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Abstract
We address the problem of trend estimation for functional time series. Existing
contributions either deal with detecting a functional trend or assuming a simple
model. They consider neither the estimation of a general functional trend nor the
analysis of functional time series with a functional trend component. Similarly to
univariate time series, we propose an alternative methodology to analyze func-
tional time series, taking into account a functional trend component.We propose
to estimate the functional trend by using a tensor product surface that is easy to
implement, to interpret, and allows to control the smoothness properties of the
estimator. Through aMonte Carlo study, we simulate different scenarios of func-
tional processes to show that our estimator accurately identifies the functional
trend component. We also show that the dependency structure of the estimated
stationary time series component is not significantly affected by the error approx-
imation of the functional trend component.We apply ourmethodology to annual
mortality rates in France.
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1 INTRODUCTION

In many phenomena, data are collected on a large scale,
resulting in high-dimensional and high-frequency data.
This is why there has been an increasing amount of
interest in functional data analysis (FDA). FDA deals with
data, called functional data, that are defined on an intrin-
sically infinite-dimensional space. When the functional
data are time dependent, they are called functional time
series. Some examples of data that can be considered as
functional time series are the annual mortality rates and
the annual temperature data. In practice, functional time
series often tend to be nonstationary. This nonstationarity
may be caused by structural breaks, functional random
walk components, or deterministic trend components.
Deterministic trends, or functional trends, can be observed

in different phenomena where functional data approaches
have been used, for example, growth curves (Ramsay and
Silverman, 2005), annual mortality rates (Hyndman and
Ullah, 2007), gene networks (Telesca et al., 2009), climate
change (Fraiman et al., 2014), electricity power systems
(Horváth and Rice, 2015), and electroencephalography
(EEG) data (Hasenstab et al., 2017). The detection and
estimation of the functional trend are crucial in data
analysis, modeling, and forecasting.
The common method used to analyze functional time

series involves projecting each curve on a finite dimen-
sional space, for example, on the space generated by 𝑟

eigenfunctions, and then modeling the projected values
by using multivariate time series techniques (Hyndman
and Ullah, 2007; Aue et al., 2015). When the functional
time series has a functional trend component, one can still
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F IGURE 1 Functional time series of log mortality rates in France from 1816 to 2006, for zero to 100 years of age (left), and the
corresponding estimated functional trend (right). The estimated functional trend describes the smooth changes over time of the functional data

transform the curves into a vector and then model the
trend component as in multivariate time series. However,
using principal component analysis to reduce dimension-
ality may not be appropriate, since the estimation of the
covariance operator is not consistent in this case. An alter-
native approach, similar to the univariate time series, is to
estimate the functional trend directly from the functional
data, then remove it, and analyze the remaining functional
time series. In this paper, we adopt the latter approach.
Functional trends are challenging because of the com-

plexity of the space where functional data are defined. In
multivariate time series, trends have only one component,
that is, they have the form ℎ(𝑡), where 𝑡 represents time,
and ℎ is a continuous function defined over time (see, eg,
Wu and Zhao, 2007; Chen and Wu, 2019). Unlike in mul-
tivariate time series, functional trends have an additional
component: the continuous parameter of each functional
data. That is, functional trends can be written as a func-
tion with two variables 𝑇(𝑠, 𝑡), where 𝑠 is the continuous
parameter of each curve and 𝑡 represents time.
A few attempts can be found in the literature on the

study of functional trends. In Fraiman et al. (2014), a func-
tional trend was defined by using the concept of records,
where a record means the occurrence of new extreme
observations, but nothing was mentioned about the esti-
mation. In Kokoszka and Young (2017), a hypothesis test
of trend stationarity of functional time serieswas proposed.
In that paper, the functional trendwas assumed to be sepa-
rable and linear in time, 𝑇(𝑠, 𝑡) = 𝑓(𝑠)𝑡, and a least squares
estimator was used to estimate 𝑓(𝑠). Although this may
cover a large number of cases, which depend linearly on
time, it is still a very specific model. A functional trend can
take very complex shapes, for example, Figure 1 shows log

annual mortality rates in France from 1816 to 2006, where
each point of 𝑌𝑛(𝑠) represents the total mortality rate, in
year 𝑛, at age 𝑠 ∈ [0, 100]. Across the years 𝑛, the log mor-
tality rate has been decreasing for almost all ages 𝑠. For
ages between 0 and 60, it seems that the decrease behaves
like a quadratic function, whereas for ages between 60 and
100 the values behave like a linear function. On the other
hand, the 𝑠 coordinate (age) is dominated by a U-shaped
curve for each 𝑛. The right panel shows the resulting func-
tional trend estimated by applying our proposedmethodol-
ogy. Here we analyze these data as a functional time series
considering the functional trend 𝑇(𝑠, 𝑡) (Section 5). Due to
the complexity of functional trends, we propose describing
𝑇(𝑠, 𝑡) using a nonparametric approach.
The functional time series approach has several advan-

tages over the multivariate time series methods. Multi-
variate methods ignore information about the underlying
continuity behavior of the data. For example, the bivariate
time series of the annual mortality rates at ages 𝑠 = 40 and
𝑠 = 41, {𝑌𝑛(40), 𝑌𝑛(41)}

⊤, is permutable in the multivari-
ate setting. This leads to a rough surface for a functional
trend estimator. In contrast, smoothness is an important
property of functional data. Thus, FDA extracts additional
information contained in a continuous function or in its
derivative (Kokoszka (2012); Ullah and Finch (2013)).
There is still a gap in knowledge on functional trends in

functional time series. To the best of our knowledge, pre-
vious research either involved detecting functional trends
or assuming a simple model, but none involved estimating
a general functional trend nor the analysis of functional
time series with a functional trend component. Here, we
describe a methodology to estimate the functional trend,
and we show the analysis of the functional time series
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when the trend is taken into account.We propose amethod
for estimating a functional trend that is easy to implement
and to interpret and allows to control the smoothness prop-
erties of the estimator, which is useful in practice.
For instance, assume that 𝑡 is fixed in 𝑇(𝑠, 𝑡); thus 𝑇(⋅, 𝑡)

can be interpreted as the “common” curve that persists
in different ways over time, weighted with the 𝑡 compo-
nent. For example, if the weight function is additive, that
is, 𝑇(𝑠, 𝑡) = 𝑓(𝑠) + 𝑔(𝑡), then 𝑓(𝑠) can be considered as the
mean curve and consequently the functional trend is sim-
ply 𝑔(𝑡). Now, if we fix 𝑠 ∈ 𝐷, where 𝐷 represents the
domain of the functional data,𝑇(𝑠, ⋅) is the trend over time,
and it can take different forms for each 𝑠 ∈ 𝐷. Therefore,
for each coordinate, 𝑇(𝑠, 𝑡) can take different shapes, and a
nonparametric estimation for each coordinate seems rea-
sonable.We propose using a B-spline to describe the differ-
ent forms for each coordinate. When the sample size tends
to infinity, 𝑇 can be assumed to be continuous in 𝑠 and
𝑡, and resulting in a tensor product surface. To obtain the
smoothness property of the tensor product B-spline, simi-
lar ideas from the univariate case (Eilers and Marx, 1996)
can be applied. One can opt to use one penalty parame-
ter for both directions, or one for each direction, or a com-
bination of both (see Wood, 2003; Xiao et al., 2013). Here,
we consider marginal penalizations as described in Wood
(2006). This allows us to study the trend over time and a
possible trend within the domain 𝐷 separately. Also, this
way of penalizing is easy to interpret and to control for each
smoothness parameter.
The remainder of our paper is organized as follows. In

