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a b s t r a c t

Due to the well-known computational showstopper of the ex-
act Maximum Likelihood Estimation (MLE) for large geospatial
observations, a variety of approximation methods have been
proposed in the literature, which usually require tuning cer-
tain inputs. For example, the recently developed Tile Low-Rank
approximation (TLR) method involves many tuning parameters,
including numerical accuracy. To properly choose the tuning
parameters, it is crucial to adopt a meaningful criterion for the
assessment of the prediction efficiency with different inputs.
Unfortunately, the most commonly-used Mean Square Predic-
tion Error (MSPE) criterion cannot directly assess the loss of
efficiency when the spatial covariance model is approximated.
Though the Kullback–Leibler Divergence criterion can provide
the information loss of the approximated model, it cannot give
more detailed information that one may be interested in, e.g.,
the accuracy of the computed MSE. In this paper, we present
three other criteria, the Mean Loss of Efficiency (MLOE), Mean
Misspecification of the Mean Square Error (MMOM), and Root
mean square MOM (RMOM), and show numerically that, in
comparison with the common MSPE criterion and the Kullback–
Leibler Divergence criterion, our criteria are more informative,
and thus more adequate to assess the loss of the prediction
efficiency by using the approximated or misspecified covariance
models. Hence, our suggested criteria are more useful for the
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determination of tuning parameters for sophisticated approxi-
mation methods of spatial model fitting. To illustrate this, we
investigate the trade-off between the execution time, estimation
accuracy, and prediction efficiency for the TLR method with
extensive simulation studies and suggest proper settings of the
TLR tuning parameters. We then apply the TLR method to a large
spatial dataset of soil moisture in the area of the Mississippi
River basin, and compare the TLR with the Gaussian predictive
process and the composite likelihood method, showing that
our suggested criteria can successfully be used to choose the
tuning parameters that can keep the estimation or the prediction
accuracy in applications.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Geostatistical applications include modeling the spatial distribution of a set of observations
e.g., temperature, humidity, soil moisture, wind speed) taken at n locations regularly or irregularly
paced over a given geographical area. In geostatistics, the spatial datasets are often considered as a
ealization of a Gaussian process, defined by a mean function and a spatial covariance model. More
pecifically, we suppose that the data are observed from a stationary, isotropic Gaussian random
ield {Z(s) : s ∈ D ⊂ Rd

}, with mean zero and covariance function C(h; θ) := Covθ{Z(s1), Z(s2)} for
ny s1, s2 ∈ D and ∥s1 − s2∥ = h, where θ is the unknown parameter vector. In recent years,
he Matérn family has been a popular choice for the covariance function, since it represents a
eneral form of many possible covariance models in the literature, due to its flexibility. The Matérn
ovariance function is defined as

C(h; θ) =
σ 2

Γ (ν)2ν−1

(
h
α

)ν

Kν

(
h
α

)
, (1)

where θ = (σ 2, α, ν)⊤, σ 2 > 0, α > 0, and ν > 0 are the variance, range parameter, and smoothness
parameter, respectively, and Kν is the modified Bessel function of the second kind of order ν.

The Maximum Likelihood Estimation (MLE) method has been widely used for estimating the
parameter vector θ of the spatial model. Denoting the spatial dataset by Z = {Z(s1), . . . , Z(sn)}⊤,
here s1, . . . , sn are the observation locations, the MLE of the unknown parameter θ can then be

obtained by maximizing the following log-likelihood function:

l(θ) = −
n
2
log(2π ) −

1
2
log det{Σ(θ)} −

1
2
Z⊤Σ(θ)−1Z, (2)

here Σ(θ) is the covariance matrix, with entries [Σ(θ)]i,j = C(∥si − sj∥; θ) for i, j = 1, . . . , n.
inding the exact MLE requires O(n3) computations and O(n2) memory, since evaluating the log-
ikelihood function involves the inverse and the determinant of the covariance matrix. Thus, the
xact MLE is not feasible for large spatial datasets in applications, e.g. meteorological data, where
is often of an order of 105 or 106.
To overcome this computational problem, finding approximation methods to compute the MLE

as drawn considerable attention. The approximation can be applied to the spatial model, log-
ikelihood function, and covariance matrix. First, the spatial model can be approximated by a
ow-rank model, which is easier to compute. For instance, Cressie and Johannesson (2006, 2008)
roposed the fixed rank kriging (FRK) method, which approximates the spatial dependence model
y a linear combination of proper basis functions. Banerjee et al. (2008) introduced the Gaussian
redictive process (GPP), where the spatial model is approximated by the kriging prediction
sing the observations on some pre-determined knots plus a nugget effect. Finley et al. (2009)
odified this method by introducing the fine-scale process and fixed the problem that the marginal
2
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variance is underestimated. Second, for the approximation of log-likelihood function, Vecchia
(1988) and Curriero and Lele (1999) introduced the composite likelihood approach by ignoring the
correlation of the observations at distant locations in the function. Stein et al. (2004) showed that
this approximation could also be adapted to the restricted likelihood.

Third, the covariance matrix can be approximated by a sparse matrix. In the covariance ta-
ering method (Furrer et al., 2006; Kaufman et al., 2008; Du et al., 2009), the covariance matrix
s multiplied element-wise by a sparse covariance matrix, so the dependency between distant
ocations is neglected. Stein (2014) showed that one could approximate the covariance matrix
y dividing the covariance matrix by several tiles and replacing the off-diagonal tiles by zero
atrices. This approximation can provide a more accurate prediction compared with the low-

ank model-based method. Naturally, one can introduce a more delicate sparse structure for the
ovariance matrix approximation. The H-matrix (Hackbusch, 1999) defines a hierarchical block
tructure for the matrix, which allows a coarse approximation for the block distant from the
iagonal and a delicate approximation for the block near the diagonal. There are different kinds of
-matrix approximation, such as the HODLR (Aminfar et al., 2016), HSS (Ghysels et al., 2016) , H2-
atrices (Borm and Christophersen, 2016; Sushnikova and Oseledets, 2016), and BLR/TLR (Pichon
t al., 2017; Akbudak et al., 2017; Abdulah et al., 2018). The recently proposed Tile Low-Rank
TLR) approximation method (Akbudak et al., 2017; Abdulah et al., 2018) divides the covariance
atrix into several tiles and performs low-rank approximations on the off-diagonal tiles. Abdulah
t al. (2018) showed that it could improve the computation of the likelihood function on parallel
rchitectures such as shared-memory, GPUs, and distributed-memory systems. Abdulah et al. (2019)
lso considered using different precisions for the diagonal and off-diagonal tiles in the Cholesky
ecomposition of covariance matrices, which can also improve the computational performance. One
an also approximate the inverse of the covariance matrix, or the precision matrix, instead (Lindgren
t al., 2011; Nychka et al., 2015). Sun and Stein (2016) introduced a sparse inverse Cholesky
ecomposition in the score equation and obtained the score equation approximation method.
esides the categories stated above, the MLE can also be approximated by algorithmic approaches,
uch as the metakriging (Minsker et al., 2014), the gapfill method (Gerber et al., 2018), and the
ocal approximate Gaussian process (Gramacy and Apley, 2015). For a detailed review of the MLE
pproximation approaches in the literature, refer to Sun et al. (2012) and Heaton et al. (2019).
All the above approximation methods require certain types of tuning, to some extent. We can

all them ‘tuning parameters’ to distinguish them from model parameters that need to be estimated
rom the data. For instance, for the covariance tapering method (Kaufman et al., 2008), the taper
ange is a tuning parameter. The composite likelihood method (Vecchia, 1988) approximates the
onditional density p(si|s1, . . . , si−1) conditioning on a subset of s1, . . . , si−1, such as m nearest
neighbors of si, for which m is a tuning parameter. In the Gaussian predictive process model (Baner-
jee et al., 2008), the predetermined knots are tuning parameters. The TLR approximation (Abdulah
et al., 2018) involves many tuning parameters, such as the matrix tile size, TLR maximum rank,
TLR numerical accuracy, and optimization tolerance, which are introduced in Section 2. The tuning
parameters should balance the computational burden and the estimation or prediction accuracy,
so it is crucial to understand the impact of the tuning parameters on the statistical properties
of the approximation methods. Finding a suggestion for these parameters serves as a motivation
of our research, i.e., we would like to tune the TLR method input parameters, which can cut the
computational time without losing too much estimation or prediction performance. The estimation
performance is often evaluated via summary statistics and the plot of the estimations, such as the
estimation variance (Kaufman et al., 2008) or the boxplots (Abdulah et al., 2018), but the prediction
performance is not so straightforward to assess.

