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ABSTRACT
Environmental processes resolved at a sufficiently small scale in space and time inevitably display nonsta-
tionary behavior. Such processes are both challenging to model and computationally expensive when the
data size is large. Instead of modeling the global non-stationarity explicitly, local models can be applied to
disjoint regions of the domain. The choice of the size of these regions is dictated by a bias-variance trade-off;
large regions will have smaller variance and larger bias, whereas small regions will have higher variance and
smaller bias. From both the modeling and computational point of view, small regions are preferable to better
accommodate the non-stationarity. However, in practice, large regions are necessary to control the variance.
We propose a novel Bayesian three-step approach that allows for smaller regions without compromising
the increase of the variance that would follow. We are able to propagate the uncertainty from one step to
the next without issues caused by reusing the data. The improvement in inference also results in improved
prediction, as our simulated example shows. We illustrate this new approach on a dataset of simulated high-
resolution wind speed data over Saudi Arabia. Supplemental files for this article are available online.
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1. Introduction

The rising popularity of statistical methods for environmental
data calls for the development of new methods that are able
to capture the underlying varying dependencies and to pro-
vide computationally efficient inference for the ever increasing
amount of data. Traditional geostatistical approaches are not
only computationally intensive but are also based on station-
arity assumptions, which is convenient but too restrictive and
rarely realistic. For instance, wind at sufficiently small temporal
resolution (e.g., hourly or sub-hourly) tends to be more variable
over complex terrain than over flat surfaces due to geographical
features creating eddies. Additionally, failing to account for how
physical processes such as weather patterns vary over time or
space can lead to an unrealistic assessment of the dependence,
and hence suboptimal inference and prediction.

Traditionally, methods have focused on characterizing the
spatial and spatiotemporal non-stationarity explicitly via the
covariance function. The deformation method in Sampson and
Guttorp (1992) constructs a nonstationary covariance struc-
ture from a stationary structure by rescaling the spatial dis-
tance, which was subsequently extended to the Bayesian context
in Damian, Sampson, and Guttorp (2001) and Schmidt and
O’Hagan (2003). Another class of nonstationary methods is
built on the process convolution or kernel smoothing method,
introduced by Higdon (1998), which uses a spatially varying
kernel and a white noise process to create the covariance struc-
ture. Other well-known approaches to model non-stationarity
include representing the covariance function as a linear combi-
nation of basis functions and modeling the covariance matrix
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of the random coefficients (Nychka, Wikle, and Royle 2002),
and to account for the effect of covariate information directly
in the covariance function (Schmidt et al. 2011; Neto, Schmidt,
and Guttorp 2014). For a review on the existing literature on
nonstationary methods, see Risser (2016).

Although all of the above methods produce valid models,
their computational burden for inference and prediction can
be unfeasible for large datasets. Indeed, for evaluating a Gaus-
sian likelihood in a dataset of size n, O(n2) entries need to
be stored and O(n3) flops need to be computed for the log-
determinant and matrix factorization. This task is feasible in
modern computers only when n is at most a few tens of thou-
sands of points. Additionally, evaluating a nonstationary model
implies inference on a larger parameter space, which requires an
exponentially increasing number of likelihood evaluations for
frequentist inference or posterior sampling (Edwards, Castruc-
cio, and Hammerling 2020). To address the difficulties in com-
putation for large datasets, Nychka et al. (2018) used a multi-
resolution representation of Gaussian processes to represent
non-stationarity based on windowed estimates of the covariance
function under the assumption of local stationarity, and suc-
cessfully used this idea to emulate fields from climate models.
Kuusela and Stein (2018) proposed modeling Argo profiling
float data using locally stationary Gaussian process regression,
where parameter estimation and prediction were carried out
in a moving window. Other works related to moving window
methods have been developed and applied in Hammerling,
Michalak, and Kawa (2012) and Tadić et al. (2015) to model
remote sensing data.
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Figure 1. (a) Snapshot of 2 meters wind speed simulations at 84,494 locations over Saudi Arabia on 03/06/2010 averaged between 14:00 and 15:00 local time. The minimum
wind speed is around 0.3 m/s and the maximum is 14 m/s. (b) Location of the R = 2000 clusters.

The seminal work of Lindgren, Rue, and Lindström (2011)
predicated avoiding modeling the covariance function alto-
gether and modeled the data via a stochastic partial differential
equation (SPDE) instead. By considering a spatial field as a
solution of an SPDE, and describing the covariance function
only implicitly, inference is of the order O(n3/2) (Rue et al.
2017), thus allowing inference on considerably larger datasets
than covariance-based methods. The computational benefits
arise from the precision matrix (inverse covariance matrix)
resulting from the approximate stochastic weak solutions of
the SPDE, which has a Markovian structure where only close
neighbors are nonzero (Rue and Held 2005). By spatially varying
the coefficients in the SPDEs, it is also possible to construct a
variety of nonstationary models. Bolin and Lindgren (2011)
developed such a method for global ozone mapping, whereas
Bakka et al. (2019) defined a continuous solution to an SPDE
with spatially varying coefficients for solving problems that
involve a physical barrier to spatial correlation. By combining
the SPDE representation of a stationary Matérn field with the
deformation method, Hildeman, Bolin, and Rychlik (2019)
modeled non-stationarity in significant wave heights. Locally
nonstationary fields were considered in Fuglstad, Lindgren,
et al. (2015) by letting the coefficients in the SPDE vary with
position, and further discussed and generalized for spatially
varying marginal standard deviations and correlation structure
in Fuglstad, Simpson, et al. (2015). More recently, Fuglstad and
Castruccio (2020) formulated a global SPDE model with locally
varying coefficients with a change of structure across land and
ocean. Another application of the SPDE approach to model
non-stationarity is to include covariates directly into the model
parameters; see Ingebrigtsen, Lindgren, and Steinsland (2014)
for an application to annual precipitation in Norway.