Section 2, we introduce the model that is assumed in this
paper, and we develop the proposed estimator for the func-
tional trend. In Section 3, we study the theoretical proper-
ties of the proposed estimator as well as the selection of
the smoothing parameters. In Section 4, we conduct a sim-
ulation study to evaluate the performance of the proposed
estimator under different simulation settings. In Section 5,
we analyze a dataset of annual mortality rates assuming a
functional trend component. Section 6 presents some dis-
cussion. Proofs and additional material are provided in the
Web Appendix.

2 TREND IN FUNCTIONAL
TIME SERIES

2.1 Preliminaries

Assume that we observe a functional time series with a
sample size 𝑁, {𝑌1, … , 𝑌𝑁}, taking values on a separable
Hilbert space  that will be defined in Section 3.2, that
is,𝑌𝑛(𝑠) ∶ 𝐷 → ℝ is a continuous function for 𝑛 = 1,… ,𝑁.

Now, assume that {𝑌𝑛} follows the model

𝑌𝑛(𝑠) = 𝑇(𝑠, 𝑛∕𝑁) + 𝑋𝑛(𝑠), (1)

where 𝑇(𝑠, 𝑡) ∶ 𝐷 × [0, 1] → ℝ is a deterministic function
and {𝑋𝑛} is a stationary functional time serieswith𝔼(𝑋𝑛) =

0. Thus, 𝔼(𝑌𝑛) = 𝑇(𝑠, 𝑛∕𝑁) and {𝑌𝑛} is not weakly station-
ary. The function 𝑇(𝑠, 𝑡) is the trend component.
A technique that is widely used in time series to obtain

the stationarity property is considering the first differ-
ence of {𝑌𝑛, 𝑛 ≥ 1}, that is,Δ𝑌𝑛 ∶= 𝑌𝑛 − 𝑌𝑛−1. If the func-
tional time series has a random walk component or if
it is a 𝐼(1) functional process, {Δ𝑌𝑛} is stationary (Beare
et al., 2017). However, if the nonstationary component is
a deterministic function, as in model (1), the transforma-
tion {Δ𝑌𝑛} does not guarantee to remove the trend compo-
nent 𝑇(𝑠, 𝑡). Moreover, Δ𝑋𝑛 might be nonstationary even
though {𝑋𝑛} is stationary, and as a consequence {Δ𝑌𝑛}

might be nonstationary. To clarify the above idea, assume
for instance that 𝑇(𝑠, 𝑡) = sin(2𝜋𝑡 + 𝑠) in model (1). Thus,
𝑇(𝑠,

𝑛

𝑁
) − 𝑇(𝑠,

𝑛−1

𝑁
) depends on 𝑛, and then Δ𝑌𝑛 depends

on 𝑛 as well. Therefore, the estimation of the functional
trend 𝑇(𝑠, 𝑡) is necessary.

2.2 Nonparametric functional trend
estimator

We observe that, for 𝑛0 fixed in model (1), 𝑌𝑛0
(⋅) =

𝑇(⋅, 𝑛0∕𝑁) + 𝑋𝑛0
(⋅). Thus 𝑇(⋅, 𝑛0∕𝑁) represents the mean

curve of the functional data 𝑌𝑛0
at time 𝑛0. If 𝑠0 ∈ 𝐷 is

fixed, then {𝑌𝑛(𝑠0), 𝑛 = 1,… ,𝑁} is a univariate time series
and 𝑇(𝑠0, ⋅) represents the deterministic trend at 𝑠0. In
the latter case, 𝑇(𝑠0, ⋅) can be obtained via nonparamet-
ric estimation, such as Nadaraya-Watson, local polyno-
mial, wavelet, or spline methods. Here we use the spline
method, that is, we assume that 𝑇(𝑠0, ⋅) =

∑𝑘2

𝑖=1
𝑏𝑖𝜂𝑖(⋅) =

𝐛⊤𝜼(⋅), where 𝜼⊤ = (𝜂1, … , 𝜂𝑘2
) is a B-spline basis function

defined on [0,1].
Similarly, one could repeat this procedure for a finite set

of 𝑠 values and apply a multivariate time series technique.
However, since 𝑌𝑛 is assumed to be a continuous func-
tion in 𝑠, multivariatemethods cannot be extended to func-
tional data. Multivariate methods ignore the continuity
(smoothness) property of 𝑌𝑛, that is, 𝑌𝑛(𝑠0) and 𝑌𝑛(𝑠0 + 𝜖)

are considered permutable for any 𝜖 > 0. In addition, these
would involve estimating infinite parametric or nonpara-
metric tendencies. Instead, we allow each coefficient 𝑏𝑖

to be a smooth continuous function of 𝑠, that is, 𝑇(𝑠, ⋅) =

𝐛⊤(𝑠)𝜼(⋅), and 𝑏𝑖(𝑠) can be modeled nonparametrically
as well. Let 𝝂⊤ = (𝜈1, … , 𝜈𝑘1

) be another B-spline basis
function defined on 𝐷, such that 𝑏𝑖(𝑠) =

∑𝑘1

𝑗=1
𝜃𝑗𝑖𝜈𝑗(𝑠) for
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𝑖 = 1, … , 𝑘2. Then, 𝑇(𝑠, 𝑡) can be written as

𝑇(𝑠, 𝑡) =

𝑘1∑
𝑗=1

𝑘2∑
𝑖=1

𝜃𝑗𝑖𝜈𝑗(𝑠)𝜂𝑖(𝑡) = 𝝂⊤(𝑠)𝚯𝜼(𝑡). (2)

We propose estimating the functional trend by using
a tensor product of the two spaces span{𝜈1, … , 𝜈𝑘1

}

and span{𝜂1, … , 𝜂𝑘2
}. To obtain smoothness properties of

𝑇(𝑠, 𝑡), we consider penalty terms associated with each
coordinate (Wood, 2006). That is,

𝑃(𝑇) = 𝜆1 ∫
[0,1]

(𝑃1𝑇)(𝑡)d𝑡 + 𝜆2 ∫
𝐷

(𝑃2𝑇)(𝑠)d𝑠, (3)

where 𝑃1𝑇 = ∫ {
𝜕2

𝜕𝑠2
𝑇(𝑠, 𝑡)}2d𝑠 and 𝑃2𝑇 = ∫ {

𝜕2

𝜕𝑡2
𝑇(𝑠, 𝑡)}2d𝑡.