In the literature, the prediction performance is often evaluated by cross-validation. This method
randomly leaves out p locations s1, . . . , sp from observation locations, and predicts the Z(s1), . . . ,
(sp) using the rest of the data at all other locations. Denote these predictions by Ẑ(s1), . . . , Ẑ(sp).
he prediction performance is assessed by the deviation between the true and the predicted values,
uch as the Mean Square Prediction/Kriging Error (MSPE) (Abdulah et al., 2018)

MSPE =
1
p

p∑
{Ẑ(si) − Z(si)}2, (3)
i=1

3
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or the Mean Square Relative Prediction Error (Yan and Genton, 2018)

MSRPE =
1
p

p∑
i=1

{
Ẑ(si) − Z(si)

Z(si)

}2

.

his performance can also be assessed by the deviation between the true observations and the cor-
esponding predicted distributions, such as various kinds of proper scoring rules defined by Gneiting
nd Raftery (2007). For prediction intervals, the performance can be assessed by the empirical
overage of 95% prediction intervals on the left-out locations (Banerjee et al., 2008) or the in-
erval score (Gneiting and Raftery, 2007). For more cross-validation based criteria, see Dai et al.
2007), Hengl et al. (2004), and Heaton et al. (2019). These criteria provide a straightforward
easure of the performance of the prediction. However, they do not directly assess the loss of
tatistical efficiency when the approximated model is adopted instead of the true model, such as
he extra Mean Square Errors (MSEs) caused by using the approximated model and the accuracy of
stimated MSEs.
In the context of covariance model misspecification, Stein (1999) proposed the Loss of Efficiency

LOE) and the Misspecification of the MSE (MOM) criteria, based on the comparison of the MSEs
etween the true and the misspecified models. Using these criteria, Stein (1999) deduced that
he simple kriging prediction is asymptotically optimal when the misspecified covariance model is
quivalent to the true model. Stein (1999) also performed some simulations to assess the prediction
erformance of the kriging prediction under different settings of observation locations. However,
ll the results presented in Stein (1999) are for the case of a single prediction location.
In this article, we aim to give more appropriate criteria for the assessment of the loss of

rediction efficiency when the true covariance model is approximated. Our suggested criteria can
e used to assess the prediction efficiency of the approximation methods, e.g., the TLR method,
ith different tuning parameters, and help to choose the best value of these parameters. We
uggest using the Mean Loss of Efficiency (MLOE) and the Mean Misspecification of the Mean
quare Error (MMOM) criteria for multiple prediction locations as a generalization of the criteria
roposed by Stein (1999). Here the MLOE and MMOM are relative errors. MLOE is strictly positive,
hile MMOM can be positive or negative at different locations. To avoid the possible issue of
he cancellation of error over multiple locations in the MMOM criterion, we also introduce the
oot mean square MOM (RMOM) criterion to evaluate the deviance of MOM from zero. Since the
pproximated covariance model can be viewed as a type of model misspecification, to show the
LOE, MMOM, and RMOM criteria are appropriate to assess the loss of prediction efficiency, we
erform a similar simulation study from Stein (1999), where the exponential covariance model is
isspecified as a Whittle covariance model plus a nugget effect, implying that the approximated
ovariance is smoother than the truth. Numerical results show that our criteria are better in
ssessing the prediction efficiency than the commonly used MSPE criterion and the Kullback–Leibler
ivergence criterion, which can be deduced from the logarithm score in Gneiting and Raftery (2007).
s an application of our suggested criteria and a response to our research motivation, we use them
o give a practical suggestion for selecting the tuning parameters in the TLR method, for which we
nvestigate the performance of prediction and computation, using different tuning parameters from
xtensive simulation studies. For illustration of the validity of our suggested TLR tuning parameters,
e fit a Gaussian-process model with a Matérn covariance function to a large spatial dataset of soil
oisture in the area of the Mississippi basin; we then apply the TLR approximation method to
btain the MLEs and perform predictions with the suggested tuning parameters. Results show that
ur criteria are capable of selecting the tuning parameters of the TLR approximation since the TLR
orks well with our suggested parameters for the soil dataset. We also compare the TLR with the
omposite likelihood (Vecchia, 1988) and the Gaussian predictive process (Banerjee et al., 2008) for
eference, suggesting that our criteria are successfully applied to the TLR tuning parameter selection
n application. To the best of our knowledge, there is no previous work that considered choosing
uning parameters of an approximation method using a simulation-based criterion, rather than a
ata-based criterion such as the MSPE, for prediction performances.
The original LOE and MOM criteria proposed by Stein (1999) are for the assessment of model

isspecification. We obtain its mean version for the understanding of the tuning parameters in
4
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approximation methods for large spatial datasets, which can be used to help determine the tuning
parameters in different approximation methods for real applications. For instance, to determine
the tapering range in the covariance tapering method, one can first run a simulation for moderate
datasets, using our criteria to compare the prediction efficiency with different tapering ranges. The
best tapering range may be dependent on the range parameter α. Once the simulation results
re obtained, one can choose the tapering range in the approximation problem for different
eal datasets, based on the simulation and a rough estimate of α. However, more advanced and
ccurate methods often involve more tuning parameters that require intensive simulation studies
o understand the impact of each parameter and determine the tuning parameters that can provide
he best trade-off between statistical properties and computational cost. Therefore we use a more
elicate method (TLR) to show the effectiveness of our criteria.
The remainder of this article is organized as follows: Section 2 gives a brief background on the

LR approximation method and its tuning parameters. Section 3 introduces our suggested MLOE,
MOM, and RMOM criteria. In Section 4, we perform a simulation of the validity and sensitivity
f the suggested criteria. In Section 5, we explain the simulation design to assess the TLR method,
sing different tuning parameters settings for which, our suggested criteria are used to measure the
rediction accuracy and select the best specification of those tuning parameters. Section 6 shows
he effectiveness of our suggested tuning parameters for the TLR method, using the soil moisture
ataset. For this dataset, we also compare the estimation and prediction efficiency for the TLR
ethod with our suggested parameters, with the composite likelihood and the Gaussian predictive
rocess method in this section. Conclusions and discussions are provided in Section 7. More detailed
umerical results about the specification of tuning parameters for the TLR method can be found in
he Supplementary Material.

. Tile Low-Rank (TLR) approximation

In this section, we give a brief background on the TLR approximation method, together with the
uning parameters associated with it in parallel hardware environments.

Tile-based algorithms have been developed on parallel architectures to speedup matrix-linear
olver algorithms, for instance, PLASMA (Agullo et al., 2009) and Chameleon (cha, 2017) libraries.
he given matrix is split into a set of tiles to allow the use of parallel execution, to a maximum
egree, by weakening the synchronization points and bringing the parallelism in multithreaded
LAS (Blackford et al., 2002) to maximize the hardware utilization.
Since maximizing the log-likelihood in (2) and obtaining the MLE involves applying a set

f linear-solver operations to the geospatial covariance matrix Σ , Abdulah et al. (2018a) have
eveloped ExaGeoStat,1 a framework that uses tile-based linear algebra algorithms to parallelize
he MLE operations on leading-edge parallel hardware architecture. This framework has also been
xtended in Abdulah et al. (2018) to apply a TLR approximation to the covariance matrix. The
ew approximation technique aims at exploiting the data sparsity of the dense covariance matrix
y compressing the off-diagonal tiles up to a user-defined accuracy threshold. The TLR method
iffers from existing low-rank approximation techniques, e.g., Banerjee et al. (2008), as the low-rank
pproximation is applied separately on each tile, instead of the whole matrix.
Fig. 1 gives an illustrative example of the TLR approximation method to a 8 × 8 covariance

atrix, e.g., Σ(θ), where θ represents the parameter vector (i.e., variance, range, and smoothness
arameters in the Matérn covariance function). Assuming a square positive-definite covariance
atrix, the spatial covariance matrix with size n × n is divided into several tiles Di,j(θ), where the
ize of each tile is nb × nb. The Singular Value Decomposition (SVD) is used to approximate the
ff-diagonal tiles to a user-defined accuracy (i.e., tlr_acc , the tuning parameter argument used in
xaGeoStat as indicated in Table 1). In this case, the approximated tiles are the multiplication of
wo low-rank matrices, e.g., Di,j(θ) is approximated by D̃i,j(θ) = Ui,j(θ)Vi,j(θ), which can be deduced
rom the k most significant singular values and their associated left and right singular vectors.

1 https://github.com/ecrc/exageostat.
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Fig. 1. An illustrative example of a 8 × 8 covariance matrix TLR structure.

Table 1
Arguments for the tuning parameters of the TLR method in the
ExaGeoStat framework.
Name Symbol

Matrix tile size nb
TLR maximum rank tlr_max_rank
TLR numerical accuracy tlr_acc
Optimization tolerance opt_tol

This approximation gives a data compression format that requires less memory and offers a faster
omputational speed of the matrix algebra. In the ExaGeoStat software (Abdulah et al., 2018),
he TLR approximation is performed by the Hierarchical Computations on Manycore Architectures
HiCMA) numerical library (Abdulah et al., 2019a), which allows running the approximation on
parallel systems with the help of StarPU (Augonnet et al., 2011).

Applying the TLR approximation to the log-likelihood function requires tuning several inputs to
ontrol the performance and accuracy of the approximation, namely, nb, tlr_max_rank, tlr_acc , and
pt_tol as shown in Table 1; nb controls the size of each tile Di,j(θ), and tlr_max_rank determines
he maximum possible rank of the approximated tiles, which affects the memory allocation process
f the approximating low-rank matrices Ui,j(θ) and Vi,j(θ) in the HiCMA library. By adopting the sug-

gested criteria when assessing the prediction efficiency, we herein determine the best combination
of the four TLR inputs by tuning these inputs, and by evaluating the performance and the accuracy
of the approximated MLE compared with the exact MLE solution.

