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Abstract
We propose median polish for functional multivariate analysis of variance
(FMANOVA) with the implementation of depth for multivariate functional data.
As an alternative to classical mean estimation, functional median polish esti-
mates the functional grand effect and factor effects based on functional medians
in one-way and two-way additive FMANOVA models. Median polish estimates
in FMANOVA are visually unbiased, independently of the choice of multivari-
ate functional depth. The corresponding mean-based and rank-based tests are
generalized to evaluate whether the functional medians in various levels of
the factors are the same. Simulation studies illustrate the robustness of our
functional median polish in various scenarios, compared with the results from
classical FMANOVA fitted by means. The results are evaluated both marginally
and jointly. Three environmental data sets are considered to illustrate that our
median polish is robust against outliers in practical implementations. Func-
tional boxplots and heat maps are two ways of visualizing the functional factors,
depending on whether the functional data are curves or images, respectively.
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1 INTRODUCTION

Analysis of variance (ANOVA) is essential for studying the effects of categorical factors on a response in additive models.
Depending on the number of factors, we can distinguish between one-way and multiway ANOVAs. When there is only one
factor 𝛼 to split the data group, we adopt a one-way ANOVA to compare the means of the groups in different categorical
levels. When there are two factors, 𝛼 and 𝛽, to divide the data group, we use a two-way ANOVA. The two-way ANOVA may
have an interaction term ((𝛼𝛽), Kutner, Nachtsheim, Neter, & Li, 2005, chapter 19.2), which means that, for factors 𝛼 and
𝛽, the effects of the categorical levels of 𝛼 on the dependent variables are not consistent among the different categorical
levels of 𝛽, or vice versa. If the responses in additive models consist of at least two dependent variables, and if these
variables are moderately correlated, we can use multivariate analysis of variance (MANOVA, Bray & Maxwell, 1985) to
study the effects of categorical factors on the responses. As a generalization of ANOVA, MANOVA examines the impacts of
categorical factors on several dependent variables. By decomposing the variance-covariance matrix of dependent variables
among the different factors, factors making significant contributions to the responses can be identified. How much of
their variability is ascribable to each factor can also be determined.
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Both ANOVA and MANOVA models can estimate the grand/factor effects with overall/groupwise means, which
are sensitive to abnormal observations. For MANOVA, the assumption is that no joint outliers exist in the same level
group. Compared with marginal outliers, joint outliers have an unusual combination of dependent variables, meaning that
they are not necessarily univariate outliers, if seen marginally. We can extend ANOVA to functional ANOVA (FANOVA,
Kaufman & Sain, 2010) and MANOVA to functional MANOVA (FMANOVA, Górecki & Smaga, 2017) by turning each
response to a function of time or locations. Similarly to ANOVA (MANOVA), FANOVA (FMANOVA) assumes that there
are no outliers in each group.

To address the potential outliers, Tukey (1970) and Mosteller and Tukey (1977) proposed the median polish for
two-way additive models without an interaction term. As an alternative to classical ANOVA, median polish is a robust
technique for studying the effects of various factors on the response, in an additive model. It replaces mean estimation
with the median to identify all factors, hence is under little influence from outliers (Emerson & Hoaglin, 1983).

A two-way median polish demands iterations for the convergence of functional effects, which reduces the residuals in
L1 norm in the iteration process. Siegel (1983) proved that the iteration process in the median polish must stop if the table
entries are rational numbers, but can take arbitrarily long, even for integer tables of a given fixed size. He then focused
on the low median polish in a general matrix and proved that it must converge after a few iterations. The low median
is defined to be the median if the sample size is an odd integer, and the lower of the middle two values if the sample
size is even. Fink (1988) stated that for commensurable data, the algorithm converges in a finite number of steps, while
it does not, in general, converge to the least L1 norm residual. Furthermore, he proposed an algorithm that converges
after finite iterations for any real data and provided the least residuals in L1 norm. Chen and Farnsworth (1990) discussed
that, for most small dimensions (i.e., one factor effect no greater than three or both factor effects equal three), median
polish converges in no more than two iterations. Therefore, we expect that median polish converges in a small number
of iterations practically.