The aim of this article is to develop a new method for
modeling large datasets with spatial dependence that not only
improves local models in terms of inference and prediction, but
is also computationally affordable. As a motivating example, we

use the high-resolution simulated wind data from a computer
model displayed in Figure 1(a). We partition this data into
several small disjoint subsets of the data, which we call “regions,”
as shown in Figure 1(b). Modeling and predicting such variable
over a large region present several challenges. First, the data
structure at this high resolution is very complex, with details
and features that are difficult to capture with a single model. As a
consequence, the assumption of stationarity for the entire region
is inappropriate. Second, because of the large number of loca-
tions, we need a method that is computationally efficient. We
show that our method is able to address not only the modeling
challenges arising from the inherent non-stationarity of hourly
wind, but also the computational issues that are implied by the
large data size.

When choosing the size of these regions, we face the con-
flicting issue of bias-variance trade-off in parameter estimation.
Ideally, one wants to choose regions that accurately capture the
features in the data (low variance), but also have high predictive
out-of-sample skills (low bias). Indeed, small regions reduce
the model bias and allow fast computations, at the expense of
low accuracy (high variance) in the parameter estimation. Large
regions instead allow a control of the variance but also imply
a sub-optimal characterization of the dependence structure,
hence a bias.

We propose a novel three-step approach, which simultane-
ously allows for small regions and low variance. The key is to
allow small regions to model the local dependence, and correct
the estimated parameter distribution with a smoothing step
that borrows strength from neighboring regions. The smooth-
ing step is performed so that it accounts for the uncertainty
of the parameter estimates from the first step. The resulting
smoothed distribution represents the adjusted uncertainty of
the local parameters, which is then used for refitting the mod-
els. Allowing this adjusted uncertainty to be used as a new
prior would imply the incorrect premise of the model being
influenced by the data twice, hence our approach restricts the
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Figure 2. Values of φr used to simulate R = 100 time series from (1) of length 50 (black squares), estimated values of φr from fitting the AR(1) model to the simulated
data (red circles), and estimates after fitting a smoothing spline (blue triangles). The left plot corresponds to simulations with fixed τ = 2 and the right plot corresponds
to τ = 1.

information propagation by including it as the new posterior
estimates instead. Crucially, the approach we propose is compu-
tationally fast and scalable to massive spatial datasets, as it can be
fully parallelized across regions. We start with a simple example
where the new posterior is the mode of the distribution from
the smoothing step. Then, using the wind data in Figure 1(a),
we show that it is possible improve the predictive performances
by also allowing the uncertainty to propagate from one step to
the next.

Our three-step approach is best exemplified by considering
a toy dataset, where each region consists of an autoregressive
process of order one, AR(1). We simulate R time series from this
model, where each time series contains T observations, yr =
{yr(1), . . . , yr(T)}⊤. For each r, the observations yr are assumed
to be conditionally independent, given the latent Gaussian ran-
dom field xr = {xr(1), . . . , xr(T)}⊤ and the hyperparameter φr :

yr(t) = xr(t) + ϵr(t), ϵr(t) iid∼ N (0, 1/τ ),

xr(t) = φrxr(t − 1) + ωr(t), ωr(t) iid∼ N (0, 1),
(1)

where t = 2, . . . , T is an index for time, |φr| < 1 and τ is the
fixed precision (known and the same for all time series). Figure 2
shows the different values of φr used to simulate R = 100 time
series from (1), where φr changes according to a series of sine
squared (black squares in Figure 2). For each time series, we
set T = 50 and two different values for the precision: τ = 2
and τ = 1 in Figures 2(a) and (b), respectively. In the first
step, we estimate local models for each time series (red circles
in Figure 2). In the second step, we apply a correction on the
parameters’ estimates from the first step, based on information
from neighboring regions (blue triangles in Figure 2). The third
step consists of refitting the model in (1) to each time series,
propagating the information from the adjusted posterior esti-
mates from the second step back into the analysis. Figure 2
shows that our correction improves the parameter estimates
substantially not only for the more extreme case where τ = 1 in
panel (b), but also when τ = 2 in panel (a). More details on this
example will be provided in Section 3.

The remainder of this article is organized as follows. In
Section 2, we provide an overview of the proposed methodology.
Further details of our approach using the AR(1) example are
given in Section 3. The application to the wind speed data in

Figure 1 is presented in Section 4. A comprehensive discussion
and conclusions are provided in Section 5.

2. Overview of the Proposed Methodology

2.1. Background

We consider a nonstationary and possibly very large dataset, and
a partition of the domain into regions where the assumption
of stationarity is plausible, defined as %r , r = 1, . . . , R, where
each observation is associated with exactly one %r . Each region
contains Nr observations, yr = {yr(1), . . . , yr(Nr)}⊤. For each
%r , consider the following hierarchical structure:

yr | xr , θ r ∼
Nr∏

i=1
π{yr(i) | xr(i), θ r},

xr | θ r ∼ π(xr | θ r),
θ r ∼ π(θ r),

(2)

where xr = {xr(1), . . . , xr(Nr)}⊤ is the vector of the latent
field that describes the underlying spatial dependence structure,
θ r is the m-dimensional vector of hyperparameters and π is
a generic distribution. The observations yr are assumed to be
conditionally independent, given xr and θ r . The resulting joint
posterior distribution of xr and θ r is given by

π(xr , θ r | yr) ∝ π(θ r)π(xr | θ r)
Nr∏

i=1
π{yr(i) | xr(i), θ r}.

Our main goal is to extract the posterior marginal distributions
for the elements of the latent field, π{xr(i) | yr} and hyperpa-
rameters, π{θr(j) | yr}, and use them to obtain predictive distri-
butions at unsampled locations. Calculation of these univariate
posterior distributions requires integrating with respect to xr
and θ r :

π{xr(i) | yr} =
∫

π(xr(i) | yr , θ r)π(θ r | yr)dθ r ,

i = 1, . . . , Nr ,

π{θr(j) | yr} =
∫

π(θ r | yr)dθ r(−j), j = 1, . . . , m,

(3)

where θ r(−j) is the vector of all but the jth hyperparame-
ter component omitted. When the integrals in (3) cannot be
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found analytically, approximations are typically obtained via
simulation-based methods such as MCMC. Alternatively, Rue,
Martino, and Chopin (2009) proposed an approximate Bayesian
inference approach that has become increasingly popular in the
last decade. Approximations for π(xr(i) | yr , θ r) and π(θ r | yr)
are obtained via a Laplace approximation (see Rue et al. 2017 for
a comprehensive review on this approximation). The posterior
π(θ r | yr) is computed as

π(θ r | yr) ≈ π(y | x, θ)π(x | θ)π(θ)

π̃(x | y, θ)

∣∣∣∣
x=x∗(θ)

= π̃(θ r | yr),

where π̃(x | y, θ) is a Laplace approximation, and x∗(θ) is the
mode of x for a specific value of θ . Similarly we obtain π̃(xr(i) |
yr , θ r), the approximation of π(xr(i) | yr , θ r). These are then
used to construct the following nested approximations

π̃{xr(i) | yr} =
∫

π̃(xr(i) | yr , θ r)π̃(θ r | yr)dθ r ,

i = 1, . . . , Nr ,

π̃{θr(j) | yr} =
∫

π̃(θ r | yr)dθ r(−j), j = 1, . . . , m.