The effectiveness of the TLR approximation method can be improved by well tuning these four
inputs. For instance, the current implementation of TLR in HiCMA uses a fixed-rank method to
allocate and process all the given matrix tiles, although different approximated tiles have different
ranks. A value of tlr_max_rank that is too large causes unnecessary memory usage and more data
movements in the case of distributed memory architectures, whereas a too small value may cause a
failure in approximating the tile. Thus, the best value of tlr_max_rank should be the smallest possible
value that makes the approximation feasible for all the off-diagonal tiles. The accuracy threshold
tlr_acc is also important to control the approximation accuracy, such that the approximation D̃i,j(θ)
of each tile satisfies ∥D̃i,j(θ) − Di,j(θ)∥2 ≤ tlr_acc , where ∥ · ∥2 is the L2-norm of a matrix. A
lower accuracy (larger tlr_acc) brings the arithmetic intensity of the approximation close to the
memory-bound regime, whereas a higher accuracy makes the approximation run in the compute-
bound regime (Abdulah et al., 2018). Thus, the accuracy threshold is an application-specific value.
Furthermore, the optimization tolerance opt_tol is the minimum difference between two log-
likelihood values at different iterations to control the optimization convergence condition. More
specifically, the iteration process of computing the maximum point stops when |l(θopt) − l(θsub)| ≤

opt_tol, where l(θopt) is the largest value of the log-likelihood function over all iterations and l(θsub)

is the second largest one.

6
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We hope the tuning parameters in the TLR can save as much computational time as possible,
ithout losing too much in estimating the accuracy of the prediction. Abdulah et al. (2018)

nvestigated the impact of tlr_acc by showing the boxplots of the estimated parameters and the
MSPEs. Here, our work uses the more informative MLOE, MMOM, and RMOM criteria for assessing
the spatial prediction efficiency, which we describe in more detail in Section 3.

In this study, we use the ExaGeoStatR2 package to perform the experiments relating to the TLR
approximation. ExaGeoStatR (Abdulah et al., 2019b) is the R-wrapper interface of ExaGeoStat
developed to facilitate the exploitation of large-scale capabilities in the R environment. The package
provides parallel computation to evaluate the Gaussian maximum likelihood function using shared
memory, GPUs, and distributed systems, by mitigating its memory space and computing restrictions.
This package provides three ways of computing the MLE on a large scale: exact, Diagonal Super
Tile (DST) approximation (i.e., covariance tapering), and TLR approximation. We are targeting the R
functions related to the TLR approximation. The function tlr_mle() in the ExaGeoStatR package
allows the computation of the TLR approximation of the MLE for the Matérn covariance model. This
function computes the estimation by substituting the covariance matrix with its TLR approximation
in the exact MLE framework.

3. Efficiency criteria for approximated spatial predictions

In this section, we construct three criteria for assessing the spatial prediction accuracy when
the covariance matrix in the log-likelihood in (2) is approximated. Our first two criteria are of the
averaged form of the criteria called the Loss of Efficiency (LOE) and the Misspecification of the MSE
(MOM), proposed by Stein (1999), in the context of spatial prediction with a misspecified covariance
model. Our last criterion is the mean square form of the MOM to measure the MOM variability on
different prediction locations.

We consider a zero-mean Gaussian random field Z(s), where the observations are Z = {Z(s1), . . . ,
Z(sn)}⊤. When the covariance model is true, the kriging prediction of Z(s0) at a point s0 is Ẑt (s0) =

k⊤

t K
−1
t Z, with MSE given by MSE(s0) = Et{e2t (s0)} = k0t −k⊤

t K
−1
t kt , where et (s0) = Ẑt (s0)−Z(s0) is

the error of the kriging predictor, Kt = Covt{Z, Z⊤
}, kt = Covt{Z, Z(s0)}, k0t = Vart{Z(s0)}, Et , Vart ,

and Covt mean the expectation, variance, and covariance with respect to the true covariance model.
However, when the covariance is approximated, the kriging predictor is Ẑa(s0) = k⊤

a K
−1
a Z instead,

where Ka = Cova{Z, Z⊤
}, ka = Cova{Z, Z(s0)}, and Cova means the covariance is computed under

the approximated covariance model. Denoting the error of this predictor by ea(s0) = Ẑa(s0)− Z(s0),
then the MSE of this prediction is actually Et{e2a(s0)} = k0t − 2k⊤

t K
−1
a ka + k⊤

a K
−1
a KtK−1

a ka, and the
alculated result of MSE is Ea{e2a(s0)} = k0a −k⊤

a K
−1
a ka, where k0a = Vara{Z(s0)}, Ea and Vara mean

hat the expectation and variance are computed using the approximated covariance model. Thus,
ollowing Stein (1999), the Loss of Efficiency of the prediction is defined as

LOE(s0) = Et{e2a(s0)}/Et{e2t (s0)} − 1, (4)

nd the Misspecification of the MSE is defined as

MOM(s0) = Ea{e2a(s0)}/Et{e2a(s0)} − 1. (5)

Our first two criteria are defined as the mean value of the Loss of Efficiency (4) and Misspec-
fication of the MSE (5) over multiple prediction locations. More specifically, when the prediction
ocations are s01, . . . , s0m, the Mean Loss of Efficiency is defined as

MLOE =
1
m

m∑
i=1

LOE(s0i), (6)

nd the Mean Misspecification of the MSE is defined as

MMOM =
1
m

m∑
i=1

MOM(s0i). (7)

2 https://github.com/ecrc/exageostatR.
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For Gaussian random fields, the kriging predictor Ẑt (s0) is the best predictor in terms of
inimizing MSE (Stein, 1999), so Et{e2t (s0)} ≤ Et{e2a(s0)} and LOE(s0) ≥ 0 for any s0. However,
OM(s0i) may be positive or negative. If there are two MOM values which have opposite sign and

arge absolute values, they will eliminate each other in (7), causing an over optimistic MMOM result,
lthough we believe that two MOM values with opposite signs can be considered better than with
he same sign. To avoid this problem, which we call the canceling of error problem, we also define
he following Root mean square MOM (RMOM) criterion:

RMOM =

√ 1
m

m∑
i=1

{MOM(s0i)}2. (8)

We choose the prediction locations of a regular grid in the observation region, so the value
f MLOE, MMOM, and RMOM can describe the average prediction performance over the whole
bservation region. For instance, when the observation region is [0, 1]2, the prediction locations
an be (i/5, j/5) for i, j = 1, 2, 3, 4. The MLOE describes the average efficiency loss of the prediction
hen the approximated covariance model is used instead of the true one, whereas the MMOM
escribes the average misspecification between the computed and true MSEs. The RMOM describes
he degree of deviance of the misspecification between the computed and true MSEs from zero.

In the case where the approximated model is an estimated model, Stein (1999) proposed
lternative estimations for the MSE term Et{e2a(s0)} in (4) and (5). Let the random field Z(s) follow
parametric model, where the unknown parameter is θ. Denote the true value of this parameter
y θ0 and the estimated value by θ̂ = θ̂(Z). Here the approximated model is related to a random
ariable θ̂, so the Et{e2a(s0)} and Ea{e2a(s0)} terms in the LOE and MOM definitions are substituted
y their corresponding estimations, such as the plug-in estimation. Denote by Eθ , Varθ , and Covθ

he expectation, variance, and covariance computed using the parametric model with parameter
, respectively; Ẑθ(s0) the kriging predictor under the parameter θ; eθ(s0) = Ẑθ(s0) − Z(s0) the
rediction error; Kθ = Covθ{Z, Z⊤

}; kθ = Covθ{Z, Z(s0)}; k0,θ = Varθ{Z(s0)}. Thus, Et{e2t (s0)} =

θ0{e
2
θ0
(s0)} = k0,θ0 − k⊤

θ0
K−1

θ0
kθ0 . The Et{e2a(s0)} and Ea{e2a(s0)} terms can be estimated by the

ollowing plug-in estimation:

Et{e2a(s0)} = Eθ0{e
2
θ̂
(s0)} ≈ Eθ0{e

2
θ (s0)}|θ=θ̂

= k0,θ0 − 2k⊤

θ0
K−1

θ̂
k

θ̂
+ k⊤

θ̂
K−1

θ̂
Kθ0K

−1
θ̂

k
θ̂
, (9)

Ea{e2a(s0)} ≈ Eθ{e2θ (s0)}|θ=θ̂
= k0,θ̂ − k⊤

θ̂
K−1

θ̂
k

θ̂
. (10)

tein (1999) noted that, when {Z⊤, Z(s0)}⊤ is Gaussian, the conditional distribution of e
θ̂
(s0) given

= z is N(e
θ̂(z)(s0) − eθ0 (s0), Eθ0{e

2
θ0
(s0)}), so

Eθ0{e
2
θ̂(Z)

(s0)|Z = z} = Eθ0{e
2
θ0
(s0)} + {e

θ̂(z)(s0) − eθ0 (s0)}
2.

herefore, the Et{e2a(s0)} term can be estimated by

Et{e2a(s0)} ≈ Eθ0{e
2
θ0
(s0)} + {e

θ̂
(s0) − eθ0 (s0)}

2, (11)

nd Ea{e2a(s0)} is still estimated by (10). When our suggested criteria are computed using (9) and
10), we say that the criteria are computed using the plug-in method. When our criteria are
omputed using (10) and (11), we say that the criteria are computed using Stein’s method.
In the plug-in method, the computed Eθ0{e

2
θ (s0)}|θ=θ̂

may be very slightly smaller than
θ0{e

2
θ0
(s0)}, possibly due to round-off error. In the subsequent simulations of this article, the

mallest value of the computed Eθ0{e
2
θ (s0)}|θ=θ̂

−Eθ0{e
2
θ0
(s0)} is −6.3101 × 10−15. In this case, we

stimate the Et{e2a(s0)} term by Eθ0{e
2
θ0
(s0)} instead, to keep LOE (4) nonnegative on all prediction

ocations. In Stein’s method, the computed LOE is always nonnegative, which is better than the
lug-in method. However, Stein’s method did not consider the model misspecification case, so
e particularly recommend Stein’s method for the case when the parametric model is correctly
pecified, and recommend the plug-in method for more general cases, e.g., when the parametric
8
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model is misspecified. For simulations of this article, we will compute our suggested criteria using
both of the methods.