Other quadratic penalties can be considered, such as
∫ ∫ {(𝐿𝑇)(𝑡, 𝑠)}2d𝑠 d𝑡, with 𝐿 a linear operator (eg, the
Laplacian). Here, we adopt themarginal penalty (3), where
𝜆1 and 𝜆2 control the smoothness of 𝑇(𝑠, 𝑡) in the first
component and the second component, respectively. This
penalty is invariant to a linear rescaling of the functional
data, which is useful since, in practice the domain𝐷 of the
functions is rescaled to the interval [0,1]. Also, 𝑃(𝑇) is eas-
ily interpretable and allows us to control the smoothness
in the direction of the domain𝐷 and in the direction of the
time domain, separately, which is desirable for the estima-
tion of the functional trend.
We observe that if 𝜆1 ≫ 0, then 𝑇(⋅, 𝑛∕𝑁) is a linear

function on 𝐷 for each 𝑛 = 1,… ,𝑁, and if 𝜆1 = 0, then
𝑇(⋅, 𝑛∕𝑁) is close to the shape of the functional data 𝑌𝑛,
that is, 𝑇(⋅, 𝑛∕𝑁) ≈ 𝑌𝑛. Thus, to only capture the trend
over time and without removing the inherent shape of the
functional data, a 𝜆1 different from zero should be consid-
ered. Similarly, if 𝜆2 ≫ 0, then 𝑇(𝑠, ⋅) represents a linear
trend for each 𝑠, whereas when 𝜆2 = 0, then 𝑇(𝑠, ⋅) rep-
resents interpolation of 𝑌1(𝑠), … , 𝑌𝑛(𝑠) for each 𝑠, and so
𝑇(𝑠, 𝑡) results in a rough surface. In Section 3.3, we describe
how to select these parameters taking into account the
dependency structure of {𝑋𝑛}. In practice, users are free to
choose the values of 𝜆1 and 𝜆2 as well as the number of
basis functions in each coordinate, 𝑘1 and 𝑘2.
Given 𝑃(𝑇) we obtain the estimator of 𝑇(𝑠, 𝑡) by using a

penalized least square estimator, that is, we obtain �̂�min-
imizing the mean integrated squared error

�̂� = argmin
𝚯

[
𝑁∑

𝑛=1
∫
𝐷

{𝑌𝑛(𝑠) − 𝝂⊤(𝑠)𝚯𝜼(𝑛∕𝑁)}2d𝑠 + 𝑃(𝑇)

]
.

(4)

Consequently, we define �̂�(𝑠, 𝑡) = 𝝂⊤(𝑠)�̂�𝜼(𝑡).
In summary, we propose describing the deterministic

trend in functional time series by using a smooth tensor

product surface. A tensor product surface is very flexible
in the sense that it can represent complex structures in
functional data. Because of the penalization term, a few
numbers of basis functions (or knots) are required, and
it is computationally feasible. In Section 4, we show the
performance of our proposed estimator under different
scenarios.

2.3 Modeling with estimated
functional trend

Once the functional trend has been estimated, we make
an ℎ-step ahead forecast for the functional time series
{𝑌𝑛} by forecasting each component of the model (1), that
is, �̂�𝑁+ℎ = �̂�𝑁+ℎ + �̂�𝑁+ℎ. The ℎ-step ahead forecast for
each component is computed as follows: For the station-
ary functional time series component, we obtain �̂�𝑁+ℎ

by modeling the functional time series {�̃�𝑛 ∶= 𝑌𝑛(𝑠) −

�̂�(𝑠, 𝑛∕𝑁)}𝑁
𝑛=1

. For example, one can use the methodology
described in Aue et al. (2015) (see Section 5). To obtain the
ℎ-step ahead forecast for the functional trend component,
we use a Taylor expansion in the time direction. Specifi-
cally, we define the 1-step ahead forecast as

�̂�𝑁+1(𝑠) ∶= �̂�(𝑠, 1) +
1

𝑁 + 1

𝜕

𝜕𝑡
𝑇(𝑠, 𝑡)

|||𝑡=1
, (5)

where �̂�(𝑠, 1) corresponds to the trend estimated at time𝑁.
This 1-step ahead forecast is iterated ℎ times, with �̂�(𝑠, 1)

being the last trend observed or forecasted in each itera-
tion. After the iterations, we obtain the ℎ-step ahead fore-
cast �̂�𝑁+ℎ. In general, 𝑇(𝑠, 𝑡) can be assumed to be a func-
tionwith slow variation over time, as evidenced in Figure 1.
Thus, in this paper we use the linear approximation (5).

3 THEORETICAL PROPERTIES

The theoretical properties of penalized splines have
been studied when errors are uncorrelated. For the one-
dimensional setting, see, for example, Li and Ruppert
(2008), and Claeskens et al. (2009). Some papers that have
studied the two-dimensional setting are Lai and Wang
(2013) and Xiao (2019). Xiao (2019) studied the asymptotic
behavior of bivariate penalized tensor-product splines,
extending the idea from the one-dimensional setting.Here,
we adopt the same approach as in Xiao (2019) to study the
consistency of the functional trend estimator �̂�(𝑠, 𝑡).
Let 1 and 2 be the fixedmarginal penaltymatrices, for

the first component and the second component of 𝑇(𝑠, 𝑡),
respectively. Thus, the first component of the penalty
term in (3) can be written as ∫ (𝑃1𝑇)(𝑡)d𝑡 = ∫ {𝚯𝜼(𝑡)}⊤
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 1𝚯𝜼(𝑡)d𝑡 = {vec(𝚯)}⊤𝑱𝜼 ⊗  1vec(𝚯), and the second
component as ∫ (𝑃2𝑇)(𝑠)d𝑠 = ∫ 𝝂⊤(𝑠)𝚯 2𝚯

⊤𝝂(𝑠)d𝑠 =

{vec(𝚯)}⊤ 2 ⊗ 𝑱𝝂vec(𝚯), where 𝑱𝝂 = ∫ 𝝂(𝑠)𝝂⊤(𝑠)d𝑠, and
𝑱𝜼 = ∫ 𝜼(𝑡)𝜼⊤(𝑡)d𝑡. Therefore,

𝑃(𝑇) = {vec(𝚯)}⊤{𝜆1𝑱𝜼 ⊗  1 + 𝜆2 2 ⊗ 𝑱𝝂}vec(𝚯), (6)

where 𝜆1 and 𝜆2 are the smoothing parameters and they
need to be estimated.