(4)

2.2. Improving the Local Estimates

We propose a new method for improving the estimation of
π̃{θ r | yr} in (4) and hence also improving the estimated
π̃{xr(i) | yr}, for i = 1, . . . , Nr . Since each region is selected
to be small enough to approximate the local nonstationarity
well, the resulting parameters’ estimates are likely to have a large
variance, and smoothing across the regions is used to reduce it.

The method is based on two extra steps in the estimation
procedure from the previous section. In Step 2, we apply a
correction to the posteriors π̃(θ r | yr) by smoothing the
mode of this distribution across r. In Section 3, we show a
one-dimensional example with a smoothing spline, while in
Section 4.3, we describe the two-dimensional case with a spatial
model. We denote by π̃smooth(θ r | y) the resulting smoothed
distribution for region r in Step 2 of our approach, where y is the
combined datasets from all regions, that is, y = (y⊤

1 , . . . , y⊤
R )⊤.

In Step 3, the correction from Step 2 is propagated back into the
analysis as the posterior for each region:

π̃smooth{xr(i) | yr} =
∫

π̃(xr(i) | yr , θ r)π̃smooth(θ r | y)dθ r ,

i = 1, . . . , Nr ,

π̃smooth{θr(j) | yr} =
∫

π̃smooth(θ r | y)dθ r(−j), j = 1, . . . , m,
(5)

where π̃(xr(i) | yr , θ r) is obtained by plugging values of θ r from
π̃smooth(θ r | yr) obtained in Step 2. Step 3 is very computation-
ally efficient, since the posteriors for the hyperparameters have
already been estimated, and as in Step 1 the models for each
region can be fully parallelized. Also, as the posterior marginals
in (5) are the basis to derive the predictive distributions, the
proposed correction will also have a direct impact in prediction
performance.

Here, the vector θ r contains the hyperparameters that need to
be smoothed, while the ones that do not require the smoothing

are included in xr . In practice, it is more important to smooth
hyperparameters that have a higher variability and are harder to
estimate.

Our approach has a crucial difference compared to empirical
Bayes methods. The key is to account for the information from
the smoothing in Step 2 directly into the posterior distribution
in Step 3, as opposed to introducing it through priors as in
empirical Bayes methods. By doing so, we prevent the estimation
in Step 3 to be influenced by the likelihood of the data that
was already used in Step 1, and thus avoiding using the data
twice. Moreover, our approach allows for uncertainty propaga-
tion from Step 2 to Step 3.

3. Simulation With Spatially Varying AR(1) Process

3.1. Model Description

In Section 1, we briefly introduced our method on a simulated
example (see Figure 2) using the AR(1) model in (1). Here, we
provide all the details about the methodology in light of the steps
proposed in the previous section. For the ease of exposition,
we fix the precision τ in (1), so that for each region r only
the hyperparameter φr needs to be estimated. No covariates or
additional random effects have been included in (1), but the
steps below can be easily adapted to account for them.

The model is a special case of the hierarchical framework
proposed in (2). Indeed for the first equation of the hierarchy,
the likelihood of the data yr given the latent field xr and the
hyperparameter φr is given by

yr | xr , φr ∼ NT(xr , τ−1IT),

where IT is the T×T identity matrix and τ is the fixed precision,
while NT is a T-dimensional normal distribution. For the latent
process xr , we assume that the marginal distribution of xr(1)

is Gaussian with mean zero and variance 1/(1 − φ2
r ) to have

a stationary process. The joint distribution can be written as

π(xr | φr) ∼ NT(0, Q−1
x,r ),

where Qx,r is the tridiagonal precision matrix of an AR(1)
process.

The three steps of our approach can be summarized as fol-
lows:

Step 1: The model fitted to each region. Fit the AR(1) model
in (1) with fixed known τ to each time series, yr , separately.
Following the notation in Section 2, we define the variance-
stabilizing transformation θ r = θr = log

(
1+φr
1−φr

)
, where θr has

a normal prior with mean zero and precision 0.15, independent
across r. We then obtain the posterior marginal distributions for
the latent field and for the hyperparameter θr , which we denote
by π̃{xr(t) | yr} and π̃(θr | yr), respectively, for t = 1, . . . , T and
r = 1, . . . , R. Inference is performed using the R-INLA package
(Rue, Martino, and Chopin 2009).

Step 2: Smoothing the hyperparameter. As in Lindgren and
Rue (2008), we assume a continuous spline on a discrete set of
knots with a second-order random walk RW(2). We denote by
θ̂r the mode for π̃(θr | yr) from Step 1, and we assume a normal
distribution: θ̂r ∼ N (ur , τ−1

θ ;r ), where τθ ;r is the precision and is
such that log(τθ ;r) = log(1/ŜD2

r ), where ŜDr is the estimated



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 353

Figure 3. Comparison between nonsmoothing and smoothing changes in the posterior distribution of φr for the model (1). (a) Scaled log posterior distributions from
Step 1 (solid red) and Step 2 (dashed blue). (b) Scaled log-likelihood function. (c) Scaled log prior distributions from Step 1 (solid red) and Step 2 (dashed blue). The vertical
line is the true value φr = 0.88.

standard deviation of the posterior distribution π̃(θr | yr).
The vector u = (u1, . . . , uR)⊤ is assumed to have independent
second-order increments:

(2ur = ur − 2ur+1 + ur+2 ∼ N (0, τ−1
u ), r = 1, . . . , R − 2,

(6)
where τu is the precision parameter and can be used to control
the degree of smoothing across regions. Section 3.2 discusses a
method for choosing the optimal value of τu.

