimate of θ in the jth simulation
for j = 1, . . . , 200.

To study the numerical properties, we used the statistical
softwareR [38]. The smoothing of the deformed signal (see Step
3 of the algorithms in Subsection III-B and III-C) was carried
out using the splinefun function from the stats package
with method fmm [52], as this method interpolates at unknown
intermediate time points significantly well. To minimize the
RSS, we used the differential evolution algorithm DEoptim
from the DEoptim package [37].

We take away from this numerical study, as depicted in
Table I, that the algorithm works quite effectively to estimate the
parameters and improves itself as n increases. In other words,
the proposed estimator has the much-anticipated quality of being
both unbiased and consistent.
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TABLE I
RELATIVE BIASES AND MSES OF THE ESTIMATORS OF THE PARAMETERS USING THE ALGORITHM PROVIDED IN SUBSECTION III-B

C. Transforming the Signal to Cyclostationary

Now that the parameters were estimated, one might want to
deform a synthetic signal into a cyclostationary signal to conduct
further analysis. We checked that a deformed EPACS signal
was indeed cyclostationary using one representative synthetic
signal {(t, xt), t ∈ D} of size n = 400 and with covariance
function R0(s, t) = exp{−|s− t|}; here, D represents the set
of regularly spaced time points over the interval [0, n] of size
n. The estimates of the parameters, β = 1/400 = 0.0025, α1 =
20, and α2 = 20/400 = 0.05, were obtained to be

β̂ = 0.00 244, α̂1 = 19.99, and α̂2 = 0.05,

respectively. Therefore, the signal was deformed to have {(rt =
g(t|α̂1, α̂2), yt = xt/l(t|β̂)), t ∈ D}. The top panel of Fig. 1
displays the synthetic signal and the bottom panel plots the
resulting cyclostationary signal after deformation. From the plot,
it is clear – at least visually – that the amplitude and the period
of the deformed signal became constant, unlike the initially
simulated signal.

To detect the length of the period, we then plotted the peri-
odogram (see Figure 2) of the deformed signal interpolated at
regularly spaced time points. We interpolated at every ε = 0.05
unit distant time points using an interpolating cubic spline over
the interval [0, rmax] to have {zt, t = 1, . . . , N} with rmax =
13.86 andN = 278. The periodogram plot displays a significant
peak at frequency ≈0.051, implying the period to be 19.

Finally, to show that the deformed signal, {zt, t = 1, . . . , N},
was indeed cyclostationary with period T = 19, we plotted the
sample squared coherence; see Figure 3. In a sample squared
coherence plot, lines parallel to the diagonal (each at h = N/T
unit distances) indicate that the signal is cyclostationary with
period T . Figure 3 displays light black lines parallel to the
main diagonal periodically at each 14th unit distance. Therefore,

Fig. 1. Plot of a representative synthetic signal {(t, xt), t ∈ D} (top) and the
corresponding deformed signal {(rt, yt), t ∈ D} (bottom).

we conclude that the deformed signal was cyclostationary with
period 278/14 ≈ 19.

D. Model Fitting

As the previous subsection concludes that the deformed signal
was cyclostationary, one might further fit an appropriate periodic
moving average autoregressive (PARMA) model (see [9]
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Fig. 2. Periodogram plot of the deformed (regularly spaced) series {zt, t =
1, . . . ,N}.

Fig. 3. Squared coherence plot of the deformed (regularly spaced) series
{zt, t = 1, . . . ,N}.

and [53]) to the signal. We will not go into much detail about
fitting the model, but for the sake of completeness, we fitted
a periodic autoregressive model of order two (PAR(2)) to the
demeaned signal, z̃t = zt −mz(t), with mz(t) =
1
L

∑L−1
j=0 zt+jT , t = 1, . . . , T , and L denoting the number

of cycles present in the signal:

z̃t = φ1(t)z̃t−1 + φ2(t)z̃t−2 + σ(t)ψt,

where φ1(t) = φ1(t+ T ), φ2(t) = φ2(t+ T ), and σ(t) =
σ(t+ T ) are the model parameters. Figure 4 plots the fitted
curve (in blue) superimposed on {z̃t, t = 1, . . . , N} (in red).
From Figure 4, we note that the PAR(2) model fits the signal
reasonably well, confirming the efficiency of our algorithm to
estimate the parameters and the validity of Proposition 2 to
transform an EPACS signal to cyclostationarity.