3.1 Functional representation

We assume that the functional time series 𝑌𝑛(𝑠) are given
in the functional form. To establish the consistency of
the functional trend estimator �̂�(𝑠, 𝑡), we introduce some
concepts for functional time series. Let  be a Hilbert
space of square integrable functions defined on a compact
interval 𝐷, with inner product ⟨𝑓, 𝑔⟩ = ∫

𝐷
𝑓(𝑠)𝑔(𝑠)d𝑠. Let

{𝑋𝑛(𝑠), 𝑠 ∈ 𝐷} be a sequence of random variables in with
finite moments of order 2, that is, for each 𝑛, 𝔼(‖𝑋𝑛‖2) <

∞, where ‖⋅‖ is the norm induced by the inner product
in. Similarly to the univariate case, where the 𝛼-mixing
concept is required in the smoothing spline models with
correlated random errors (Wang, 1998), one can assume
short-range dependency in the functional time series {𝑋𝑛}.
We use the 𝐿𝑝 − 𝑚-approximable concept (see the Sup-
porting Information for more details of this concept).
Also,wewill use the following assumptions that are con-

cernedwith the number of basis functions and the smooth-
ing parameters.

Assumption 1. 𝑘1𝑘2 = 𝑜(𝑁𝑟) for some 𝑟 ∈ (0, 1) and
lim𝑁→∞ 𝑘1∕𝑘2 = 𝑘0, for some constant 𝑘0.

Assumption 2. 𝜆1𝑘
4
1
= 𝑂(𝑁) and 𝜆2𝑘

4
2
= 𝑂(𝑁).

Assumption 3. The knots for the spline bases 𝜼 and 𝝂 are
equidistantly distributed.

Proposition 1. Let {𝑌𝑛(𝑠), 𝑠 ∈ 𝐷}, for 𝑛 = 1,… ,𝑁, be the
functional time series observed, and following model (1).
Suppose that {𝑋𝑛} is an 𝐿4 − 𝑚-approximable sequence,
and that the functional trend has a tensor product repre-
sentation𝑇(𝑠, 𝑡) = 𝝂⊤(𝑠)𝚯𝜼(𝑡)with fourth-order derivatives.
Then, under Assumptions 1-3,

𝔼
{‖�̂�(𝑠, 𝑡) − 𝑇(𝑠, 𝑡)‖2

𝐿2

}
= 𝑜(1).

In a nonparametric regression estimation, the long-run
covariance of the time series plays an important role when
errors are correlated. The assumption of {𝑋𝑛} being an

𝐿4 − 𝑚-approximable sequence implies that the corre-
sponding long-run covariance operator is convergent.

Remark 1. The weak dependence condition on {𝑋𝑛} is
across time, 𝑛. Thus, for each 𝑛, {𝑋(𝑠) ∶= 𝑋𝑛(𝑠), 𝑠 ∈ 𝐷} can
be a nonstationary process. This is another advantage of
FDA over the multivariate methods.

3.2 Matrix representation

In practice, we do not observe continuous curves. Instead,
each functional data 𝑌𝑛(𝑠) is observed on a grid of points
𝐬𝑛 = {𝑠𝑛1, … , 𝑠𝑛𝑚}. Without loss of generality, let us assume
identical grids 𝐬𝑛 ≡ 𝐬 = {𝑠1, … , 𝑠𝑚} for𝑛 = 1,… ,𝑁. Let𝐕 =

{𝝂(𝐬)}⊤ be the 𝑚 × 𝑘1-matrix of the evaluation of 𝑘1 basis
functions on 𝑚 locations 𝐬, let 𝐙 = {𝜼(𝐭)}⊤ be the 𝑁 × 𝑘2-
matrix of the evaluation of 𝑘2 basis functions on 𝑁 times
𝐭 = {1∕𝑁, 2∕𝑁,… , 1}, and let𝐘 = {𝑌1(𝐬), 𝑌1(𝐬), … , 𝑌𝑁(𝐬)}⊤

be the𝑚 × 𝑁-matrix of the observed functional time series,
where each column represents observations of each con-
tinuous curve. Then, considering (2),model (1) can bewrit-
ten as

𝐘 = 𝐕𝚯𝐙⊤ + 𝐗, (7)

where 𝐗 denotes the 𝑚 × 𝑁-matrix representing the eval-
uation of the functional time series 𝑋𝑛(𝑠) at 𝐬, for 𝑛 =

1,… ,𝑁.
Thus, by using (6), the optimization problem (4) is equiv-

alent to argmin𝚯 ‖𝐘 − 𝐕𝚯𝐙⊤‖2 + {vec(𝚯)}⊤{𝜆1𝑱𝜼 ⊗  1 +

𝜆2 2 ⊗ 𝑱𝝂}vec(𝚯), where ‖⋅‖ is the Frobenius norm, that
is, ‖𝐄‖ = (

∑∑|𝑒𝑖𝑗|2)1∕2 if 𝐄 = (𝑒𝑖𝑗). Thus, the solution �̂�

for 𝚯 satisfies,[
(𝐙 ⊗ 𝐕)⊤(𝐙 ⊗ 𝐕) + 𝜆1𝑱𝜼 ⊗  1 + 𝜆2 2 ⊗ 𝑱𝝂

]
vec(�̂�)

= (𝐙 ⊗ 𝐕)⊤vec(𝐘). (8)

Then, given 𝜆1 and 𝜆2, Equation (8) can be solved with the
smooth.bibasis function in the fda R package.

Proposition 2. Assume that the functional time series is
observed in a matrix form {𝑌𝑛(𝑠𝑖)}, 𝑛 = 1… ,𝑁, 𝑖 = 1, … ,𝑚,
on a regular grid 𝐬 = {𝑠1, … , 𝑠𝑚}, and follows model (1).
Suppose that {𝑋𝑛} is an 𝐿4 − 𝑚-approximable sequence,
and that the functional trend has a tensor product repre-
sentation𝑇(𝑠, 𝑡) = 𝝂⊤(𝑠)𝚯𝜼(𝑡)with fourth-order derivatives.
Then, under Assumptions 1-3, with the sample size𝑁𝑚,

𝔼
{‖�̂�(𝑠, 𝑡) − 𝑇(𝑠, 𝑡)‖2

𝐿2

}
= 𝑜(1),

where �̂�(𝑠, 𝑡) = 𝝂⊤(𝑠)�̂�𝜼(𝑡), and �̂� is the solution of Equa-
tion (8).
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Remark 2. If each curve of the functional time series is
observed on an irregular or sparse grid, we can always
write model (1) in a matrix form as in (7), with 𝐕 and 𝐙

matrices evaluated on the corresponding grids.