In addition, median polish has many applications in spatial statistics and functional data. For instance, Cressie (1984)
proposed the median polish kriging as a hybrid method of predicting spatial data, which unites kriging and analysis
of tables. One can then use residuals of median polish to construct the stationary covariance function. Berke (2001)
applied median polish in universal kriging for spatial data as a robust spatial prediction method to cover the problem of
both the spatial trend effects and possible outliers. Sun and Genton (2012b) generalized median polish to the univari-
ate functional data domain. Here, by building one-way and two-way FMANOVA models and by analyzing appropriate
notions of multivariate functional depth, we develop a robust methodology to estimate the functional grand effect and
factor effects with functional median polish. We only consider grand and additive factor effects in the two-way model
for multivariate functional data, since the median polish assumes no interaction among factors in an additive ANOVA
model.

Medians for multivariate data are usually defined via the notion of statistical depth. It provides an order from the
center outward and can be used to find the “center” of a sample of discretely observed curves with the highest depth
value and screen for outliers with small depths, for example, halfspace depth (HD, Tukey, 1975), simplicial depth (SD,
Liu, 1990), projection-based depth (PD, Zuo, 2003), random Tukey depth (RTD, Cuesta-Albertos & Nieto-Reyes, 2008),
skewness-adjusted projection depth (SPD, Hubert & Van der Veeken, 2008), and directional projection depth (DPD,
Rousseeuw, Raymaekers, & Hubert, 2018). The depth for multivariate data can be extended to univariate functional data,
for example, integrated depth (ID, Fraiman & Muniz, 2001), h-mode depth, random projection depth, and double random
projection depth (hMD, RPD, RP2D, Cuevas, Febrero, & Fraiman, 2007), and band depth and modified band depth (BD,
MBD, López-Pintado & Romo, 2009). With the algorithm developed by Sun, Genton, and Nychka (2012), the band depth
of large functional data sets can be computed efficiently.

Correspondingly, several generalizations of depths have been proposed for multivariate functional data. Claeskens,
Hubert, Slaets, and Vakili (2014) defined multivariate functional depth (MFD) from the multivariate depth at each time
point and introduced a weight function to consider the weighted average at all time points, where halfspace depth is
used as a basis depth specifically to define multivariate functional halfspace depth (MFHD). Combining the concept of
MFD and multivariate depth mentioned above, we can define various multivariate functional depths, such as multivariate
functional projection-based depth (MFPD), multivariate functional skewness-adjusted projection depth (MFSPD), multi-
variate functional directional projection depth (MFDPD), and multivariate functional simplicial depth (MFSD). Ieva and
Paganoni (2013) introduced a multivariate band depth by taking every univariate component of the multivariate data into
account. López-Pintado, Sun, Lin, and Genton (2014) generalized univariate functional band depth (BD, MBD) to simpli-
cial band depth (SBD, MSBD) and provided natural criteria to order multivariate functional curves. SBD has the advantage
of detecting outliers with a higher probability over marginal MBD and WMBD proposed by Ieva and Paganoni (2013). It
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should be noted that MSBD can also be defined as putting simplicial depth (SD) in the multivariate functional depth, so
MSBD and MFSD are equivalent. We use MSBD to refer to this depth later in the article. Dai and Genton (2019) intro-
duced a measure of directional outlyingness (DO) that is suitable for both univariate and multivariate functional data.
Specifically, they adopted robust Mahalanobis distance (RMD) to measure the relative distance of outlyingness to the
median.

The introduction of depth to functional data makes ranking observations, finding the median, performing robust
estimation, and detecting outliers possible. Sun and Genton (2011, 2012a) proposed functional boxplots and adjusted
functional boxplots to visualize functional data based on band depth (BD) and modified band depth (MBD), although
other rankings can be used. Genton, Johnson, Potter, Stenchikov, and Sun (2014) extended this visualization tool to surface
boxplots. Sun and Genton (2012b) applied functional median polish to one-way and two-way FANOVA and determined
the robustness of median polish compared with the mean version. With rank-based depths and distance-based depths,
Dai and Genton (2018, 2019) introduced directional outlyingness to detect magnitude outliers, shape outliers, and their
combination in multivariate functional data.