E. Hypothesis Test

To illustrate the procedure discussed in Subsection III-C,
we tested for constant amplitude given the choices of m0(t),
R0(s, t), l(t), and g(t), as in Subsection IV-A. To simulate, we
considered sample size n = 200 and the parameters α1 = 20,

Fig. 4. Plot of the fitted PAR(2) model (in blue) superimposed on the signal
{z̃t, t = 1, . . . ,N} (in red).

Fig. 5. Plot of the variable star R Hydrae during the period 1900–1950. The
x-axis plots the days, while the y-axis plots the magnitudes of the light emitted
from the star R Hydrae.

α2 = 20/n, and β = 0, n−1/100, n−1/10, n−1, 10n−1. The ex-
ceedance threshold δ was chosen such that

1


l/2�‖p− q‖2 =
1


l/2�

l/2�∑
h=1

(ph − qh)
2 > 10−8,

which implies δ = 10−8
l/2�. Finally, to calculate the sample
squared coherence, |C(p, q,M)|2, we considered the smoothing
window with M = 8. The percentages of rejecting the null
hypothesis of β = 0 against β = 0 and the corresponding 95%
binomial confidence intervals were calculated over 500 simu-
lations and are presented in Table II, which suggests that the
empirical level of the considered test can be made close to the
5% nominal level.

Noting that the synthetic results are in line with the proposed
theories, in the next section we fit an EPACS model to a physical
signal from astronomy.

V. ASTRONOMY SIGNAL EXAMPLE: R HYDRAE

A. Data Description

We considered the magnitudes of the light emitted from the
variable star R Hydrae during 1900–1950 with an irregular time
design consisting of 1086 time points. It is a long period variable
star, and its amplitude and period are evolving over time; see [5]
and [6]. Figure 5 plots the signal under consideration.
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TABLE II
REJECTION RATES (%) OF THE NULL HYPOTHESIS AND THE CORRESPONDING 95% BINOMIAL CONFIDENCE INTERVALS FOR THE PARAMETER

β = 0, n−1/100, n−1/10, n−1, 10n−1

Fig. 6. Periodogram plot of the deformed physical signal {zt, t = 1, . . . ,N}.

B. Estimation

To proceed with the analysis, we expressed the signal in the
form of a trajectory as {(t, xt), t ∈ D}, where D = {t1, . . . , tn}
denotes the set of time points at which the signal was observed
and n(= 1086) represents the sample size. Linear models were
assumed for both the amplitude and the (instantaneous) period
functions:

l(t|β) = 1 + βt and g(t|α) = α−1
2 log

(
1 + α−1

1 α2t
)
, α1 > 0.

Using the developed methodology in Subsection III-B, the es-
timates found were β̂ = −1.12× 10−6, α̂1 = 419.1, and α̂2 =
−1.42× 10−3.

C. Transforming the Signal to Cyclostationarity

Given the parameter estimates, we deformed the signal to
have {(rt = g(t|α̂1, α̂1), yt = xt/l(t|β̂)), t ∈ D} to make it cy-
clostationary. Because the data points of the deformed signal are
not regularly spaced, similar to Subsection IV-C, we interpolated
them at regularly spaced (distances of 0.05 units each) time
points to have {zt, t = 1, . . . , N} with N = 875.

Now, to find the period of the deformed signal, we plotted the
corresponding periodogram as in Figure 6. The plot displayed
a significantly high peak at frequency ≈0.052, suggesting a
dominating period of T ≈ 19. Finally, to confirm that the signal
is also cyclostationary, we considered the plot of coherent statis-
tic, |C(u− v, 0, N)|2 [47]; see Figure 7. We observed the most
prominent peak at h ≈ 54.6, which implied that the process was
indeed cyclostationary, with a period of approximately 19.

Fig. 7. Coherent statistic plot of the deformed physical signal {zt, t =
1, . . . ,N}.