3.3 Smoothing parameters selection

When considering penalized regression splines, the num-
ber of basis functions 𝑘1 and 𝑘2 (or knots) do not have a sig-
nificant influence on the resulting penalized fit (Ruppert,
2002). Usually, the number of basis functions grows with
the sample size, but at a slower rate. Thus, the selection of
𝜆1 and 𝜆2 is more crucial, since these parameters control
the flexibility of the tensor product. One of the advantages
of tensor product surfaces is that all methods for curves are
generalized easily. In particular, the methods to estimate
the smoothing parameter can be extended to surfaces,
such as cross-validation (CV), generalized cross-validation
(GCV), or Akaike information criterion (AIC). In Wood
(2006), the GCVmethod is used to estimate the smoothing
parameters 𝜆1 and 𝜆2. While these methods perform well
for uncorrelated errors, they perform poorly with corre-
lated errors, tending to underestimate (or overestimate)
the smoothing parameters. In general, nonparametric
estimators are sensitive to the presence of correlation in
the errors, and several methods have been proposed. In
Opsomer et al. (2001), one can find a general review of
the literature in kernel regression, smoothing splines, and
wavelet regression under correlated errors.
One possible solution to the correlated error problem

is using a linear mixed effect model to represent the
spline model. For instance, assume that the functional
time series {𝑌𝑛} follows a Gaussian process. Thus, vec(𝐘)

is a vector with Gaussian distribution, and vec(𝚯) can
be estimated from the penalized log-likelihood function.
Let �̂�ML be the estimator obtained from the penalized
log-likelihood function. If the vector vec(𝐗) in model (7)
has each entry being an independent random variable,
then �̂�ML satisfies Equation (8). Since the penalized ten-
sor product in (7) can be considered as a linear mixed
effect model, the estimator �̂�ML results in the posterior
Bayes estimate (or best linear unbiased predictor). The
latter has the advantage that the smoothing parameters
𝜆1 and 𝜆2 can be selected by using restricted maximum
likelihood (REML). Moreover, in Krivobokova and Kauer-
mann (2007) it is shown that the selection of the smooth-
ing parameters based on REML is robust under correla-
tion structures. Based on these observations, we propose
using the REML to select 𝜆1 and 𝜆2 under the assumption
of independent residuals and a Gaussian distribution, that
is, vec(𝐗) ∼ 𝑁(𝟎, 𝜎2

𝑋
𝐈𝑚𝑁) with 𝐈𝑚𝑁 as the identity matrix.

Although the extension is straightforward for surfaces, it is

computationally expensive. Since the penalty (3) of 𝑇(𝑠, 𝑡)

is for each coordinate separately, by taking into account
the average on the other coordinate, we propose using
the REML on the marginal mean data instead of using the
whole dataset. With our proposal, the computational time
is drastically reduced without losing the accuracy of the
estimator.
Specifically, we estimate 𝜆1 by using REML with the

empirical mean 1

𝑁

∑𝑁

𝑛=1
𝑌𝑛 of the observed functional

time series at 𝐬. Similarly, we estimate 𝜆2 by using the uni-
variate time series {∫ 𝑌1(𝑠)d𝑠, … , ∫ 𝑌𝑁(𝑠)d𝑠}. To gain an
intuition about this estimation, see the Supporting Infor-
mation. Once we have estimated 𝜆1 and 𝜆2 we solve (8)
to obtain �̂�.

Remark 3. The estimated smoothing parameter �̂�1 con-
trols the shape of the mean curve of the functional time
series {𝑌𝑛}. On the other hand, the mean curve represents
the common shape of the functional data over time. Thus,
�̂�(𝑠, 𝑡) is expected to represent the shape in the 𝑠 coordi-
nate. The estimated smoothing parameter �̂�2 represents
the shape of the trend of the average data in each period
𝑛 = 1,… ,𝑁. That is, �̂�2 controls the common trend of the
functional time series, and so �̂�(𝑠, 𝑡) represents the shape
of the functional trend.

The methodology proposed here to estimate the func-
tional trend in functional time series is easy to imple-
ment and computationally efficient. To obtain the estima-
tors �̂�1 and �̂�2, we can use the gam function in the mgcv
package. Given �̂�1 and �̂�2, we can obtain �̂� using the
smooth.bibasis function in the fda package. An R code
example of this implementation is included in the Support-
ing Information.

4 NUMERICAL PROPERTIES

4.1 Preliminaries

We investigate the performance of our proposed method
under different scenarios. We use the gam function com-
bined with the smooth.bibasis function in themgcv and
fda (Ramsay et al., 2018) packages, respectively. To the
best of our knowledge, there is no paper addressing func-
tional trend estimation when functional data are observed
over time.
In the literature of nonparametric models, we can find

methods related to the estimation of𝑇(𝑠, 𝑡). However, these
methods assume that the residuals {𝑋𝑛(𝑠𝑖)} are indepen-
dent (or uncorrelated) for all 𝑛 = 1,… ,𝑁 and 𝑖 = 1, … ,𝑚.
Notice that our method does not require independence or
stationarity of {𝑋𝑛(𝑠𝑖)}

𝑚
𝑖=1
.
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We denote our method as 𝑇TPS, where TPS stand for
tensor product surface. We compare it with the following
estimators:

1) Finite element method: �̂�FEM(𝑠, 𝑡) ∶=
∑𝑘

𝑗=1
�̂�𝑗𝜓𝑗(𝑠, 𝑡),

where 𝜓𝑗 is a quadratic basis function associated with
each node defined at points where data are observed,
that is, (𝑠𝑖, 𝑡𝑛). The coefficients �̂�𝑗 are obtained using a
penalized least square method. Details of this method
can be found inAzzimonti et al. (2015). For thismethod,
we use the fdaPDE package (Lila et al., 2019) to obtain
�̂�FEM(𝑠, 𝑡).

2) Kernel method: �̂�Ker(𝑠, 𝑡) ∶=

∑𝑁

𝑛=1 𝑌𝑛(𝑠)𝐾{
(𝑠,𝑡)−(𝑠,𝑛∕𝑁)

ℎ
}∑𝑁

𝑛=1 𝐾{
(𝑠,𝑡)−(𝑠,𝑛∕𝑁)

ℎ
}

,

where 𝐾(𝑠, 𝑡) =
1

2𝜋
exp{−

𝑠2+𝑡2

2
}. The bandwidth ℎ is

selected via CV.
3) Linear trend: �̂�Lin(𝑠, 𝑡) ∶= �̂�(𝑠) + 𝑡𝑓(𝑠), where �̂�(𝑠) =

�̄�𝑛(𝑠) − 𝑓(𝑠)
𝑁+1

2
, and 𝑓(𝑠) =

1

𝑠𝑁

∑𝑁

𝑛=1
(𝑛 −

𝑁+1

2
)𝑌𝑛(𝑠)

with 𝑠𝑁 =
∑𝑁

𝑛=1
(𝑛 −

𝑁+1

2
)2.

4) Naive method: For each 𝑠𝑖 ∈ {𝑠1, … , 𝑠𝑚}, �̂�Naiv(𝑠𝑖, 𝑡) ∶=∑𝑘2

𝑗=1
�̂�𝑗(𝑠𝑖)𝜂𝑗(𝑡), where (𝜂1, … , 𝜂𝑘2

) is a B-spline basis
function. The coefficients �̂�𝑗 are obtained via a penal-
ized least squares method, and using the fda package
(Ramsay et al., 2018). The penalty term is selected via
GCV.