This article is organized as follows. The description of one-way and two-way additive FMANOVA, the algorithms for
median polish estimation, the notion of depth for multivariate functional data, and the hypothesis tests in FMANOVA
are all presented in Section 2. Monte Carlo simulation studies for different models and contrasts between robust median
estimation and classical estimation by means are discussed in Section 3. The proposed methods assessed on three practical
data sets from environmental science are presented in Section 4, along with the corresponding hypothesis tests. Further
discussions are provided in Section 5.

To demonstrate the generality of median polish for multivariate functional data, we adopt five multivariate functional
depths (MFDs) based on various depths for multivariate data: multivariate functional halfspace depth (MFHD), multi-
variate functional projection-based depth (MFPD), multivariate functional skewness-adjusted projection depth (MFSPD),
multivariate functional directional projection depth (MFDPD), and multivariate functional simplicial depth [MFSD,
which is exactly modified simplicial band depth (MSBD)]. In addition, we use robust Mahalanobis distance (RMD) for
multivariate functional data and modified band depth (MBD) for treating multivariate functional data as several uni-
variate functional data independently for each variable. Among the first six depths (or distance) in the multivariate
functional perspective, five multivariate functional depths (MFD) gave similar estimation results; additionally, RMD was
not good at detecting the median and always gave a larger estimation range. Therefore, we illustrate the robustness of
our method with the choice of modified simplicial band depth (MSBD) in the simulations of Section 3 and show the esti-
mations from median polish based on marginal MBD and from means as well. The simulation results with other depths
are shown in the Supplementary Material. In the applications in Section 4, we keep MSBD as representative of multi-
variate functional depth and show the estimation results of median polish using MSBD and those of FMANOVA fitted
by means.

2 FUNCTIONAL MULTIVARIATE ANALYSIS OF VARIANCE ALGORITHM

2.1 One-way FMANOVA algorithm with median polish

Suppose that we are interested in a functional additive model with only one factor. After obtaining the multivariate func-
tional data observations for p-dependent variables at all levels, we want to estimate the functional grand effect and the
functional factor effects (here we call them row effects). Each observation can be decomposed using a one-way functional
additive model:

Yi,k(t) = 𝝁(t) + 𝜶i(t) + 𝝐i,k(t), i = 1, … , r, k = 1, … ,mi, t ∈ 𝔉, (1)

where Yi,k(t) = (Yi,1,k(t), … ,Yi,p,k(t))⊤, 𝝁(t) = (𝜇1(t), … , 𝜇p(t))⊤, 𝜶i(t) = (𝛼i,1(t), … , 𝛼i,p(t))⊤, and 𝝐i,k(t) =
(𝜖i,1,k(t), … , 𝜖i,p,k(t))⊤. Here r ≥ 2 is the number of rows, and mi is the number of observations in the ith row. Also 𝝁(t) is a
functional grand effect, 𝜶i(t) is the ith functional row effect, and 𝝐i,k(t) is the kth measurement error in the ith row, with
constraints, ∀t ∈ 𝔉, that mediani{𝜶i(t)} = 0 and mediani{𝝐i,k(t)} = 0 for all k. When t denotes time, 𝔉 is a region in R.
When t denotes location, we consider that 𝔉 is a region in R2. In addition, 𝔉 can be a region in R3 for three-dimensional
locations and a region in R2 × R for space-time data. Then, we develop the following one-way median polish algorithm
(see Algorithm 1 for more details).
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Algorithm 1. One-way FMANOVA with median polish

1. Divide the multivariate functional data according to different levels of the row effect.
2. According to multivariate functional depth, find the deepest observation in each row as the functional row median.

Update the data by subtracting the functional row median from each functional data in that row.
3. Calculate the functional median of the functional row medians, and set it as a functional grand effect 𝝁(t).
4. Subtract the functional grand effect from functional row medians and set them as functional row effects 𝜶i(t).