Step 3: Refit the model to each region using the estimated
mode. For each region r, we assume that the posterior distri-
bution for the hyperparameters, namely π̃smooth(θr | yr), is a
point mass concentrated at the mode of θ̂r from Step 2. Our
choice was dictated by ease of exposition, and in the wind
data application in Section 4.3 we will show a more general
approach with integration points and weights instead of just the
mode. The marginal posterior for the latent process xr is then
obtained from the first equation in (5). Because here there are no
hyperparameters that need to be re-estimated in this example,
refitting the model is equivalent to updating the posterior for xr
given the data under the smoothing from Step 2.

Step 3 implies a change of the original posterior in Step 1,
and hence a change in the prior of the model. While retrieving
the appropriate prior is not relevant for our method, it is still
however possible, and in the Appendix we show the steps to
do so. Figure 3 shows (a) the log posterior distributions, (b)
log-likelihood function, and (c) log prior distributions from
Step 1 (solid red) and Step 2 (dashed blue), for φr = 0.88.
The log prior distributions were obtained simply by subtracting
the log-likelihood from the log posterior distributions, and the
vertical line represents the true value. The proposed smoothing
in Step 2 concentrates the posterior (and consequently the prior)
considerably closer to the true value φr than a standard approach
with no smoothing. Similar results can be observed for other
choices of φr ; the mean absolute error across r of the estimated
mode posterior distributions from Steps 1 and 2 are 0.23 and
0.08, whereas the mean absolute error of the estimated mode
priors for these steps are 0.61 and 0.09, respectively.

3.2. Sensitivity of Prediction to Smoothing

There are different approaches to control the degree of
smoothness in Step 2. This can be, for instance, dictated by the
case study and prior knowledge. Here, we present one possible
method, which is based on two metrics: the first focuses on the

departure of the estimated posterior against the exact simulated
distribution, and the second is based on cross-validation.

To assess the improved accuracy in capturing the true distri-
bution of the latent process xr , for each value of φr , we calculate
the Kullback–Leibler (KL) divergence, a widely used metric for
comparing two probability distributions. The departure from
the true posterior π(xr | yr , φr) is defined as

KLr =
∫

π̃(xr | yr , φr) log
{

π̃(xr | yr , φr)

π(xr | yr , φr)

}
dxr , (7)

where φr in π̃ is calculated using either Step 1 or Step 2 of our
approach. A small KLr indicates a small departure from the tar-
get posterior, and a zero KLr indicates that the two distributions
are the same.

The data are simulated from a known model, and the poste-
rior distribution of the latent process π(xr | yr , φr) can be easily
obtained from the joint distribution π(xr , φr | yr):

π(xr | yr , φr) ∝ π(xr , φr | yr)

∝ exp
(

− 1
2

x⊤
r Qx,rxr

)

× exp
{

− 1
2
τ (x⊤

r xr − 2y⊤
r xr)

}

= exp
{

− 1
2

x⊤
r (Qx,r + τ I)xr + τy⊤

r xr

}

= exp
{

− 1
2

x⊤Prxr + b⊤
r xr

}
,

where Pr = Qx,r + τ I and b = y⊤
r τ . This implies that π(xr |

yr , φr) ∼ NT(µ0,r , "0,r), with µ0,r = P−1
r br and "0,r = P−1

r .
We also assume that the approximated posterior in (7) is normal,
that is, πappr(xr | yr , φr) ∼ NT(µ1,r , "1,r), and we obtain
µ1,r and "1,r based on the sample mean vector and covari-
ance matrix from 10,000 posterior samples. The KL divergence
expression in (7) can be simplified in the case of two multivari-
ate Gaussian distributions. Indeed, if the target distribution is
NT(µ0,r , "0,r) and the approximation is NT(µ1,r , "1,r), we have

KLr = 1
2

{
log |"1,r|

|"0,r|
− T + tr("−1

1,r "0,r)

+ (µ1,r − µ0,r)
⊤"−1

1,r (µ1,r − µ0,r)

}
,

where |"| denotes the determinant of ". Since the KL changes
across different orders of magnitudes, we opted for a variance
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Figure 4. Comparison of inference and prediction performances between the standard non-smoothing method and the proposed smoothing approach from fitting (1).
(a) EMLKL (dashed red, left y-axis) and KLr (black, right y-axis) for no smoothing along with 6 different degrees of smoothness. Lower values of log(τu) indicate less
smoothing. (b) Corresponding EMLCPO for the same degrees of smoothing.

stabilizing estimator, the expected mean log KL (EMLKL) diver-
gence, defined as EMLKL = exp

{
1
R

∑R
r=1 log(KLr)

}
.

Therefore, we assess the impact of smoothing on the pre-
diction skills of the estimated process. We use the conditional
predictive ordinate (CPO) for leave-one-out cross-validation,
defined as

CPOr(t) = π{yr(t)|yr(−t)}

=
∫

π{yr(t)|yr(−t), θr}π{θr|yr(−t)}dθr ,

where yr(−t) represents the vector of observations yr with the
tth component omitted. In other words, CPOr(t) is calculated
by first obtaining the predictive distribution at t given all but
the tth observation in the time series, and then evaluating
it at the actual withheld value yr(t). The CPO can be inter-
preted as a continuous equivalent of the posterior probability
that the observation is predicted from the model, so larger
values are preferable. The CPO can be computed efficiently
without rerunning the model R × T times (Held, Schrödle,
and Rue 2010). The CPOs are then aggregated in an over-
all score for comparing different models by averaging across
time and regions. As with the KL, we propose the expected
mean log conditional predictive ordinate (EMLCPO), defined as