5) Sandwich smoother: �̂�Sand(𝑠, 𝑡) ∶=
∑𝑘1

𝑗=1

∑𝑘2

𝑖=1

�̂�𝑗,𝑖𝜈𝑗(𝑠)𝜂𝑖(𝑡). This estimator has the same form as
(2), but the smoothing method is different (see Xiao
et al., 2013). The sandwich smoother is implemented
in the fbps command in the refund package (Gold-
smith et al., 2018), and the corresponding smoothing
parameters are selected via GCV.

6) Thin plate regression splines: �̂�ThinP(𝑠, 𝑡) ∶=∑𝑘1

𝑗=1

∑𝑘2

𝑖=1
�̂�𝑗,𝑖𝜈𝑗(𝑠)𝜂𝑖(𝑡). This estimator is a tensor

product as well with a thin plate energy penalty
(see Wood, 2003). This method is implemented in
the gam command in the mgcv package. The cor-
responding smoothing parameter is selected via
GCV.

The estimator �̂�FEM(𝑠, 𝑡) is commonly used in cases
where the domain is complex. In our case, the domain is
a simple rectangle. �̂�Lin(𝑠, 𝑡) is a basic parametric linear
trend model, and we use it as a baseline to measure the
accuracy of our method in the simplest case (linear).
�̂�Naiv(𝑠, 𝑡) is the most commonly used estimator on func-
tional magnetic resonance imaging (fMRI) data to detrend
time series at each voxel separately, see, for example,
Tanabe et al. (2002) and Ombao et al. (2017). �̂�Sand(𝑠, 𝑡) and
�̂�ThinP(𝑠, 𝑡) are smooth tensor product surfaces proposed
in nonparametric regression.

4.2 Simulation setting

We simulate {𝑌𝑛(𝑠); 𝑠 ∈ [0, 1], 𝑛 = 1,… ,𝑁} from
model (1) with six different functional trends,
𝑇(𝑠, 𝑡), defined as follows: (a) 𝑇1(𝑠, 𝑡) = 2𝑠 + 30𝑡, (b)
𝑇2(𝑠, 𝑡) = 25𝑡 sin(2𝜋𝑠), (c) 𝑇3(𝑠, 𝑡) = 20𝑡2 − 5𝑡 + 5, (d)
𝑇4(𝑠, 𝑡) = 2(0.5𝑠 + 4𝑡)2, (e) 𝑇5(𝑠, 𝑡) = 28 sin(2𝜋𝑡 + 𝑠),
and (f) 𝑇6(𝑠, 𝑡) =

4.5

𝜋𝜎𝑠𝜎𝑡

exp{
−(𝑠−0.2)2

𝜎2
𝑠

−
(𝑡−0.3)2

𝜎2
𝑡

} +
2.7

𝜋𝜎𝑠𝜎𝑡

exp{
−(𝑠−0.7)2

𝜎2
𝑠

−
(𝑡−0.8)2

𝜎2
𝑡

}, with 𝜎𝑠 = 0.3 and 𝜎𝑡 = 0.4. The

function 𝑇6(𝑠, 𝑡) was used in Wood (2003) and in Xiao
et al. (2013) to study the performance of �̂�ThinP(𝑠, 𝑡) and
�̂�Sand(𝑠, 𝑡), respectively. The resulting surfaces for each
of these models can be visualized in the Supporting
Information.
The stationary functional time series component, {𝑋𝑛},

is simulated from the functional autoregressive model
of order one (FAR(1)), defined as 𝑋𝑛(𝑠) = 𝐶1 ∫[0,1]
𝛽(𝑢, 𝑠)𝑋𝑛−1(𝑢)d𝑢 + 𝑊𝑛(𝑠), with kernel 𝛽(𝑢, 𝑣) =

exp{−(𝑢2 + 𝑣2)∕2}, and functional white noise {𝑊𝑛}

as independent Brownian motion defined in [0,1], where
the scalar 𝐶1 is such that the norm of the corresponding
coefficient operator is 0.7, that is, {∫

[0,1]
∫
[0,1]

𝛽2(𝑢, 𝑣)

d𝑢d𝑣}1∕2 = 0.7. We consider different sample sizes
𝑁 = 100, 300, and 500. For each 𝑛 = 1,… ,𝑁, we simulate
𝑌𝑛(𝑠) on an equispaced 50-point grid on [0,1]. Each
simulation set is replicated 1000 times.
For each simulation, we compute the functional trend.

For our method 𝑇TPS and for methods 4), 5), and 6), we
fix 𝑘1 = 10 and 𝑘2 = 15 in all cases. To compare the per-
formance of our estimator �̂�TPS with the competitors, we
consider two different criteria.
First, we evaluate the accuracy of the estimation of

the functional trend component, computing the cor-
responding integrated squared error (ISE𝑇) defined as
ISE2

𝑇 = ∫
[0,1]

∫
[0,1]

{𝑇(𝑠, 𝑡) − �̂�(𝑠, 𝑡)}2d𝑠 d𝑡. Second, we eval-
uate the accuracy of the estimation of the kernel 𝛽(𝑢, 𝑣)
after removing the estimated functional trend. To do this,
we estimate the kernel 𝛽 from the residual functional
time series {�̃�𝑛(𝑠)} = {𝑌𝑛(𝑠) − �̂�(𝑠, 𝑛∕𝑁)}. We denote this
estimator by 𝛽𝑌 . Since our goal is not to have the best
estimator of the kernel 𝛽, we assume that 𝛽𝑋 is the truth,
where 𝛽𝑋 is the estimator obtained from the original
simulated functional time series {𝑋𝑛}. Thus, we compare
the estimator 𝛽𝑌 with the estimator 𝛽𝑋 by computing the
corresponding integrated squared error (ISE𝛽) defined
as ISE2

𝛽 = ∫
𝐷
∫
𝐷
{𝛽𝑋(𝑠, 𝑡) − 𝛽𝑌(𝑠, 𝑡)}2d𝑠 d𝑡. The kernel

estimators 𝛽𝑌 and 𝛽𝑋 are obtained by using the linmod
function with 15 B-spline basis functions for each coordi-
nate 𝑢 and 𝑣. Other parameters required in the linmod
function are set to be equal in both cases, 𝛽𝑌 and 𝛽𝑋 , to
make them comparable.
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F IGURE 2 Boxplots of the ISE
2
𝑇 values for each simulation {𝑌𝑛, 𝑛 = 1,… ,𝑁}with functional trends 𝑇1 and 𝑇2, and different sample sizes

𝑁 = 100, 300, and 500. A red arrow indicates that the ISE
2
𝑇 values are out of visual range, and its mean is reported. Our proposed estimator

�̂�TPS and �̂�Lin outperform the others

The value ISE𝑇 represents the error approximation
of the functional trend, while ISE𝛽 indicates the differ-
ence between {𝑌𝑛(𝑠) − �̂�(𝑠, 𝑛∕𝑁)} and {𝑋𝑛} in terms of
dependency structure over time. Thus, ISE𝛽 can be inter-
preted as the error dependency structure between {𝑌𝑛(𝑠) −

�̂�(𝑠, 𝑛∕𝑁)} and {𝑋𝑛} that is caused by the error approxima-
tion 𝑇(𝑠, 𝑡) − �̂�(𝑠, 𝑡) of the functional trend.