2.2 Two-way FMANOVA algorithm with median polish

Suppose that we are interested in a functional additive model with two factors. After obtaining the multivariate func-
tional data observations for p-dependent variables, at all levels, for those two factors, we want to estimate the functional
grand effect and the functional factor effects (here we call them row effects and column effects). Each observation can be
decomposed using a two-way functional additive model:

Yi,j,k(t) = 𝝁(t) + 𝜶i(t) + 𝜷 j(t) + 𝝐i,j,k(t), i = 1, … , r, j = 1, … , c, k = 1, … ,mi,j, t ∈ 𝔉, (2)

where 𝝁(t), 𝜶i(t) and r and 𝔉 are the same as those in model (1) in Section 2.1, plus Yi,j,k(t) = (Yi,j,1,k(t), … ,Yi,j,p,k(t))⊤,
𝜷 j(t) = (𝛽j,1(t), … , 𝛽j,p(t))⊤, 𝝐i,j,k(t) = (𝜖i,j,1,k(t), … , 𝜖i,j,p,k(t))⊤. Here, c≥ 2 is the number of columns, mi,j is the number of
observations in the ith row, and jth column cell,𝜷 j(t) is the jth functional column effect, and 𝝐i,j,k(t) is the kth measurement
error in the cell of the ith row and the jth column. Moreover, we assume ∀t ∈ 𝔉, mediani{𝜶i(t)} = medianj{𝜷 j(t)} = 0
and mediani{𝝐i,j,k(t)} = medianj{𝝐i,j,k(t)} = 0 for all k. then, we propose the following two-way median polish algorithm
(Emerson & Hoaglin, 1983; Mosteller & Tukey, 1977; see Algorithm 2 for more details).

Algorithm 2. Two-way FMANOVA with median polish

1. Divide the multivariate functional data according to different levels of row and column effects. We obtain the row
effects and the column effects sequentially.

2. According to the multivariate functional depth, choose the deepest observation in each row as the functional row
median. Update the data by subtracting the functional row median from each multivariate functional data in that row.

3. Calculate the functional median of the functional row medians, and set it as a functional grand effect 𝝁(t). Subtract
this functional median from functional row medians, and set them as functional row effects 𝜶i(t).

4. Then choose the deepest observation in each column according to the multivariate functional depth as the functional
column median. Update the data by subtracting the functional column median from each multivariate functional data
in that column.

5. Calculate the functional median of the functional column medians and update the grand effect 𝝁(t) by adding that
median. Subtract the functional median from functional column medians and set them as functional column effects
𝜷 j(t).

6. Repeat Steps 2–5 and update the functional grand effect 𝝁(t), functional row effects 𝜶i(t), and column effects 𝜷 j(t) at
each loop until no change (or negligible change) occur with functional row effects.

The median is unique when the data size is odd, and is an average when the data size is even. There are cases in which
the median needs to be chosen clearly, as shown below:

1. In Step 2 of Algorithm 1 (Steps 2 and 4 of Algorithm 2), when the median is not uniquely defined, we take the median
as the average of functional curves in this situation.

2. In Step 3 of Algorithm 1 (Steps 3 and 5 of Algorithm 2), given only two row (or column) levels, we take the median as
the average of two functional curves.

We extend the median polish to multivariate functional data from Tukey’s median polish, which was originally
for smoothing data in two-way tables. The convergence of median polish is discussed in the L1 norm of the residual
matrix R= (rij). Although there is no proof of convergence of median polish for a general matrix, Siegel (1983) proved
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convergence of two-way median polish for tables with rational numbers as entries. Chen and Farnsworth (1990) dis-
cussed several cases in median polish about convergence speed: for a two-way table with dimensions r × c, if r ≥ 3 and
c> 3 (and vice versa), it is possible for the median polish to take an arbitrarily large or infinite number of steps to con-
verge; if r = c= 3 or r = 2,c> 2 (and vice versa), median polish stops in no more than three half iterations, where each row
or column polish is called a half iteration (Siegel, 1983).