Fig. 8. Plot of the fitted PAR(1) model (in blue) superimposed on the signal
{z̃t, t = 1, . . . ,N} (in red).

D. Model Fitting

Finally, to conclude, we fitted a PAR(1) model to the deformed
(regularly spaced) signal after removing its mean mz(t) =
1
L

∑L−1
j=0 zt+jT , t = 1, . . . , T , with L denoting the number of

cycles present in the signal. Figure 8 plots the signal {z̃t =
zt −mz(t), t = 1, . . . , N} (in red) along with the fitted curve
(in blue); the plot clearly suggests that the PAR(1) model fits the
signal {z̃t, t = 1, . . . , N} significantly well. This implies that,
to begin with, an EPACS process is “appropriate” to explain the
light emitted from the star R Hydrae.

VI. DISCUSSION

In this study, we extended the notion of cyclostationarity to
processes that have first- and second-order moments departed
from strict periodicities and constant amplitudes and called them
EPACS processes. Upon introducing the EPACS processes and
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discussing a few immediate properties, we provided necessary
inference methodologies followed by a synthetic and an astro-
nomical signal example, which exhibited satisfactory numerical
results.

We recall from the Introduction that the flexibility of the
EPACS processes allows us to model a much larger class of
stochastic processes. Therefore, we expect that the developed
methodologies must make a significant contribution in modeling
a much larger segment of real-life scenarios we encounter. In
addition, this article links the EPACS processes back to the
classical cyclostationary processes (see Proposition 2), making
the fitting of an EPACS process easy and dependent on the
existing methods for cyclostationary processes.

In this article, we focused mainly on building the foundation of
the EPACS processes and provided semi-parametric estimation
and testing procedures. However, other methods to directly
estimate the functions m0 and R0 could be explored as well,
such as kernels and wavelets. Although not studied here, the
frequency domain analysis of such processes, EPACS processes
with multiple periods, and a multivariate counterpart of the
EPACS processes as an extension of multivariate cyclostationary
processes can also be explored in the future.

APPENDIX A
PROOF OF PROPOSITION 1

We know that a necessary and sufficient condition for a
bivariate function h(s, t) : R2 → C to be a valid covariance
function of some random signal is that {h(s, t), s, t ∈ R} is
non-negative definite; that is, for every n, for any sequence of
real numbers {x1, . . . , xn}, and for any sequence of complex
constants {c1, . . . , cn},

n∑
j=1

n∑
k=1

cjckh(xj , xk) ≥ 0

holds. Now, because l(t) is strictly positive and g(t) is a strictly
increasing function such that g′(t) > 0 for all t ∈ R, we note
that
n∑

j=1

n∑
k=1

cjckR0(xj , xk)

=
n∑

j=1

n∑
k=1

cj
l (g−1(xj))

ck
l (g−1(xk))

R
(
g−1(xj), g

−1(xk)
) ≥ 0.

APPENDIX B
PROOFS OF THE PROPERTIES OF SECTION II-C

For the proofs below, we denote an EPACS process satisfy-
ing (1) by EPACSX -{l(t), g(t),m0(t), R0(s, t)}.

Property 2.3.1: We note that E(Xt) = l(t)mY (g(t)) and
cov(Xs, Xt) = l(s)l(t)RY (g(s), g(t)). Therefore, in this sce-
nario, {Xt, t ∈ R} is EPACSX -{l(t), g(t),mY (t), RY (s, t)}
with mY (t) = mY (t+ 1) and RY (s, t) = RY (s+ 1, t+ 1).�

Property 2.3.2: Consider two uncorrelated EPACS pro-
cesses EPACSX -{l(t), g(t),m01(t), R01(s, t)} and EPACSY -
{l(t), g(t),m02(t), R02(s, t)}.

This implies that the mean and covariance functions of {Zt =
Xt + Yt, t ∈ R} are

E(Zt) = l(t) (m01(g(t)) +m02(g(t)))

and

cov(Zs, Zt) = l(s)l(t) (R01(g(s), g(t)) +R02(g(s), g(t))) ,

respectively. That is, {Zt = Xt + Yt, t ∈ R} is EPACSZ-
{l(t), g(t),m01(t) +m02(t), R01(s, t) +R02(s, t)}. �

Property 2.3.3: Let {Xt, t ∈ R} be EPACSX -{l(t), g(t),
m0(t), R0(s, t)}. Then, the process {Yt = ftXt, t ∈ R} has
mean and covariance functions,

E(Yt) = e(t)hg(t)l(t)m0 (g(t))

and

cov(Ys, Yt) = e(s)e(t)hg(s)hg(t)l(s)l(t)R0(g(s), g(t)).