4.3 Simulation results

We present the results according to the shape of the
functional trends over time: linear (Figure 2), quadratic
(Figure 3), and complex (Figure 4).
Figure 2 shows that our estimator �̂�TPS and �̂�Lin are

highly accurate for the linear functional trends 𝑇1 and
𝑇2. Both estimators have the lowest error values, and they
decrease when the sample size increases. Thus, in these
cases, our proposed estimator performs as well as the

parametric estimator �̂�Lin, with the advantage that our
estimator does not require the specification of the func-
tional trend shape. The results are similar for the func-
tional trends 𝑇3 and 𝑇4 (Figure 3). The ISE𝑇 values for
�̂�TPS remain as accurate as in the linear trends, except
that the ISE𝑇 values for �̂�Lin become significantly larger,
which is expected since the functional trends are not lin-
ear anymore. Therefore, our proposed estimator outper-
forms the rest of the estimators on the quadratic functional
trend. The latter conclusion extends to the 𝑇5 and 𝑇6 func-
tional trends. Also, we observe that, in the case of nonlin-
ear trends, the �̂�Naiv estimator is the second best estimator
after our method.
Next, we analyze the ISE𝛽 values that represent the

errors of the dependency structure caused by the error
approximation of the functional trend estimator. We only
present results corresponding to sample size𝑁 = 300. The
results from 𝑁 = 100 and 𝑁 = 500 are similar. Boxplots
of all cases can be found in the Supporting Information.
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F IGURE 3 Boxplots of the ISE
2
𝑇 values for each simulation {𝑌𝑛, 𝑛 = 1,… ,𝑁} with functional trends 𝑇3 and 𝑇4 and different sample sizes

𝑁 = 100, 300, and 500. A red arrow indicates that the ISE
2
𝑇 values are out of visual range, and its mean is reported. Our proposed estimator

�̂�TPS outperforms the others

Table 1 shows the corresponding mean values and the
standard deviations in parenthesis. We observe that the
ISE𝛽 values behave similarly to the ISE𝑇 values in almost
all cases of different functional trends, except for the trend
𝑇6. The ISE𝛽 values are similar for �̂�TPS and �̂�Lin when
considering functional trends 𝑇1 and 𝑇2. For 𝑇3 and 𝑇4,
the ISE𝛽 values are significantly larger with the competitor
estimators, whereas, for the �̂�TPS estimator, the ISE𝛽 values
remain small. The conclusion is the same for the func-
tional trend 𝑇5. For 𝑇6, surprisingly, the estimator �̂�FEM

presents the lowest mean value of ISE𝛽 . However, �̂�FEM

performs poorly in all cases when approximating the func-
tional trend, that is, �̂�FEM presents the largest ISE𝑇 values.
In general, we conclude that our proposed estimator per-

forms well in all cases, even with simple models such as
models 𝑇1 and 𝑇2 of the functional trend. It has the advan-
tage of being applicable to a general class of functional
trends with complex structures, and accurately describes
the functional trends.

5 DATA ANALYSIS

5.1 Objectives

In this section, we apply our methodology on annual
mortality rates in France. Our goal is to show that the
consideration of a functional trend from a functional point
of view improves data analysis, in particular data fore-
casting. We model the dataset considering the functional
trend described in Section 2.2. Then, we compare the
forecasts with the model without considering the func-
tional trend.
To forecast functional time series, we adopt one of

the most feasible and commonly used procedures. Let
{𝑍𝑛(𝑠), 𝑛 = 1,… ,𝑁} be a functional time series with sam-
ple size 𝑁. For each 𝑛, 𝑍𝑛 is transformed into a vector
time series of dimension 𝑟, 𝐙𝑛 = (𝑧𝑛,1, … , 𝑧𝑛,𝑟)

⊤, by pro-
jecting 𝑍𝑛 into 𝑟 functional principal components. Then,
the multivariate time series {𝐙𝑛, 𝑛 = 1,… ,𝑁} is modeled
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F IGURE 4 Boxplots of the ISE
2
𝑇 values for each simulation {𝑌𝑛, 𝑛 = 1,… ,𝑁} with functional trends 𝑇5 and 𝑇6, and different sample

sizes 𝑁 = 100, 300, and 500. A red arrow indicates that the ISE
2
𝑇 values are out of visual range, and its mean is reported. Our estimator �̂�TPS

has a good performance in all cases

TABLE 1 Mean of the ISE
2
𝛽 values for each simulation {𝑌𝑛, 𝑛 = 1,… ,𝑁} with different functional trends, 𝑇𝑖(𝑠, 𝑡), and sample size

𝑁 = 300

𝑻𝟏(𝒔, 𝒕) 𝑻𝟐(𝒔, 𝒕) 𝑻𝟑(𝒔, 𝒕) 𝑻𝟒(𝒔, 𝒕) 𝑻𝟓(𝒔, 𝒕) 𝑻𝟔(𝒔, 𝒕)

TPS 0.028 (0.02) 0.030 (0.02) 𝟎.𝟎𝟓𝟕 (0.03) 𝟎.𝟎𝟕𝟔 (0.04) 𝟎.𝟏𝟏𝟒 (0.05) 0.371 (0.09)
Lin 𝟎.𝟎𝟏𝟒 (0.01) 𝟎.𝟎𝟏𝟓 (0.02) 0.452 (0.07) 0.464 (0.07) 1.071 (0.07) 0.955 (0.05)
Naiv 0.151 (0.06) 0.154 (0.06) 0.154 (0.06) 0.158 (0.06) 0.153 (0.06) 0.153 (0.06)
Sand 0.157 (0.06) 0.159 (0.06) 0.159 (0.06) 0.162 (0.06) 0.157 (0.06) 0.158 (0.06)
ThinP 0.165 (0.06) 0.169 (0.06) 0.168 (0.06) 0.173 (0.06) 0.166 (0.06) 0.168 (0.06)
Ker 0.263 (0.06) 0.320 (0.07) 0.276 (0.06) 0.209 (0.06) 0.251 (0.06) 0.297 (0.07)
FEM 0.080 (0.04) 0.432 (0.04) 0.068 (0.03) 0.221 (0.06) 0.160 (0.04) 𝟎.𝟏𝟒𝟓 (0.03)

Bold font is used to highlight the best performance. The corresponding standard deviations are indicated in parenthesis.

by using VAR(𝑝) or autoregressive integratedmoving aver-
age (ARIMA) models. Using the fitted time series model,
and forℎ fixed, we obtain theℎ-step ahead forecast �̂�𝑁+ℎ =

(�̂�𝑁+ℎ,1, … , �̂�𝑁+ℎ,𝑟)
⊤. Finally, we multiply the predicted

vector �̂�𝑁+ℎ by the 𝑟 estimated principal components to
obtain the ℎ-step ahead forecast of functional time series