EMLCPO = exp
[

1
RT

∑R
r=1

∑T
t=1 log{CPOr(t)}

]
, with models

having relatively higher values of EMLCPO, showing a better fit.
We compare the EMLKL and the EMLCPO based on six

different degrees of smoothing by changing the values of τu
in (6): log(τu) = {−5, −1, 3, 7, 11, 15}, with lower values of
log(τu) indicating less smoothing. Here, log(τu) = 15 results
in a constant value across the regions (complete smoothing), so
no larger values are considered. Figure 4 shows the results based
on (a) KL and on (b) CPO according to the various degrees of
smoothing. The first value in the x-axis, “no smooth,” corre-
sponds to the estimates directly from Step 1 of our approach.
According to the EMLKL (panel (a), left y-axis) and the EML-
CPO (panel (b)), the best fit occurs when log(τu) = 7 and
log(τu) = −5, respectively. For the EMLKL there is a min-
imal difference between the log(τu) = 3 and log(τu) = 7,

and the right y-axis highlights how the first choice results in
less variable KL divergences. Both scores show that there is
a clear improvement against a model with no smoothing for
log(τu) = {−5, −1, 3, 7}. After log(τu) = 7 the posteriors are
oversmoothed and this worsens the fit compared to no smooth-
ing (high EMLKL and low EMLCPO values). Evidence from
this numerical study suggests that smoothing almost always
improves the estimation of the latent process and prediction.
The overall agreement between EMLKL and EMLCPO is essen-
tial, as, in a real application, the actual underlying distribution is
unknown, and a cross-validation metric, such as the EMLCPO,
would be used for choosing the optimal degree of smoothness.

Smoothing does not just improve the prediction and decrease
the bias, but also results in less variable estimates. Figure 4(a)
(right y-axis) shows the spread of KLr for the different amounts
of smoothing, displayed as a boxplot. It is readily apparent that
optimal smoothing results in more stable estimates by decreas-
ing the variance across regions.

4. Application to the WRF Dataset

In this section, we apply the approaches in Section 2 to model
and predict a sizeable simulated wind speed dataset in Saudi
Arabia. The predictive ability at the sub-grid scale is of interest
for statistical downscaling. Interpolated wind from the numeri-
cal simulation can be used as a baseline to build a mathematical
relationship (e.g., pattern scaling) from in-situ ground wind data
at the same location, hence allowing to generate more accurate,
observation-driven wind maps

We apply our method to a spatial dataset of simulated wind
speed detailed in Section 4.1. In Section 4.2, we present the local
model that is fitted to each region and in Section 4.3, we explain
in details each step of our approach and present the results.

4.1. The WRF Dataset

We focus on a simulation generated by Yip (2018) from the
Weather Research and Forecasting (WRF) model, which is a
state-of-the-art Numerical Weather Prediction model, devel-
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oped at the National Center for Atmospheric Research and also
recently used in wind energy assessment in Tagle et al. (2020).
Mesoscale numerical models such as WRF rely on large-scale
atmospheric phenomena or meteorological reanalysis to pro-
vide boundary conditions and solve physical equations driving
the real processes on a fine scale. The boundary conditions used
to simulate the WRF data are obtained from the Modern-Era
Retrospective analysis for Research and Applications (MERRA,
Rienecker et al. 2011), a reanalysis product developed at NASA’s
Global Modeling and Assimilation Office, using the Goddard
Earth Observing System Version 5 general circulation model,
together with satellite and surface observations through a data
assimilation system.

Each simulation corresponds to hourly data of the zonal and
meridional (U and V) wind components on a regular grid of
769 × 659 points in space (5-km resolution) bounded by 5–
35◦N and 30–65◦E during the 2009–2014 period, at 2 meters
above ground level. The full dataset comprises of 506,771 spatial
locations. We select data that fall inside Saudi Arabia from
03/06/2010 between 14:00 and 15:00 local time, when wind
speeds tend to peak, resulting in 84,494 points in space. The U
and V components are converted into wind speed:

√
U2 + V2.

Figure 1(a) shows the map of the wind field.
We first partition the domain into R regions small enough so

that the assumption of stationarity is plausible. The disjoint sub-
sets are obtained using the k-means clustering method, which
minimizes the sum of squares from points to the assigned region
centers (Hartigan and Wong 1979). It is, in principle, possible
to provide a more formal assessment of stationarity and use
it as a metric for clustering, for example, by fitting directional
variograms to each region. However, because these estimates
are corrected with a smoothing step, the clustering method is
less critical. Our partition results into R = 2000 regions (see
Figure 1(b)), with the smallest region containing 26 locations
(≈28 × 28 km) and the largest 62 (≈48 × 48 km).

4.2. The Spatial Model

The distribution of wind speed is bounded below by zero and is
significantly right-skewed. Therefore, wind speed cannot be
directly modeled with the Gaussian distribution. Common
transformations for normalizing wind speed data include
logarithmic transformation and square-root transformation
(Taylor, McSharry, and Buizza 2009). Haslett and Raftery (1989)
showed that square-root transformation is well suited for wind
data, as the resulting transformed wind speed resembles the
Gaussian distribution. Hence, for each region r we model the
square-root transformed wind speed yr at sampling locations
s = (s1, . . . , sNr ) with a latent Gaussian model, a special case of
the hierarchical framework proposed in (2). For each region r,
we assume

yr(si) = zr(si)
⊤βr + ur(si) + ϵr(si), i = 1, . . . , Nr ,

where zr is a p-dimensional vector of covariates, and βr is the
vector of the linear coefficients. Here, {ϵr(s1), . . . , ϵr(sNr )} ∼
NNr (0, τ−1

ϵ,r INr ) is the iid random noise that accounts for the
model uncertainty. The aforementioned model can be written
in the vector form

yr|βr , ur , τϵ,r ∼ NNr (Zrβr + ur , τ−1
ϵ,r INr ), (8)

where yr = {y(s1), . . . , y(sNr )}⊤ is the observation vector and
the Nr × P design matrix is Zr = {zr(s1), . . . , zr(sNr )}⊤. We
consider p = 2, thus two covariates: elevation and distance to
the coast. In terms of the hierarchical framework in Section 2.1,
(8) is the first equation, that is, the data level, in (2).