Stein (1999) also introduced a resampling method to better estimate Et{e2a(s0)}. This method first
enerates nr independent samples of Z and computes the estimate θ̂

(1)
, . . . , θ̂

(nr )
, then computes the

riging error terms e
θ̂
(s0) and eθ0 (s0) for each sample, which are denoted by e(j)

θ̂
(j) (s0) and e(j)θ0

(s0),
= 1, . . . , nr , respectively. Since Eθ0{e

2
θ0
(s0)} remains unchanged for resampling, we have the

ollowing estimation:

Et{e2a(s0)} ≈ Eθ0{e
2
θ0
(s0)} +

1
nr

nr∑
j=1

{e(j)
θ̂
(j) (s0) − e(j)θ0

(s0)}2.

In the simulation framework, such resampling method is equivalent to estimate Et{e2a(s0)} using
tein’s method (11) with nr replicates and report the mean value as the final result. When the
umber of replicates of the simulation is large enough, the increment of samples with a price of
ore computational burdens may not be necessary. Therefore, we will not perform this resampling

n our simulation.
The computation of MLOE, MMOM, and RMOM criteria involves the inversion of the covariance

atrix. In the simulation of Section 5, where the number of observations is n = 3, 600, the
omputational times for these criteria are acceptable. If the direct computation of these criteria
s not available due to the data size, one can adopt a matrix compression method, such as the
LR (Akbudak et al., 2017; Abdulah et al., 2018). This compression can provide an approximation
f the covariance matrix and save computational time.

. Simulation on the validity of the suggested criteria

We perform a numerical simulation to illustrate the validity and sensitivity of the suggested cri-
eria, compared with the popular Mean Square Prediction Error (MSPE) criterion and the Kullback–
eibler Divergence criterion, which can be deduced by the logarithmic score introduced by Gneiting
nd Raftery (2007). Similar to the settings in Stein (1999), we focus on the case where the covariance
odel is misspecified.
In this simulation, we consider a zero-mean stationary Gaussian random field {Z(s), s ∈ [0, 1]2}

ith Matérn covariance function (1). We set the true covariance model as the exponential model,
ith covariance function C(h; θ = (σ 2, α, 0.5)⊤), and consider two cases of model misspecification.

In the first case, the covariance model is correctly specified, but the parameters σ 2 and α are
isspecified as their maximum likelihood estimate. Under this kind of misspecification, the corre-
ponding kriging prediction is called ‘empirical best linear unbiased prediction’ (EBLUP); the EBLUP
oes not significantly affect the prediction efficiency, according to the intuition and simulation
esults in the literature (Stein, 1999). In the second case, the covariance model is misspecified as
smoother (Whittle) covariance model plus a nugget effect term. In this case, the misspecified
ovariance function is C(h; θ = (σ 2, α, 1.0)⊤) + τ 2Ih=0(h), where τ 2 is the nugget variance and
h=0 is the indicator function. In the R package fields, the function for fitting a covariance model
LESpatialProcess() chooses the smoothness parameter ν = 1 as the default value, which is
moother than the common setting ν = 0.5. This motivates us to investigate the loss of prediction
fficiency for this case.
The observation locations are set to be sr,l = n−1/2(r − 0.5 + Ũr,l, l − 0.5 + Ṽr,l), where

n is the number of observations, Ũr,l and Ṽr,l are i.i.d. samples from the uniform distribution
U[−0.4, 0.4]. By ordering r, l lexicographically, these locations are also denoted by s1, . . . , sn. We
take n = 122, 242, or 482. The true covariance function is set as C(h; θ = (σ 2, α, 0.5)⊤), where
σ 2

= 1, α = 0.2/(− log(0.05)), such that the true effective range of the model is 0.2. For each
parameter setting, we generate 100 independent replications from the random field with the true
covariance model at the same observation locations. First, we compute the MLE for the correctly
specified and misspecified covariance models, then, we compute the plug-in kriging predictions
for both covariance functions at the point (i/5, j/5), for i, j = 1, 2, 3, 4, denoted by s , . . . , s for
01 0p

9
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p = 16, and compare the results with the kriging results from the exact covariance functions. Lastly,
the performance of the prediction is comparatively assessed, using our suggested MLOE (6), MMOM
(7), and RMOM (8) computed by the plug-in method and Stein’s method, as well as MSPE in (3) and
the Kullback–Leibler Divergence (K–L Divergence) criterion. As we have discussed in Section 3, the
plug-in method is more suitable for computing our suggested criteria in this simulation of model
misspecification.

The K–L divergence has been used to assess the estimation performance by comparing the
approximated likelihood to the exact one (Huang and Sun, 2018). For predictions, we need to
compare two predictive distributions. Let Qt be the distribution of Zp := {Z(s01), . . . , Z(s0m)}⊤,
onditional to the observations Z = {Z(s1), . . . , Z(sn)}⊤, computed using the true model, and Qa be
he computed distribution of Zp conditional to Z using the approximated model. Denoting these two
conditional distributions by {Zp|Z}t and {Zp|Z}a, respectively, then the Kullback–Leibler Divergence
is denoted by

DKL(Qt ∥ Qa) = DKL
(
{Zp|Z}t ∥ {Zp|Z}a

)
=

∫
log

{
qt (Zp|Z)
qa(Zp|Z)

}
qt (Zp|Z)dZp,

here qt and qa are the conditional distributions corresponding to the true and the approximated
odel, respectively. When Qt ∼ N(µQt ,ΣQt ) and Qa ∼ N(µQa ,ΣQa ), the K–L divergence between

hese two multivariate Gaussian distribution satisfies

DKL(Qt ∥ Qa) =
1
2

{
trace(Σ−1

Qa
ΣQt ) − log det(Σ−1

Qa
ΣQt ) + (µQa − µQt )

⊤Σ−1
Qa

(µQa − µQt ) − m
}
, (12)

where m is the dimension of Qt or Qa.
The K–L Divergence criterion comes from the logarithmic score criterion introduced by Gneiting

and Raftery (2007). Let x ∈ Rm be the m-dimensional observed value and P̃ be the predicted
distribution for this value, where P̃ is assumed to be only related to its mean µP̃ and covariance
matrix Σ P̃ . Then the scoring rule

S(P̃, x) = − log detΣ P̃ − (x − µP̃ )
⊤Σ−1

P̃
(x − µP̃ )

is strictly proper relative to the class of Gaussian measures and is equivalent to the logarithmic
score (Gneiting and Raftery, 2007). Therefore we call this scoring rule the logarithmic score.
By Gneiting and Raftery (2007), the divergence function for this rule is

d(P̃, Q̃ ) = trace(Σ−1
P̃
Σ Q̃ ) − log det(Σ−1

P̃
Σ Q̃ ) + (µP̃ − µQ̃ )

⊤Σ−1
P̃

(µP̃ − µQ̃ ) − m,

where P̃ , Q̃ are m-dimensional distributions with mean µP̃ , µQ̃ and covariance matrix Σ P̃ , Σ Q̃ ,
respectively. Here the divergence function of a scoring rule is defined by d(P̃, Q̃ ) := S(Q̃ , Q̃ ) −

S(P̃, Q̃ ), where S(P̃, Q̃ ) =
∫
S(P̃, x)dQ̃ (x). The d(P̃, Q̃ ) can be considered as a logarithm score

divergence criterion, which equals two times of the K–L Divergence DKL(Q̃ ∥ P̃).
The simulation results are shown in Figs. 2–5. These figures show that, when the covariance

model is correctly specified, the MLOE is very small in comparison with the exact model and
has a decreasing trend when the number of observations n increases. The MMOM is larger, but
concentrates near zero and shrinks when n increases. The RMOM also shrinks to zero when n
increases. This shows that the plug-in kriging prediction does not lead to a significant loss of
prediction efficiency, which is in agreement with the intuition and the simulation results introduced
in Stein (1999). When the model is misspecified, the MLOE is clearly larger than that of the case
where the model is correctly specified. The MMOM may likely have a mean value larger than zero,
and the RMOM is larger than the correctly specified case. Thus, when a rougher covariance model
is misspecified as a smoother model with a nugget effect, the plug-in prediction is suboptimal,
and the MSE can be overestimated. In Fig. 4, the difference of boxplots between the case where
the model is correctly specified or misspecified is not apparent, showing that our suggested MLOE,
MMOM, and RMOM are more sensitive criteria for prediction accuracy. According to Fig. 5, the K–L
Divergence is also a sensitive criterion for prediction accuracy, measuring the information loss when

the predicted distribution is approximated. However, it cannot provide more detailed information

10
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Fig. 2. Boxplots of the MLOE, MMOM, and RMOM computed by the plug-in method, with respect to the number of
observations n, when the covariance model is correctly specified as the exponential model (True) or misspecified as the
Whittle model (Presumed).