To consider the convergence of median polish for multivariate functional data, we hereby consider the convergence
in L1 norm of the residuals rij. In this case, each entry is the sum of residuals at various times for all variables: rij =∑p

l=1
∑

kR(l)
ij (tk), where the residuals in one cell are Rij(tk) = (R(1)

ij (tk), … ,R(p)
ij (tk))⊤ and tk ∈ 𝔉. Since the algorithm applied

to functional data only changes the data structure and the method of obtaining the median, the convergence in L1 norm
is not expected to be affected. Specifically, when one category level is two and another one is greater than two, or both
category levels are three, median polish stops in no more than three half iterations.

Similarly, when the median is not uniquely or strictly defined, taking the median as the average of samples
does not influence the convergence of the algorithm. Acknowledging the existence of arbitrarily large numbers of
iterations before convergence for cases in which r > 3 and c> 3, we do not explore the general speed of conver-
gence in median polish for multivariate functional data. In our applications, it converges (r = 2 and c> 2) after two
iterations.

2.3 Median of multivariate functional data

Depending on the choice of depth for multivariate functional data, we might get small differences in the result-
ing median. All the multivariate functional depths mentioned in Section 1 gave visually unbiased results with small
variance. Considering that multivariate functional simplicial depth (MFSD) is equivalent to modified simplicial band
depth (MSBD) and the merits of MSBD analyzed by López-Pintado et al. (2014), we adopt modified simplicial band
depth (MSBD) to find the median in multivariate functional data. First, we determine the MSBD of each observa-
tion in the multivariate functional data; then, we identify the observation corresponding to the largest depth as the
median.

Let D(⋅;FY) ∶ Rp→[0, 1] be a stochastic depth function for the probability distribution of a p-variate random vector
Y with cumulative distribution function (cdf) FY. Associated with the depth function is the depth region D𝛼(FY) at level
𝛼 ≥ 0, defined as D𝛼(FY) = {Y ∈ Rp ∶ D(Y;FY) ≥ 𝛼}. For functional data Y(t), we consider the index t ∈ 𝔉. Then, the
definition of multivariate functional depth (MFD, Claeskens et al., 2014) combines the local depths of Y(t) at each time
point t ∈ 𝔉 and includes a weight function.

Consider a p-variate stochastic process {Y(t), t ∈ 𝔉} on Rp with cdf FY(t). Let C(𝔉)p be continuous paths for the
p-variate process Y(t), w a weight function that integrates to one on the domain 𝔉, and D be a general depth function on
Rp. The multivariate functional depth (MFD) of Y is defined as

MFD(Y;FY) = ∫𝔉
D(Y(t);FY(t))w(t)dt, (3)

where the weight function may or may not depend on FY(t), t ∈ 𝔉. The weight w(t) can be a constant w indepen-
dent of time, or it can be proportional to the volume of the depth region, at time point t, which is w(t) = w𝛼(t;FY(t)) =
vol{D𝛼(FY(t))}∕∫𝔉vol{D𝛼(FY(u))}du.

Similarly, under a finite sample of multivariate curve observations Y(tj)={Y1(tj),… ,YN (tj);j= 1,… ,T} with at each
time point t a cdf FY(t),N , the sample multivariate functional depth at Y ∈ C(𝔉)p is defined with t0 = t1, tT + 1 = tT and
Wj = ∫ (tj+tj+1)∕2

(tj−1+tj)∕2 w(t)dt, by

MFDN(Y) =
T∑

j=1
D(Y(tj);FY(tj),N)Wj. (4)

Following the two definitions of w(t) above, W j =w⋅(tj+ 1 − tj− 1)/2 or Wj = vol{D𝛼(FY(tj),N)}(tj+1 −
tj−1)∕[

∑T
j=1 vol{D𝛼(FY(tj),N)}(tj+1 − tj−1)].
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The depth function D(Y(t);FY(t)) we choose here is the simplicial depth (SD, Liu, 1990) defined as below:

SD(Y(t);FY(t)) = P{Y(t) ∈ simplex{Y1(t), … ,Yp+1(t)}}, (5)

where Y1(t),… ,Yp+ 1(t) represent p+ 1 independent copies of Y(t), simplex{Y1(t),… ,Yp+ 1(t)} is the simplex with vertices
Y1(t),… ,Yp+ 1(t) (i.e., to say, simplex{Y1(t),… ,Yp+ 1(t)} is the set of all points in Rp which are convex combinations of
Y1(t),… ,Yp+ 1(t)).