The spatial field ur(si) is assumed to be Gaussian and
isotropic, with a covariance described by the Matérn function,
a widely popular choice in spatial statistics. For two locations
s1 and s2 at distance h = ∥s1 − s2∥, the Matérn covariance is
defined as (Stein 1999)

cov{ur(s1), ur(s2)} = Cr(h) = σ 2
u,r

1
*(νr)2νr−1 (κrh)νrKνr (κrh),

(9)
where σ 2

u,r = 1/τu,r is the marginal variance and Kνr is the
modified Bessel function of the second kind of order νr > 0. The
popularity of the Matérn is mainly attributable to the control of
the number of mean square derivatives of the underlying process
through the parameter νr . The range is controlled by κr > 0
and ρr = √

8νr/κr represents the distance at which the spatial
correlation is approximately 0.13, and we set νr = 1.

The vector of hyperparameters to be estimated is given by the
precision of the data, the precision of the latent process, and its
range, so that

θ r = (θ1,r , θ2,r , θ3,r)
⊤ = {log(τϵ,r), log(τu,r), log(ρr)}⊤.

The linear coefficients βr in (8) are less variable, so they are not
included in the vector of hyperparameters to be smoothed.

We provide a joint distribution for the range ρr and the
variance σ 2

u,r using the concept of the penalized complexity (PC)
prior that was recently introduced by Simpson et al. (2017).
PC develops priors that allow shrinkage toward a base model,
which is assumed to be the reference. The prior is then built
by allowing a control of the KL divergence from the base to the
actual model. Following Fuglstad et al. (2019), we assume a base
model with infinite range and precision, that is, a constant, and
we assign PC priors to ρr and τu,r that are able to control the
tail probabilities: P(σ 2

u,r > σ 2
0,r) = α1 and P(ρr < ρ0,r) = α2.

We choose α1 = α2 = 0.01, ρ0,r to be the 20% of the range of
the observations and σ 2

0,r the variance estimated from the data
at region r. In other words, we assume a prior that bounds the
variance to be larger than that estimated from the data with a
1% chance, and the range to be below 20% of the range of the
observations with a 1% chance. For r = 1, . . . , R, we assume a
vague Gamma prior with parameters 1 and 0.00005 for τϵ,r and
a vague Gaussian prior N (0, 1000) for βr . The priors are also
assumed to be independent across components. The R-INLA
package is used for model fitting and predictions (Rue, Martino,
and Chopin 2009).

4.3. Results

We now detail our approach with the data and the model
described in the previous sections. The three steps are described
as follows:

Step 1: The model fitted to each region. We fit the model
outlined in Section 4.2 to each of the R = 2000 regions in
Figure 1(b) separately, and obtain estimates of the posterior
distribution for the kth element of θ r for k = 1, 2, 3, which
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Figure 5. Map of the estimated (a) mode and (b) standard deviation of π̃(θ3,r | yr) for the R = 2000 regions shown in Figure 1(b). (c) posterior mode of π̃smooth(θ3,r | y).

we denote by π̃(θk,r | yr). We denote as θ̂k,r the mode of
π̃(θk,r | yr), while the posterior standard deviation is denoted
as ŜDk,r . We show the results for θ3,r = log(ρr), since the range
is the hardest parameter to identify, and hence the most variable
across regions. Figure 5(a) shows the maps of θ̂3,r . Many regions
have a considerably higher estimated posterior mode than the
neighboring regions, hence smoothing is necessary. Figure 5(b)
shows the map of the posterior standard deviation ŜD3,r , and it
is apparent how the locations with large range values correspond
to the ones with low posterior variance. The high variance in the
estimates of Figure 5(a) is a consequence of the small region size
needed to accommodate the nonstationarity. The region size is
another tuning parameter of the method, and cross-validation
could have been used to choose the optimal region size.

Step 2: Smoothing the hyperparameters. The modes θ̂k,r from
Step 1 are smoothed here independently across k for simplicity
and are normalized by subtracting the mean and dividing by its
standard deviation computed across r = 1, . . . , R, for each k.
For a general Matérn in region r with known smoothness νr ,
under infill asymptotics, only σ 2

r κ
2νr
r can be consistently esti-

mated (Zhang 2004). As the likelihood and the posteriors can
be concentrated around nonlinear manifolds of the parameter
space, modeling the hyperparameters in the log-scale alleviates
the problem of smoothing them separately. With an abuse of
notation, we now refer to θ r and their components as their
normalized version. We assume an additive model for smooth-
ing: θ̂k,r(sc) = uk(sc) + εk,r(sc), where the locations sc are the
centroids of each region r. The process uk(sc) is assumed to be
Gaussian and modeled with the Matérn covariance in (9), with
marginal variance σ̃ 2

u,k, range ρ̃k, and the iid noise is εk,r ∼
N (0, τ̃−1

ϵ;k,r), for k = 1, 2 and 3.
We assume τ̃ϵ;k,r to be fixed at the value of 1/ŜD2

k,r , r =
1, . . . , R, from Step 1. This ensures that the same degree of
smoothness is applied to all three additive models, that is,
the hyperparameters with a larger standard deviation will be
smoothed more than the ones with a smaller standard deviation.
Here, ρ̃k is fixed to half of the domain of the study region.
A choice of considerably different values, such as the size of

the domain, would result in oversmoothing. The choice of
τ̃u = 1/σ̃ 2

u,k is performed via cross-validation and will be
discussed later. Because θ̂k,r , k = 1, 2, 3, are at the same scale
after normalization, we can use the same smoothness and
therefore τ̃u will not be strongly dependent on k. We use six
equally spaced values for log(τ̃u), varying from −7.5 to 5. The
fitted values from the smoothing are then transformed back
from the normalized to the original scale. Figure 5(c) is an
example of the estimated posterior mode of π̃smooth(θ3,r | yr)
with log(τ̃u) = −5.

Step 3: Refit the model to each region using integration
points. In the AR(1) simulated example in Section 3, the
smoothed hyperparameter posterior was assumed to be a point
mass concentrated at the smoothed posterior mode from Step
2, so that calculation of π̃smooth{xr(i) | yr} in (5) was trivial. In
this application, we propose a more articulated method which
numerically approximates the integral in the first equation
of (5).

We use the Gauss–Hermite quadrature, a numerical scheme
to approximate integrals of the form

∫
e−ξ2 f (ξ)dξ ≈ ∑L

l=1
f {ξ (l)}((l) for a fixed L. The abscissas for the quadrature of order
L, which are given by the roots of the Hermite polynomials
ξ (l), and the weights ((l), both have a closed form expression
(Abramowitz and Stegun 1964).