Fig. 3. Boxplots of the MLOE, MMOM, and RMOM computed by Stein’s method, with respect to the number of observations
n, when the covariance model is correctly specified as the exponential model (True) or misspecified as the Whittle model
(Presumed).

Fig. 4. Boxplots of the MSPE for the predictions with respect to the exact model (Exact), plug-in prediction with correct
covariance model (True), and the plug-in prediction with misspecified covariance model (Pres).

on the prediction for a spatial model that one may be interested in, such as the efficiency loss of
MSE when the model is approximated and the accuracy of the computed MSE. In conclusion, our
suggested criteria are valid, sensitive, and more informative tools to detect the loss of prediction
efficiency caused by spatial model approximations in simulation studies.

5. Simulation experiments on the tuning parameters

As an application of the suggested MLOE, MMOM, and RMOM criteria in Section 3, we aim at
assessing the performance of the TLR approximation method based on these criteria. We define
how to tune the TLR associated inputs based on the target data and the application requirements,
11
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Fig. 5. Boxplots of the K–L Divergence for the predictions with respect to the number of observations n, when the
ovariance model is correctly specified as the exponential model (True) or misspecified as the Whittle model (Presumed).

sing simulation experiments, which is the answer to the motivation of our study. All experiments
eing carried out in this section are conducted on a dual-socket 8-core Intel Sandy Bridge-based
eon E5-2670 CPU running at 2.60 GHz.

.1. Simulation settings

Here, we provide an outline of our simulation settings. Similar to the settings in Sun and
tein (2016), our simulation experiments are performed on a set of synthetic datasets gener-
ted using the built-in data generator tool in ExaGeoStatR at irregular locations in a 2D space

(i.e., simulate_data_exact() function). The generation process assumes a zero-mean stationary
Gaussian random field {Z(s), s ∈ [0, 1]2}. The observation locations s1, . . . , sn are generated by the
ame settings as those detailed in Section 4. Given the set of n locations, the covariance matrix Σ

s constructed using the Matérn covariance function.
The simulation is to illustrate the effectiveness of using the TLR approximation method for

he MLE estimation. The assessments include the total execution time, estimation accuracy, and
rediction accuracy. Instead of the MSPE criterion in Abdulah et al. (2018), here the prediction
ccuracy is investigated by MLOE, MMOM, and RMOM, using the plug-in method and Stein’s
ethod stated in Section 3, whose effectiveness and sensitivity have been shown in Section 4. The
ssessment includes the kriging performance obtained by using the estimated parameters to predict
nknown sets of values at various specific locations. Unless otherwise specified, our suggested
riteria are computed by the plug-in method. Results of Stein’s method are shown in Tables 13–
6 in Supplementary Material, indicating that all conclusions drawn from the plug-in method and
tein’s method are consistent. All the symbols in this section follow the abbreviations illustrated in
able 1.
In the simulation experiments conducted by Abdulah et al. (2018), both the estimation and the

rediction accuracy of the TLR method were shown by a set of boxplots representing the estimation
ccuracy of different model parameters and the MSPE, and compared with the exact method. The
imulation performed in Abdulah et al. (2018) also assessed the impact of using different TLR
ccuracy levels tlr_acc for both the accuracy and the execution time. Here, we use our suggested
riteria and not only consider tlr_acc , but also consider the impact of other tuning parameters,
.e., tile size, maximum rank, and optimization tolerance to the overall execution time, estimation
ccuracy, and prediction accuracy. Moreover, we consider two different smoothness levels of the
nderlying random field, i.e., ν = 0.5 and 1, whereas the simulations of Abdulah et al. (2018) only
onsidered ν = 0.5.
12
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All the experiments in this section use spatial data where the number of locations is n = 3600.
For the true values of the parameters in (1), we consider σ 2

= 1, ν = 0.5 or 1, and α is chosen
uch that the effective range of the model can be heff = 0.2, 0.4, 0.8, or 1.6. First, a set of the
following experiments aims at comparing the performance of the TLR approximation under different
tile size nb with suitable value of maximum rank tlr_max_rank, while the other tuning parameters
tlr_acc and opt_tol are fixed at a moderate value which does not affect the estimation accuracy of
the approximations. Second, we compare the performance under different accuracy levels tlr_acc
and optimization tolerance opt_tol, where the tile size nb and maximum rank tlr_max_rank are
fixed at the suggested value obtained in the previous step. The reason for adopting these two steps
is, according to Abdulah et al. (2018), that nb and tlr_max_rank mainly affect the computational
time, whereas tlr_acc and opt_tol mainly affect the prediction efficiency. Recall that a larger tlr_acc
corresponds to a coarser tile approximation, so the maximum rank necessary for the approximation
is smaller. Thus the value of tlr_max_rank does not directly affect the prediction efficiency; it could
affect the efficiency via different tlr_acc.

5.2. Performance using different tile sizes

The parallel TLR approximation computation depends on dividing the matrix into a set of tiles
where the tile size is nb × nb. Here, nb should be tuned in different hardware platforms to obtain
the best performance that corresponds to the trade-off between the arithmetic intensity and the
degree of parallelism. We illustrate the performance and accuracy using different values of nb,
i.e., nb = 400, 450, 600, and 900. We fix tlr_acc = 10−9 and opt_tol = 10−6 since these values
have little impact on the estimation performance. The tlr_max_rank is fixed to the smallest feasible
value for TLR computation obtained before the simulation. The tlr_max_rank actually affects the
emory allocation process and communication cost in case of distributed memory systems. A value
f tlr_max_rank that is too large can slow down the computation due to the unnecessary allocations,
hereas a too small value may cause the failure of the SVD approximation of each off-diagonal tile.
hus, for each value of nb, we try to compute TLR approximations for tlr_max_rank = 10, 20, . . .,
ntil the value of tlr_max_rank can make the approximation feasible for all replicates.
We generate 100 independent replications from the random field with the true covariance model

or each parameter setting. The synthetic datasets are generated using the simulate_data_exact()
function in the ExaGeoStatR package. The estimation performed uses both the exact and TLR
methods, by the exact_mle() and the tlr_mle() functions in the same package, respectively, and
stimates both the execution time and the estimation accuracy of each method, for different nb
alues. The last step is to compute the MLOE, MMOM, and RMOM on prediction locations (i/5, j/5),
here i, j = 1, 2, 3, 4. The prediction performance is then evaluated by the mean and standard

deviations for both the values of our criteria. In our estimation, the value of ν is fixed at its true
alue and the optimization bound for estimating σ 2 and α is [0.01, 5]. The optimization tolerance

of the exact MLE is set as 10−9 in order to get more accurate estimation results for comparison.
Selecting the smallest tlr_max_rank value for each tile size is important to obtain the best

performance. Thus, we perform a set of experiments to select the tlr_max_rank value corresponding
to each nb when n = 3600 (Table 2). The reported values show that the feasible tlr_max_rank does
ot simply increase when the tile size nb increases. In fact, when the number of tiles is divisible by
he number of underlying CPUs, i.e., nb = 450 or 900, the maximum rank of each tile tlr_max_rank
is relatively small compared to the nb. The required tlr_max_rank is significantly smaller when the
model is relatively smoother. Thus, when the number of locations is n = 3600, we recommend to
choose the tlr_max_rank as the largest values shown in Table 2 for the corresponding values of ν

and nb.
For the MLE and different TLR approximations, we only show typical results with ν = 0.5,

heff = 0.2 and ν = 1, heff = 1.6, shown in Table 3. This table shows that the TLR approximation
has a similar estimation and prediction performance for different tile sizes nb, whereas the fastest
computational time is obtained when nb = 450.
13
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Table 2
Smallest tlr_max_rank that makes the TLR approximation applicable to different values
of nb, and the parameters of the Matérn covariance. The number of locations is
n = 3600.
ν Eff.range Tile size (nb)

400 450 600 900

0.5

0.2 260 210 310 270
0.4 250 210 310 270
0.8 250 210 300 260
1.6 250 210 300 260

1.0

0.2 220 170 250 210
0.4 220 170 250 210
0.8 210 170 250 210
1.6 210 180 250 210

Table 3
Estimation and prediction performances of MLE and TLR approximation estimates for different values of nb. Bias(·) means
the estimate of the parameter minus its true value, whereas the estimation time means the computational time of the
corresponding estimation. The value of MLOE for all cases (ν = 0.5 and ν = 1.0) is multiplied by 106 .
Mean (sd) ν = 0.5, heff = 0.2 ν = 1.0, heff = 1.6

MLE TLR approximations (nb) MLE TLR approximations (nb)

400 450 600 900 400 450 600 900

Bias(σ 2) −0.0080 −0.0079 −0.0079 −0.0079 −0.0079 0.0163 0.2173 0.2236 0.2210 0.2153
(0.0908) (0.0908) (0.0908) (0.0908) (0.0908) (0.6546) (0.7339) (0.7793) (0.7624) (0.7419)

Bias(α) −0.0006 −0.0006 −0.0006 −0.0006 −0.0006 −0.0144 0.0577 0.0577 0.0579 0.0571
(0.0063) (0.0063) (0.0063) (0.0063) (0.0063) (0.1186) (0.1348) (0.1394) (0.1370) (0.1357)

MLOE (×106) 3.3945 3.3756 3.3756 3.3758 3.3756 0.0273 0.0109 0.0110 0.0109 0.0109
(5.9930) (5.9474) (5.9474) (5.9477) (5.9475) (0.0669) (0.0242) (0.0243) (0.0242) (0.0241)