�̂�𝑁+ℎ(𝑠) (see Hyndman and Ullah, 2007; Aue et al., 2015,
for more details). Here, we model each component of {𝐙𝑛}

separately, similarly as in Hyndman and Ullah (2007).
Thus, to see the differences between considering and

not considering the functional trend 𝑇(𝑠, 𝑡), we apply
the latter methodology described in the functional time
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F IGURE 5 Results of data analysis. (a) Estimated components of the model (1). (b) Four consecutive curves of log mortality rates with
their corresponding forecasted curves. The solid curves (blue) represent the true curves 𝑌2003(𝑠), … , 𝑌2006(𝑠); the dotted curves (red) represent
the forecasted curves considering the functional trend, using the time series {�̃�𝑛,𝑟}; the dashed curves (green) represent the predicted curves
without considering the functional trend, using the time series {𝑦𝑛,𝑟}

series {𝑌𝑛, 𝑛 = 1,… ,𝑁}, and in the functional time series
{�̃�𝑛, 𝑛 = 1,… ,𝑁}, where �̃�𝑛(𝑠) ∶= 𝑌𝑛(𝑠) − �̂�(𝑠, 𝑛∕𝑁) and
�̂�(𝑠, 𝑛∕𝑁) is obtained as described in Section 2. The corre-
spondingmodels for the univariate time series are selected
with AIC.

5.2 Mortality rates in France

This dataset consists of 191 curves of annualmortality rates
in France, from 1816 to 2006, for individuals from zero to

100 years old. Each point of the curve 𝑌𝑛(𝑠) represents
the log of the mortality rate, in year 𝑛, at age 𝑠. At first
glance from Figure 5a (left), we can say that the functional
time series {𝑌𝑛} is nonstationary, and also we can observe
a decreasing trend over the years. After applying the sta-
tionarity test proposed by Horváth et al. (2014), we obtain
a 𝑝-value equal to 0.003, and the smaller the 𝑝-value, the
more evidence against the stationarity. Thus, we consider
model (1).
To evaluate the performance of the forecast, we remove

the last four curves of {𝑌𝑛}, that is, we only consider
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curves from 1816 to 2002, with 𝑁 = 187. Figure 5
shows the resulting functional time series 𝑌𝑛, the esti-
mated functional trend �̂�(𝑠, 𝑡), and the functional time
series {�̃�𝑛} after removing the trend (left to right).
We fit autoregressive moving average (ARMA) mod-
els for the coefficients {�̃�𝑛,𝑟, 𝑛 = 1816, … , 2002}, 𝑟 = 1, 2,

3, 4. Then, we forecast the four curves ̂̃𝑋2003,
̂̃𝑋2004,

̂̃𝑋2005,
and ̂̃𝑋2006. The models fitted for {�̃�𝑛,𝑟} are: ARMA(1,0)
with zero mean and coefficient 0.7506, ARMA(1,0) with
zero mean and coefficient 0.9825, ARMA(1,1) with zero
mean and coefficients (ar = 0.9212,ma = −0.5593), and
ARMA(2,0) with zero mean and coefficient (ar1 = 0.4492,

ar2 = 0.3601), for 𝑟 = 1, 2, 3, and 4, respectively. Also, we
forecast the four functional trends �̂�2003, �̂�2004, �̂�2005, and
�̂�2006 as described in (5). Finally, we obtain the forecast of
the log mortality rate �̂�2002+ℎ(𝑠) = �̂�2002+ℎ(𝑠) +

̂̃𝑋2002+ℎ(𝑠)

for ℎ = 1, 2, 3, 4.
For the case in which the functional trend is not

considered, we fit ARIMA models for the coefficients
of the projected functional time series, {𝑦𝑛,𝑟}. In this
case, the models fitted are ARIMA(1,1,1) with coefficients
(ar = 0.6562,ma = −0.8259, drif t = −0.1213), ARIMA
(1,1,1) with coefficients (ar = 0.7606,ma = −0.9668),
ARIMA(1,0,1) with coefficients (ar = 0.8853,ma =

−0.5156), ARIMA(3,1,1) with coefficients (ar1 = 0.2569,

ar2 = 0.2362, ar3 = −0.1590,ma1 = −0.6719), for 𝑟 = 1,

2, 3, and 4, respectively. We observe that, when the func-
tional trend is not removed, the time series corresponding
to the first principal component {𝑦𝑛,1} seems to absorb the
trend component. The corresponding time series plots can
be found in the Supporting Information (Figure 6).
Figure 5b shows the four forecasted curves. We use dif-

ferent line types and colors to indicate the true curves
and forecasted curves (these figures appear in color in
the electronic version of this article, and any mention of
color refers to that version). The solid curves (blue) rep-
resent the true curves 𝑌2002+ℎ(𝑠), the dotted curves (red)
represent the forecasted curves considering the functional
trend, that is, using the time series {�̃�𝑛,𝑟} and forecasting
the functional trend, and the dashed curves (green) rep-
resent the forecasted curves without considering the func-
tional trend, that is, using the time series {𝑦𝑛,𝑟}. Although
both methods seem to perform well, the forecasted curves
obtained when considering functional trend are more
accurate. Namely, the sum of the 𝐿1 distance between the
truth curves and the predicted curves for each method
is 0.449 and 0.164, without/with considering functional
trend, respectively.
We observe that the forecasted curves obtained when

considering a functional trend are more accurate, that is,
they are closer to the true curves, whereas the forecasted
curves obtained when a functional trend is not taken into

account are farther away from the true curves. Thus, the
consideration of estimating the functional trend improves
data analysis. Based on this, we conclude that the statis-
tical analysis is more accurate when the functional trend
is taken into account from the functional point of view.
We recommend estimating such a functional trend before
modeling the stochastic component {𝑋𝑛} in model (1),
either using dimension reduction techniques such as func-
tional principal component, or using a functional time
series model such as the functional autoregressive models,
FAR(𝑝).

6 DISCUSSION

In our study, we assumed a functional time series with
a trend component (functional trend). We proposed
estimating the functional trend by using a tensor product
surface, and taking into account the dependency of the
data. To obtain smoothness properties of the estimator, we
used marginal penalties. The smoothing parameters were
selected based on restricted maximum likelihood, which
is robust under correlation structures. We showed that the
proposed estimator of the functional trend is consistent
when the sample sizes go to infinity. One of the advantages
of our proposal is that it is easy to implement by using
existing R packages, and it can handle large data. In the
Monte Carlo simulation, we showed that our functional
trend estimator performs well for simple and complex
structures of the functional trend.With the annual mortal-
ity rates data, we showed that when the functional trend
is estimated, it improves the inference and the forecasting.
With this work, we want to encourage taking into

account the deterministic component and estimate it
from a functional point of view for a functional time
series. So, we believe this work will be of interest for data
applications. Also, this work leads to a future project that
is the extension to functional time series with domain
in ℝ2, called surface time series (Martínez-Hernández
and Genton, 2020). Such an extension could benefit, for
example, fMRI data and spatio-temporal data in general.
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