We operate under the assumption that π̃smooth(θ r | y) can
be well approximated by a product of marginal normal distri-
butions π̃smooth(θ r | y) ≈ ∏3

k=1 N (µk,r , σ 2
k,r), where µk,r and

σ 2
k,r are the posterior mean and variance of π̃smooth(θk,r | y),

respectively. The independence implied by the product is made
for convenience, although empirically, we found a relatively low
correlation between the components of θ r . Also, because of the
log-scale, the posteriors can be well approximated by a Gaussian
distribution, and the first expression in (5) becomes

π̃smooth{xr(i) | yr}

=
∫

π̃smooth(xr | yr , θ r)
3∏

k=1

1√
2πσ 2

k,r
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× exp
{

− (θk,r − µk,r)2

2σ 2
k,r

}

dθ r

= 1√
π

∫
π̃smooth

(

xr | yr ,
3∑

k=1
µk,r +

√
2ξk,rσk,r

)

× exp
(

−
3∑

k=1
ξ 2

k,r

)

dξ1,rdξ2,rdξ3,r

≈ 1√
π

L∑

l1=1

L∑

l2=1

L∑

l3=1
π̃smooth

(

xr | yr ,
3∑

k=1
µk,r +

√
2ξ

(lk)
r σk,r

)

× ((l1)((l2)((l3),

where the latent field xr = (u⊤
r , β⊤

r )⊤ contains the linear
coefficients and the spatial process in (8). Using a change of
variables, we obtain ξk,r = θk,r−µk,r√

2σk,r
⇔ θk,r = µk,r +

√
2ξk,rσk,r .

For this case study, L = 5 integration points in each of the
three dimensions provide an approximation that is sufficiently
accurate. Thus, the required number of configurations to eval-
uate the integral is L3 = 53 = 125. Since each configuration
can be evaluated independently, the computations can be easily
parallelized.

4.4. Choice of the Smoothing Parameter

There is no true underlying model here, so the EMLKL in
Section 3.2 is not applicable and we only focus on the cross-
validation score EMLCPO. We compare the leave-one-out pre-
dictive performance using the different degrees of smoothing,
as explained previously in Section 3. Figure 6 shows this com-
parison: lower values of log(τ̃u) indicate more smoothing than
higher values. The highest value corresponds to the results
obtained directly from Step 1. The EMLCPO value attains its
maximum at log(τ̃u) = −5, and any of the smoothing levels
improves the original estimates from Step 1. Differently from
the AR(1) case in Section 3, where at some point the smooth-
ing becomes excessive and the scores progressively deteriorate,
here the performance is significantly improved even for a large
smoothing. We also compare the predictive performances of the
integration method against the approach using only the mode
as in the AR(1) case. The Gauss–Hermite integration shows
marginal improvement, especially for low degrees of smooth-
ing. For higher degrees of smoothing, the estimated posterior
distribution is more narrow, and the effect of the integration is
less apparent.

5. Discussion

In this work, we developed a new three-step approach for ana-
lyzing large datasets with spatial dependence that improves local
models in terms of inference and prediction. The method is scal-
able to extremely large spatial datasets and can properly prop-
agate the uncertainty across steps in a Bayesian framework. In
Step 1, the domain is partitioned into regions, and local models
are fit to each region. The size of these regions is a bias-variance
trade-off; larger regions will have a smaller variance and more
substantial bias, whereas smaller regions will have higher vari-

Figure 6. EMLCPO values for 6 different degrees of smoothness as well as no
smoothing, the last being the results directly from Step 1. The dashed red indicates
marginal posteriors computed with a point mass and the black solid with the Gauss–
Hermite quadrature. From left to right: very smooth to no smoothing.

ance and lower bias. We choose to use smaller regions, thus
allowing the capture of local non-stationarities, followed by a
correction for the high variance, based on borrowing informa-
tion from neighboring regions in Step 2, while accounting for
the uncertainty of the parameter estimates from Step 1. Finally,
in Step 3, the model is refitted to each region, propagating the
uncertainty from the smoothing back into the analysis as the
new posterior, thus avoiding problems of using the data twice.
The approach allows flexible modeling of complex dependence
structures, but is at the same time computationally affordable,
as the proposed adjustment is amenable to full parallelization
across regions.

In both the AR(1) simulated data and the application, the
improvement from our method compared to fitting local models
to each region is apparent. Indeed, the smoothing adjustment
allows us to better recover the actual posterior distribution in
the simulation study, and most importantly, it enables a superior
predictive skill. The smoothing can be chosen to achieve the
best possible advantage over the uncorrected model. Ad-hoc
sensitivity analysis shows that our method is robust concerning
the smoothing technique, with improved results for a wide range
of smoothings. The existing methods for the nonstationary case
involve highly complex model fitting strategies, and only a few
software is available (see, e.g., Gramacy 2007; Risser and Calder
2017). However, a detailed comparison with other methods
was not feasible due to the large size of our simulated wind
dataset, which could not be presently handled by either of these
packages.

Our method is general and can be applied to many settings:
space, time, space/time, and different domains, as long as a
partition is provided. It relies on local models defined through a
hierarchical latent process framework, a class large enough to
allow a wide range of applications. If better local models are
provided, our method can still be used to correct the variance
of the estimated parameters.

A limitation of this approach lies in the assumption of a
domain partition. For some applications such as wind, the
regions imply a discontinuity at the border, and hence prediction
at unsampled locations at the border might be suboptimal.
Partition-based approaches that do not imply independence
across blocks of the partition with a globally valid model are
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available. Castruccio and Stein (2013) and Castruccio and
Guinness (2017) proposed an evolutionary spectrum model to
capture temperature across latitude and day and night regimes,
respectively. If the nature of the problem suggests a change
in spatial dependence dictated by some geographical features
such as mountain range as proposed in Jeong et al. (2018),
then this strategy could be naturally employed with appropriate
likelihood approximation. For our domain and wind, however,
the partition must be provided by a clustering scheme such as
the k-means.

An application of our model to spatiotemporal data is pos-
sible. Still, it would likely require additional approximations
and a careful choice of the regions as the data size and the
hyperparameter space will be considerably larger.