MMOM 0.0017 0.0011 0.0011 0.0011 0.0011 0.0014 −0.1428 −0.1428 −0.1428 −0.1428
(0.0232) (0.0232) (0.0232) (0.0232) (0.0232) (0.0227) (0.0223) (0.0222) (0.0223) (0.0223)

RMOM 0.0185 0.0185 0.0185 0.0185 0.0185 0.0182 0.1428 0.1428 0.1428 0.1428
(0.0141) (0.0140) (0.0140) (0.0140) (0.0140) (0.0135) (0.0223) (0.0222) (0.0223) (0.0223)

Estimation 146.5 110.2 90.3 146.4 146.6 277.5 122.3 108.1 143.5 186.5
Time (s) (20.2) (15.3) (13.5) (21.7) (19.5) (75.6) (35.6) (31.6) (46.6) (63.0)

Remark 1. In Table 3, the standard deviation of the MLOE is larger than the corresponding mean.
ig. 6 shows the typical case of boxplots for the MLOE in the simulation, indicating that the
istribution of MLOE is skewed to the right, causing a larger standard deviation.
The main reason for the larger standard deviation is, when a normal distributed fluctuation

s introduced in the model parameters, the difference of kriging prediction results between the
riginal model and the fluctuated model may have a heavy-tailed distribution. We have run a simple
llustrative example to show this. Consider a stationary Gaussian random field Z(s) with exponential
ovariance function C(h; θ) = σ 2 exp(−h/α), where the observation locations are s1 = (0, 0), s2 =

0, 1), s3 = (1, 0), s4 = (1, 1), and the prediction location is s0 = (0.5, 0.5). We generate 10,000
replicates of the observations, where the parameter θ = (σ 2, α)⊤ has true value σ 2

0 = 1, α2
0 = 0.1. In

each replicate, the presumed values of σ 2 and α are independently drawn from normal distributions
N(1, 0.012) and N(0.1, 0.012). We computed the difference of kriging prediction Ẑθ(s0) − Ẑθ0 (s0)
nd LOE(s0) for plug-in and Stein’s methods, where θ is the presumed value of parameters.
esults are shown in Fig. 7, indicating that the difference Ẑθ(s0) − Ẑθ0 (s0) follows a heavy-tailed
istribution and LOE(s0) is skewed to the right. The mean and standard deviation of LOE(s0) are
.8323 × 10−6 and 4.2347 × 10−6 (Plug-in method) or 1.8647 × 10−6 and 8.1274 × 10−6 (Stein’s

method), respectively. Note that for Stein’s method, LOE(s0) = {Ẑθ(s0) − Ẑθ0 (s0)}
2/Eθ0{e

2
θ0
(s0)}, so

the right-skewed distribution of the LOE comes from a square of a heavy-tailed distribution. The
14
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Fig. 6. Boxplots of the MLOE corresponding to MLE and TLR approximation estimates for different values of nb, where
= 0.5 and heff = 0.2.

Fig. 7. Results of the difference of prediction results (Diff. of Pred.) and the LOE for an illustrative example of the prediction
with misspecification. The left panel is the histogram of the difference of prediction; The middle panel is the boxplot of
the difference of prediction; The right panel is the boxplot of the LOE computed by different methods.

heavy-tailed distribution for the difference of kriging prediction results also appears in our simula-
tion on different TLR tuning parameters.

Although one can improve the accuracy of MLOE using a resampling method, we do not apply
this in our simulation because the resampling method is equivalent to increasing the number of
replications in the original simulation, as we have discussed in Section 3. For the simple illustrative
example stated above, one can run a resampling of 10,000 cases and report the mean of the LOEs
computed by Stein’s method, e.g., 1.8647 × 10−6, as the final LOE result. However, computing LOE
ithout resampling for each replicate and reporting the mean and standard deviation, or the boxplot

n Fig. 7, is more informative.

.3. Performance using different TLR accuracy levels

We investigate the effect of tlr_acc and opt_tol for the TLR approximations, where nb = 450
nd tlr_max_rank is chosen from Table 2. To compare the effect of different values of tlr_acc , we
ix opt_tol = 10−6 and choose tlr_acc = 10−5, 10−7, 10−9, or 10−11. We also compare the effect of
ifferent opt_tol values; to do so, we fix tlr_acc = 10−9 and choose opt_tol = 10−3, 10−6, 10−9, or

10−12.
15
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Table 4
Estimation and prediction performances of the exact MLE and TLR approximation estimates for different tlr_acc values.
ias(·) means the estimate of the parameter minus its true value, and the estimation time means the computational
ime of the corresponding estimation. The value of MLOE for all cases (ν = 0.5 and ν = 1.0) is multiplied by 106 . The
issing part in the table (–) means that the result is not available, because the covariance matrix is numerically non
ositive-definite.
Mean (sd) ν = 0.5, heff = 0.2 ν = 1.0, heff = 1.6

MLE TLR accuracy (tlr_acc) MLE TLR accuracy (tlr_acc)

10−5 10−7 10−9 10−11 10−5 10−7 10−9 10−11

Bias(σ 2) −0.0080 −0.0023 −0.0079 −0.0079 −0.0079 0.0163 – 0.3800 0.2236 0.2276
(0.0908) (0.1095) (0.0908) (0.0908) (0.0908) (0.6546) – (0.3154) (0.7793) (0.7927)

Bias(α) −0.0006 −0.0002 −0.0006 −0.0006 −0.0006 −0.0144 – 0.1033 0.0577 0.0581
(0.0063) (0.0077) (0.0063) (0.0063) (0.0063) (0.1186) – (0.0686) (0.1394) (0.1408)

MLOE (×106) 3.3945 3.5691 3.3756 3.3756 3.3757 0.0273 – 0.0079 0.0110 0.0109
(5.9931) (6.4517) (5.9476) (5.9474) (5.9474) (0.0669) – (0.0167) (0.0243) (0.0242)

MMOM 0.0017 0.0009 0.0011 0.0011 0.0011 0.0014 – −0.1436 −0.1428 −0.1428
(0.0232) (0.0233) (0.0232) (0.0232) (0.0232) (0.0227) – (0.0222) (0.0222) (0.0222)

RMOM 0.0185 0.0186 0.0185 0.0185 0.0185 0.0182 – 0.1436 0.1428 0.1428
(0.0141) (0.0140) (0.0140) (0.0140) (0.0140) (0.0135) – (0.0222) (0.0222) (0.0222)

Estimation 168.1 69.8 77.8 90.4 112.1 274.3 – 62.7 106.7 111.6
Time (s) (22.3) (11.9) (9.5) (13.5) (15.5) (74.6) – (26.7) (31.2) (33.7)

Table 5
Estimation and prediction performances of the exact MLE and TLR approximation estimates for different opt_tol values.
ias(·) means the estimate of the parameter minus its true value, and the estimation time means the computational time
f the corresponding estimation. The value of MLOE for all cases (ν = 0.5 and ν = 1.0) is multiplied by 106 .
Mean (sd) ν = 0.5, heff = 0.2 ν = 1.0, heff = 1.6

MLE Optimization tolerance (opt_tol) MLE Optimization tolerance (opt_tol)

10−3 10−6 10−9 10−12 10−3 10−6 10−9 10−12

Bias(σ 2) −0.0080 0.3654 −0.0079 −0.0079 −0.0079 0.0163 0.3263 0.2236 0.2234 0.2234
(0.0908) (0.3017) (0.0908) (0.0908) (0.0908) (0.6546) (0.4421) (0.7793) (0.7787) (0.7787)

Bias(α) −0.0006 0.0253 −0.0006 −0.0006 −0.0006 −0.0144 0.0896 0.0577 0.0577 0.0577
(0.0063) (0.0210) (0.0063) (0.0063) (0.0063) (0.1186) (0.0904) (0.1394) (0.1393) (0.1393)

MLOE (×106) 3.3945 19.3107 3.3756 3.3756 3.3756 0.0273 0.0150 0.0110 0.0110 0.0110
(5.9931) (13.9768) (5.9474) (5.9475) (5.9475) (0.0669) (0.0708) (0.0243) (0.0243) (0.0243)

MMOM 0.0017 −0.0061 0.0011 0.0011 0.0011 0.0014 −0.1432 −0.1428 −0.1428 −0.1428
(0.0232) (0.0234) (0.0232) (0.0232) (0.0232) (0.0227) (0.0220) (0.0222) (0.0222) (0.0222)

RMOM 0.0185 0.0196 0.0185 0.0185 0.0185 0.0182 0.1432 0.1428 0.1428 0.1428
(0.0141) (0.0140) (0.0140) (0.0140) (0.0140) (0.0135) (0.022) (0.0222) (0.0222) (0.0222)

Estimation 168.1 33.8 90.4 102.2 113.0 274.3 29.4 106.7 124.1 136.2
Time (s) (22.3) (13.6) (13.5) (13.2) (13.0) (74.6) (21.7) (31.2) (34.8) (36.0)