This makes {Yt, t ∈ R} an EPACSY -{e(t)l(t), g(t), htm0(t),
hshtR0(s, t)}. �

Property 2.3.4: We note that

E(Yt) =
N∑
j=1

e(t)hjg(t)l(t)m
j
0(g(t))

and

cov(Ys, Yt)=
N∑
j=1

N∑
k=1

e(s)hjg(s)e(t)h
k
g(t)l(s)l(t)R

jk
0 (g(s), g(t)).

This implies that {Yt, t ∈ R} is EPACSY -{e(t)l(t), g(t),∑N
j=1 h

j
tm

j
0(t),

∑N
j=1

∑N
k=1 h

j
sh

k
tR

jk
0 (s, t)}. �

Property 2.3.5: Let {Xt, t ∈ R} be EPACSX -{l(t), g(t),
m0(t), R0(s, t)}. Then, {Yt, t ∈ R} has mean and covariance
functions,

E(Yt) = a(t)l(f(t))m0(g(f(t)))

and

cov(Ys, Yt) = a(s)a(t)l(f(s))l(f(t))R0(g(f(s)), g(f(t))).

That is, {Yt, t ∈ R} is EPACSX -{a(t)(l(f(t)), g(f(t)),
m0(t), R0(s, t)}. The second part of the proposition is a trivial
consequence. �

APPENDIX C
PROOF OF PROPOSITION 3

LetXt = l(t)V g(t)Pg(t) hold for some unitary operatorV and
some unit-periodic signal{Pt, t ∈ R}. To show that{Xt, t ∈ R}
is EPACS, write Xt = l(t)Yg(t), where Yt = V tPt. By writing
it this way, we note that {Yt, t ∈ R} is cyclostationary (see the
‘only if’ part of Proposition 7.2 of [9]) and, therefore, {Xt, t ∈
R} is EPACS by construction.

Now, let {Xt, t ∈ R} be EPACS. Then, using Proposition 2,
the time-deformed process {Yt : Yg(t) = Xt/l(t), t ∈ R} is cy-
clostationary with period one. That is, we have Xt = l(t)Yg(t)
with {Yt = 1

l{g−1(t)}Xg−1(t), t ∈ R} cyclostationary. Therefore,
there exists a unitary operator V and a unit-periodic signal Pt
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such that, for every t, Yt = V tPt holds (see the ‘if’ part of
Proposition 7.2 of [9]). Hence, the result follows.

APPENDIX D
PROOF OF PROPOSITION 4

We assume that the mean and covariance functions of the
signal {Zt} are such that E(Zj

t ) = μj and cov(Zj
s , Z

k
t ) =

Γjk(s− t), respectively. Now, if (3) holds, then

m(t) = l(t)
∞∑

j=−∞
μj exp (i2πjg(t))

and

R(s, t)

= l(s)l(t)

∞∑
j,k=−∞

Γjk(g(s)− g(t)) exp (i2π (jg(s) + kg(t))) .

Therefore, clearly, {Xt, t ∈ R} is EPACS with

m0(t) =

∞∑
j=−∞

μj exp(i2πjt)

and

R0(s, t) =
∞∑

j,k=−∞
Γjk(s− t) exp (i2π(js+ kt)) .

On the other hand, if {Xt, t ∈ R} is EPACS following (1),
we express it as (2) and use Fourier representation of Pt =∑∞

j=−∞ P̃j exp(i2πjt) to get (3), where Zj
t = V tP̃j . As also

mentioned in [9], Zj
t are orbits of different starting vectors P̃j

under the same unitary operator V , and thus they are jointly
stationary.

Finally, we remark that the result of Proposition 4 can also be
derived from the harmonic series representation, which is valid
for cyclostationary processes, given in [54].
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