Appendix: Retrieving the Priors

The refitting procedure in Step 3 of our approach uses the information
from Step 2 as the new posterior distribution. We show how to retrieve
the prior distribution that corresponds to the posterior for the toy
example in Section 3.

For each φr and corresponding data yr , with r = 1, . . . , R, let
π(yr | φr) be the likelihood of observing data yr given the hyper-
parameter φr . We denote by π̃(φr | yr) and π̃smooth(φr | yr) the
posterior distributions from Steps 1 and 3, respectively, and π̃(φr) and
π̃smooth(φr) are the corresponding priors.

From Bayes’ theorem, the prior distributions are given by
log{π̃(φr)} = A + log{π̃(φr | yr)} − log{π(yr | φr), }

log{π̃smooth(φr)} = A + log{π̃smooth(φr | yr)} − log{π(yr | φr)},
(A.1)

where A is the normalizing constant.
Recall that the posteriors π̃(φr | yr) and π̃smooth(φr | yr) in

the right-hand sides of (A.1), are readily available from Steps 1 and
2, respectively. Therefore, to evaluate π̃(φr) and π̃smooth(φr), what
remains to be computed is the likelihood term π(yr | φr), which is
the same in both equations given in (A.1). To compute this term, we
start by writing:

π(yr | φr) = π(yr , xr | φr)
π(xr | yr , φr)

, (A.2)

and then compute (A.2) in two steps:

1. The joint distribution π(yr , xr | φr) :
We assume that the marginal distribution of xr(1) is Gaussian

with mean zero and variance 1/(1 − φ2
r ). Then, we can express

the joint distribution of xr , π(xr | φr) = π{xr(1)}π{xr(2) |
xr(1)}, . . . , π{xr(T) | xr(T − 1)}, as

π(xr | φr) ∼ NT(0, Qx,r), (A.3)
where Qx,r is the tridiagonal precision matrix of an AR(1) process

Qx,r =

⎛

⎜⎜⎜⎜⎝

1 −φr
−φr 1 + φ2

r −φr
· · · · · · · · ·

−φr 1 + φ2
r −φr

−φr 1

⎞

⎟⎟⎟⎟⎠
.

It follows that the joint posterior distribution is

π(xr , φr | yr) ∝ π(φr)π(xr | φr)
T∏

t=1
π{yr(t) | xr(t), φr}

∝ π(φr)|Qx,r|1/2τ1/2

× exp
[

− 1
2

{
x⊤

r Qx,rxr + τ (yr − xr)⊤(yr − xr)
}]

.

(A.4)

2. The conditional distribution π(xr | yr , φr) :
We use the fact that the conditional distribution of xr is just the

joint distribution between xr and yr , without the terms that do not
depend on xr since yr and φr are fixed:

π(xr | yr , θr) ∝ π(yr , x | φr)

∝ exp
(

− 1
2

x⊤
r Qx,rxr

)

× exp
{

− 1
2
τ (x⊤

r xr − 2y⊤
r xr)

}

= exp
{

− 1
2

x⊤
r (Qx,r + τ I)xr + τy⊤

r xr

}
.

(A.5)

Using the canonical form of the multivariate Gaussian distribution,
we can write

π(xr | yr , φr) ∝ exp
(

− 1
2

x⊤
r Prxr + b⊤

r xr

)
,

where Pr = Qx,r + τ I and br = y⊤
r τ . It follows that

xr | yr , φr ∼ NT(P−1
r br , Pr).

Finally, from (A.4) and (A.5), we can write π(yr | φr) in (A.2)
evaluated at xr = 0 as

π(yr | φr)
∣∣∣∣
xr=0

∝
|Qx,r|1/2exp

(
− 1

2 τy⊤
r yr

)

|Pr|1/2exp
{

− 1
2 (−P−1

r br)⊤Pr(−P−1
r br)

}

= |Qx,r|1/2

|Pr|1/2exp
{

− 1
2 (b⊤r P−1

r br − τy⊤r yr)
} .

(A.6)
Next, from the posteriors π̃(φr | yr) and π̃smooth(φr | yr) on

the right-hand side of (A.1) that are computed in Steps 1 and 2,
respectively, together with the likelihood term in (A.6), we can obtain
the corresponding priors in (A.1). The right-hand side plot of Figure 3
shows these exact scaled log prior distributions.

Supplementary Materials

The supplementary material provides the R code to reproduce the example
in Section 3.
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Tadić, J. M., Qiu, X., Yadav, V., and Michalak, A. M. (2015), “Mapping
of Satellite Earth Observations Using Moving Window Block Kriging,”
Geoscientific Model Development, 8, 3311–3319. [349]

Tagle, F., Genton, M. G., Yip, A., Mostamandi, S., Stenchikov, G., and
Castruccio, S. (2020), “A High-Resolution Bi-Level Skew-t Stochastic
Generator for Assessing Saudi Arabia’s Wind Energy Resources” (with
discussion), Environmetrics (in press). [355]

Taylor, J. W., McSharry, P. E., and Buizza, R. (2009), “Wind Power Density
Forecasting Using Ensemble Predictions and Time Series Models,” IEEE
Transactions on Energy Conversion, 24, 775. [355]

Yip, C. M. A. (2018), “Statistical Characteristics and Mapping of Near-
Surface and Elevated Wind Resources in the Middle East,” Ph.D. thesis,
King Abdullah University of Science and Technology. [354]

Zhang, H. (2004), “Inconsistent Estimation and Asymptotically Equal
Interpolations in Model-Based Geostatistics,” Journal of the American
Statistical Association, 99, 250–261. [356]


	Abstract
	1.  Introduction
	2.  Overview of the Proposed Methodology
	2.1.  Background
	2.2.  Improving the Local Estimates

	3.  Simulation With Spatially Varying AR(1) Process
	3.1.  Model Description
	3.2.  Sensitivity of Prediction to Smoothing

	4.  Application to the WRF Dataset
	4.1.  The WRF Dataset
	4.2.  The Spatial Model
	4.3.  Results
	4.4.  Choice of the Smoothing Parameter

	5.  Discussion
	Appendix: Retrieving the Priors
	Supplementary Materials
	Funding
	References