The parameter settings and the simulation procedures are similar to those given in Section 5.2.
hen tlr_acc = 10−11, the tlr_max_rank value in Table 2 is not large enough. Thus, we use increased

alues of tlr_max_rank in this case, namely, when ν = 0.5, we set tlr_max_rank = 270 for heff = 0.2
nd tlr_max_rank = 260 for other cases; when ν = 1, we set tlr_max_rank = 200. We only
rovide the estimation and prediction performances for two typical cases, when ν = 0.5, heff = 0.2,
nd when ν = 1, heff = 1.6. Table 4 shows the results obtained with different values of tlr_acc ,
nd Table 5 presents the results for different opt_tol values. For more details, please refer to the
upplementary Material.
Tables 4 and 5 indicate that the exact MLE and the TLR approximations can provide accurate

rediction results since the small MLOE values suggest that the loss of prediction efficiency is
ery small. The MMOM results indicate that the computed MSEs are also accurate, except when
16
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Table 6
Prediction performance and the computational time for TLR approximations with different combinations of tlr_acc and
pt_tol. The estimation time means the computational time of the corresponding estimation. The value of MLOE for all

cases (ν = 0.5 and ν = 1.0) is multiplied by 106 .
Mean (sd) (tlr_acc, opt_tol), ν = 0.5, heff = 0.2 (tlr_acc, opt_tol), ν = 1.0, heff = 1.6

(10−7,

10−3)
(10−9,

10−3)
(10−7,

10−6)
(10−9,

10−6)
(10−7,

10−3)
(10−9,

10−3)
(10−7,

10−6)
(10−9,

10−6)

MLOE (×106) 19.0060 19.3107 3.3756 3.3756 0.0138 0.0150 0.0079 0.0110
(13.6484) (13.9768) (5.9476) (5.9474) (0.0688) (0.0708) (0.0167) (0.0243)

MMOM −0.0062 −0.0061 0.0011 0.0011 −0.1436 −0.1432 −0.1436 −0.1428
(0.0232) (0.0234) (0.0232) (0.0232) (0.0219) (0.0220) (0.0222) (0.0222)

RMOM 0.0193 0.0196 0.0185 0.0185 0.1436 0.1432 0.1436 0.1428
(0.0142) (0.0140) (0.0140) (0.0140) (0.0219) (0.0220) (0.0222) (0.0222)

Estimation 28.8 33.1 76.6 88.5 19.4 29.8 63.5 108.1
Time (s) (11.4) (13.3) (9.4) (13.2) (8.8) (22.1) (27.1) (31.3)

ν = 1 and heff = 1.6, which shows that the plug-in kriging based on TLR approximations may
nderestimate the prediction MSEs for a smoother random field with a larger effective range. The
MOM results exclude the canceling of error problem in the MMOM results. The plug-in kriging
ased on the exact MLE works well for all cases.
Table 4 shows that the TLR approximations give similar and relatively satisfactory performances

f the estimation when tlr_acc ≤ 10−9, and that the prediction performs well when tlr_acc ≤ 10−7.
he computational time increases when tlr_acc decreases, so we suggest tlr_acc = 10−9 for
aintaining estimation performance and tlr_acc = 10−7 for maintaining prediction performance.
Table 5 shows that the estimation performs relatively well when opt_tol ≤ 10−6. For prediction

erformances, the case of opt_tol = 10−3 performs well enough, though the MLOE values are larger
ompared with other cases. So we suggest opt_tol = 10−6 for keeping estimation performances
nd opt_tol = 10−3 for keeping prediction performances because of the significantly faster
omputational speed in this case.
To further investigate the impact of different combinations of tlr_acc and opt_tol for prediction

erformances, we also try the cases where tlr_acc can be 10−7, 10−9 and opt_tol can be 10−3, 10−6.
Table 6 shows that choosing tlr_acc = 10−7 and opt_tol = 10−3 can provide a faster computation
without losing too much prediction efficiency; we therefore suggest to select tlr_acc = 10−7 and
opt_tol = 10−3 for keeping the prediction performances.

In conclusion, the TLR approximation method can significantly reduce the computational time
and maintain the prediction efficiency. The only problematic aspect of the TLR method is that,
when ν = 1 and the effective range is large, the prediction MSE may be underestimated. For
tuning the inputs in the TLR approximation, we recommend a moderate value of nb that makes
the number of tiles divisible by the total number of CPUs, and a smallest feasible tlr_max_rank,
which can be obtained by our simulations or by some simple trials. For instance, in Section 6, we
choose nb according to the simulation in this section, such that the number of tiles remains the
same for different n; tlr_max_rank is determined by trials similar to the simulation. We suggest
tlr_acc = 10−9, opt_tol = 10−6 for maintaining estimation performances; and suggest tlr_acc =

10−7, opt_tol = 10−3, when only the prediction performances are necessary to maintain.
Our suggested MLOE, MMOM, and RMOM criteria can successfully assess the loss of spatial

prediction efficiency of the TLR method with different tuning parameters. We have also successfully
detected the changes of the prediction efficiency for different tlr_acc and opt_tol. For different nb,
the criteria’s values are similar, indicating that the nb mainly affects the computational time, rather
than the efficiency.

Remark 2. Table 4 shows that the TLR method with tlr_acc = 10−5 can maintain the prediction
performance for the exponential covariance model, but cannot for the Whittle covariance model,
suggesting that one may need a lower tlr_acc value for a smoother process. Thus, if the process is
17
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Fig. 8. Image plot of a subset of the soil moisture dataset residuals with N = 64,648 for the case study.

moother than the Whittle covariance model and tlr_acc = 10−7 is not applicable, then one can
choose smaller tlr_acc such as 10−9.

6. Application to soil moisture data

To show the effectiveness of our suggested TLR tuning parameter settings for real datasets, we
compare the estimation and prediction performance of the TLR approximation to the exact MLE for
the soil moisture dataset, with a 64-bit 20-core Intel Xeon Gold 6248 CPU running at 2.50 GHz,
allowing the computation of the exact MLE by the ExaGeoStatR framework. We use four nodes,
each node has 16 underlying CPUs, so the number of tiles is divisible by the total number of CPUs.

This dataset describes the daily soil moisture percentage at the top layer of the Mississippi
basin, U.S., on January 1st, 2004, including the observation locations and the residuals of the fitted
linear model in Huang and Sun (2018), and can be obtained from the website https://ecrc.github.
io/exageostat/md_docs_examples.html, containing the example data of the ExaGeoStat package.
The full dataset consists of about 2 million locations, however, we select a region of N = 64,648
locations that can be considered as representative regions for the whole area. For our computational
experiment, we consider a subset of this dataset, where the latitude and longitude of the locations
lie within [33.0, 35.2]× [−106.1, −103.9], as shown in Fig. 8. We use latitude and longitude as the
oordinates of the observation locations in our computation.
In this numerical experiment, we randomly choose n = 3600, 14,400, 32,400, or 57,600 points

or the estimation, and use the remaining points for assessing the prediction performance. For
stimation, the smoothness parameter ν is either treated as unknown or fixed at ν = 0.5. The
earching intervals for optimizing the likelihood function are σ 2

∈ [0.01, 5], α ∈ [0.01, 5], and ν ∈

[0.01, 5] for the unknown case. In TLR approximations, we choose tlr_acc = 10−9, opt_tol = 10−6
18
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Table 7
The value of nb and the corresponding tlr_max_rank used in the estimation of the
soil moisture data.
n nb tlr_max_rank tlr_max_rank

(ν unknown) (ν known)

3600 450 210 210
14,400 900 310 320
32,400 1350 490 500
57,600 1800 430 430

Table 8
Estimation results, computational time and MSPE of the MLE and TLR estimation for soil moisture data, where ν is
nknown or fixed at 0.5.
n tlr_acc opt_tol ν is unknown ν is fixed at 0.5

σ 2 α ν Times (s) MSPE σ 2 α Times (s) MSPE

3600
Exact MLE 1.2488 0.4590 0.2970 2038.1 0.2283 1.0970 0.1105 663.1 0.2335

10−7 10−3 1.1163 0.3800 0.2971 83.5 0.2283 1.1842 0.1191 41.7 0.2337
10−9 10−6 1.2486 0.4587 0.2971 399.7 0.2283 1.0969 0.1106 142.9 0.2335

14,400
Exact MLE 1.1412 0.2358 0.3566 13550.4 0.1461 1.0046 0.0864 8075.8 0.1457

10−7 10−3 0.8784 0.1740 0.3488 1331.5 0.1462 1.2210 0.1054 454.2 0.1458
10−9 10−6 1.1410 0.2356 0.3568 3248.5 0.1461 1.0046 0.0865 1863.5 0.1457

32,400
Exact MLE 1.0478 0.1263 0.4282 83197.3 0.1067 0.9800 0.0797 36503.7 0.1060

10−7 10−3 1.4342 0.1898 0.4229 8687.8 0.1068 1.1183 0.0913 3183.4 0.1060
10−9 10−6 1.0475 0.1261 0.4285 25414.0 0.1067 0.9801 0.0798 14840.5 0.1060

57,600
Exact MLE 0.9870 0.0774 0.5066 286729.5 0.0811 0.9935 0.0805 184842.0 0.0812

10−7 10−3 1.1911 0.1002 0.4928 15807.4 0.0813 1.1260 0.0916 5680.1 0.0812
10−9 10−6 0.9868 0.0773 0.5071 74225.3 0.0811 0.9937 0.0806 21907.0 0.0812

and tlr_acc = 10−7, opt_tol = 10−3, which are our recommendations for keeping the estimation and
prediction performances, respectively. The tlr_max_rank value is determined using the procedure
presented in Section 5.2. The settings of nb and tlr_max_rank are shown in Table 7, and results are
given in Table 8. We also try tlr_acc = 10−5, opt_tol = 10−3 or 10−6 in this experiment, but these
parameter settings cannot work for n = 14,400, 32,400 and 57,600, because the covariance matrix
is numerically non positive-definite, similar as in Table 4. Therefore, we ignore the results with
tlr_acc = 10−5.

Table 8 indicates that, when tlr_acc = 10−9 and opt_tol = 10−6, the TLR approximation can
provide parameter estimates that are very close to the exact MLE, with a significantly shorter
computational time. The computational times are further shortened when tlr_acc = 10−7 and
opt_tol = 10−3. In this case, the prediction performances are similar to the exact MLE, though
the estimates are no longer similar. Thus, our proposed tuning parameter suggestions work well
for the soil moisture dataset, showing that our suggested MLOE, MMOM, and RMOM criteria are
successfully used to choose the tuning parameters for the TLR approximation.

Besides the TLR method, we also compare the estimation and prediction performance for the
soil moisture dataset with the composite likelihood method proposed by Vecchia (1988) and
implemented by Guinness et al. (2020), and the Gaussian predictive process method proposed
by Banerjee et al. (2008). We still consider n = 3600, 14,400, 32,400, 57,600 and use the same
soil moisture dataset stated above.

The composite likelihood approximates the log-likelihood function ℓ(θ) by

ℓ̃m(θ) :=

n∑
log p(Z(si)|Z(si1), . . . , Z(sim)),
i=1

19
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where si1, . . . , sim are min(i − 1,m) locations that are nearest to Z(si), p is the density of Z(si)
conditional on the observations on these nearest locations. In this numerical experiment, we
adopt the function vecchia_meanzero_loglik() in the GpGp package (Guinness et al., 2020)
o compute ℓ̃m, which employs a Fisher scoring algorithm introduced by Guinness (2019). We use
he function constrOptim() to compute the optimum. We set m = 20 and choose the initial value
for the optimization by (σ 2, α, ν) = (1, 0.2, 0.5). Denote by θ̂n = (σ̂ 2

n , α̂, ν̂) the estimation results
for different n, then we have θ̂3600 = (1.1716, 0.3778, 0.3057); θ̂14,400 = (1.0757, 0.2032, 0.3646);
θ̂32,400 = (1.0243, 0.1171, 0.4359); θ̂57,600 = (0.9598, 0.0726, 0.5140). The MSPE results for n =

3600, 14,400, 32,400, and 57,600 are 0.2283, 0.1459, 0.1066, and 0.0810, respectively, and the
computational times (in seconds) are 123.1, 410.6, 1112.7, and 2805.1, respectively. One can check
from Table 8 that, the TLR estimates for tlr_acc = 10−9, opt_tol = 10−6 are closer to the exact
MLE results, compared to the composite likelihood estimates. Despite that the MSPE results of the
TLR are slightly less competitive, it is clear that the TLR with our suggested tuning parameters for
keeping the estimation performance reaches our goal for approximating the exact MLE estimation
results, which serves our purpose better than the composite likelihood. Thus, with our suggested
parameters, one can get more accurate information about the properties for the random field
corresponding to the soil moisture dataset from a more accurate approximation of the MLE. Results
for the case when ν is fixed at 0.5 are similar and not reported here.

Next, we compare the TLR with a typical low-rank based approximation method, the Gaussian
predictive process (GPP) method proposed by Banerjee et al. (2008). For some predetermined knots
s⋆
1, . . . , s

⋆
m, the GPP method approximates the observed value Z(s) by its kriging prediction value

with respect to the observations on the knots plus a nugget term. Denote the observations on the
knots by Z⋆

:= {Z(s⋆
1), . . . , Z(s

⋆
m)}

⊤. The kriging prediction, which is treated as an approximation of
Z(s), is

E{Z(s)|Z(s⋆
1), . . . , Z(s

⋆
m)} = c⊤(s, θ)(C⋆)−1(θ)Z⋆,

so the Gaussian predictive process model is

Z̃(s) = c⊤(s, θ)(C⋆)−1(θ)Z⋆
+ ϵ(s), (13)

where c(s, θ) = [C(s, s⋆
j ; θ)]mj=1, C

⋆(θ) = [C(s⋆
i , s

⋆
j ; θ)]mi,j=1, C(s1, s2; θ) = Cov{Z(s1), Z(s2)}, and

ϵ(s) is the nugget effect term which has a normal distribution with mean zero and variance τ 2.
The approximated kriging prediction is computed with the covariance matrix of the approximated
random field Z̃(s). For the Gaussian predictive process model, the computation of the inverse
covariance matrix only involves the inversion of the matrix of order m, so computational time can
be saved, compared with directly inverting a matrix of order n. In our comparison, we first fit the
Gaussian predictive process model (13) by maximum likelihood estimation, where the covariance
function C(h; θ) is the Matérn covariance (1). The smoothness parameter ν is either treated as
unknown, or fixed at ν = 0.5. Next, we compute the plug-in kriging prediction and the MSPE
based on the GPP model, on the same prediction locations used in the computation of Table 8.
We choose the knots as the 23 × 23 regular grid, which is evenly distributed on the observed
range [33.0, 35.2]×[−106.1, −103.9]. Results show that the MSPE of the GPP model is significantly
larger than the corresponding prediction results based on exact MLE and has no apparent change
when the number of observation n increases. For instance, when ν is unknown and n = 3600,
14,400, 32,400, and 57,600, the MSPE of the GPP model are 0.4292, 0.4328, 0.4298, and 0.4268,
respectively, whereas the corresponding MSPE for the exact model are 0.2283, 0.1461, 0.1067, and
0.0811, respectively. We also consider the case with a larger number of knots m for n = 3600. The
knots used in this computation are chosen as the

√
m ×

√
m regular grids, evenly distributed on

the observed range [33.0, 35.2] × [−106.1, −103.9]. Results show that even when m = 3600, the
SPE of the GPP method (0.2406 when ν is unknown or fixed) is still larger than that of the exact
LE method (0.2283 when ν is unknown or fixed). Thus, for kriging prediction of our considered
oil dataset, the Gaussian predictive process method is less efficient than the exact MLE and the
LR approximations.
20
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In conclusion, our suggested settings of the tuning parameters for TLR approximation, obtained
y using the MLOE, MMOM, and RMOM criteria, can maintain the estimation or prediction per-
ormances for the soil moisture data. Thus, we have successfully applied our suggested criteria to
he TLR tuning parameter selection problem in applications. According to our comparison, the TLR
pproximation with our suggested parameters outperforms the Gaussian predictive process method
n the soil dataset prediction problem. For this soil data, the TLR approximation also outperforms the
omposite likelihood in approximating the exact MLE, though the MSPE of the TLR is here slightly
ess competitive.

. Concluding remarks

In this article, we presented the Mean Loss of Efficiency (MLOE), Mean Misspecification of the
SE (MMOM), and Root mean square MOM (RMOM) criteria as tools to detect the difference of the
rediction performance between the true and the approximated covariance models in simulation
tudies. We found that the suggested criteria are more appropriate than the commonly used Mean
quare Prediction Error criterion, as the criteria can detect the efficiency loss when a smoother
ovariance model is misspecified as a rougher covariance model with a nugget effect in simulation
tudies, which the MSPE cannot do. Our suggested criteria are valuable tools for understanding
he impact of the tuning parameters on the statistical performance of sophisticated approximation
ethods, which is crucial for selecting these inputs. To illustrate this, we compared the estimation
nd prediction performances of the Tile Low-Rank (TLR) approximation with different tuning
arameters, and obtained a practical suggestion on how to choose these tuning parameters for
ifferent application requirements. We showed a case study in which our suggested tuning of
arameters obtained by our criteria works well to keep the estimation or prediction performances
f the TLR method, e.g., the TLR outperforms the typical Gaussian predictive process method in
rediction efficiency, and outperforms the composite likelihood in estimation efficiency.
It is worth noting that the smoothness can affect the effectiveness of adopting the TLR approxi-

ation in spatial prediction and the proper value of tuning parameters in this approximation. For
nstance, if we can ensure that the process is not smoother than the Whittle covariance model,
hen we can set tlr_acc = 10−7; else we may need a lower value, say tlr_acc = 10−9, as is
iscussed in Remark 2. Thus, it would be appealing to introduce a suitable method for determining
his kind of smoothness, such as determining the range of ν in the Matérn covariance model,
efore estimation and prediction. However, as simulations have shown, the misspecification of
he smoothness of a random field significantly worsens the spatial prediction performance. Thus
he smoothness determination method should be accurate enough. One can use a rough estimate
f the smoothness, e.g., the composite likelihood method, for determining the tuning parameters.
owever, some methods, such as the TLR, require a range for unknown parameters as the input,
ather than an initial value. In this case, determining a range of the smoothness parameter is more
avorable. In future work, we will develop suitable smoothness parameter determination methods,
uch as the hypothesis tests proposed by Hong et al. (2020) and the references therein, and apply
he method in the parameter estimation process to further improve the computation performance.

Currently, the ExaGeoStatR framework for computing the TLR method is not available for
stimating the unknown nugget effect. In future work, we will try to overcome this restriction. After
hat, we will investigate the tuning parameter selections for this case. The fitting result of the soil
oisture dataset may be better when a nugget effect term is involved in the spatial model. It would
lso be interesting to compare the performance of the other tile-based approximation methods with
he TLR method, using our suggested criteria, in order to determine the best method for different
pplication cases.
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