If we use simplicial depth (SD) as the building block in the definition of multivariate functional depth (MFD), then
this leads to multivariate functional simplicial depth (modified simplicial band depth, MSBD) in the continuous and finite
time domain, respectively:

MSBD(Y;FY) = ∫𝔉
SD(Y(t);FY(t))w(t)dt, (6)

MSBDN(Y) =
T∑

j=1
SD(Y(tj);FY(tj),N)Wj. (7)

The other four MFD depths can be obtained in a similar way using the corresponding multivariate depths as building
blocks in the definition of multivariate functional depth. Here we take the weight to be a constant for convenience of the
computation.

2.4 Hypothesis tests in FMANOVA

Depending on the estimation by median polish or by means, we use either a rank-based test or a mean-based test, to test
whether the factor effects are significantly different. We take the two-way functional additive model (2) in Section 2.2 as
an example, and tests in the one-way functional additive model (1) in Section 2.1 are simplifications of the example.

The null hypothesis of no row effect is

H0r ∶ 𝜶1(t) = · · · = 𝜶r(t) = 0, vs. H1r ∶ at least one 𝜶i(t) ≠ 0 ∀t ∈ 𝔉, i = 1, … , r.

Similarly, the null hypothesis of no column effect is

H0c ∶ 𝜷1(t) = · · · = 𝜷c(t) = 0, vs. H1c ∶ at least one 𝜷 j(t) ≠ 0 ∀t ∈ 𝔉, j = 1, … , c.

2.4.1 Rank-based test in FMANOVA

We generalize the pairwise nonparametric test in Sun and Genton (2011) to FMANOVA by replacing MBD in the
univariate functional data with MSBD in the multivariate functional data:

H0 ∶ 𝝁Y(t) = 𝝁Y′ (t), ∀t ∈ 𝔉.

Given two multivariate functional samples Y1(t),… ,Yn(t) and Y′
1(t), … ,Y′

m(t), denote by Z1(t),… ,Zq(t) the new samples
selected from one of the two samples (q should be at least max(n,m), for simplicity, we take q = max(n,m)). The order of
Yi(t)(i= 1,… ,n) and Y′

j(t) (j = 1, … ,m) in the new sample can be defined as

R(Yi) =
1
q

q∑
k=1

I{MSBDq(Zk) ≤ MSBDn(Yi)}, R(Y′
j) =

1
q

q∑
k=1

I{MSBDq(Zk) ≤ MSBDm(Y′
j)}.

Next, we rank these values from 1 to n+m in an ascending order of R. If we define W =
∑m

j=1rank{R(Y′
j)}, then W under

H0 satisfies the distribution of the sum of m numbers randomly generated from integers 1 to n+m with critical values
determined by simulations.
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In the one-way model test, H0 =H0r, we can apply the groupwise comparison directly without deducting other factor
effects. In the two-way test, to use the above method in testing H0r, we deduct the corresponding column effect from
each sample, then divide the samples according to different r row effect levels, and use the groupwise comparisons to test
whether at least one 𝜶i is significantly different. In a similar way, to apply the above method in testing H0c, we deduct the
corresponding row effect from the original sample, then divide the samples according to different c column effect levels,
and use the groupwise comparisons to test whether at least one 𝜷 j is significantly different.

2.4.2 Mean-based tests in FMANOVA

For FMANOVA data, we estimate the functional grand effect and row and column effects by means from 𝝁̂… (t), 𝝁̂i⋅⋅(t),
𝝁̂⋅j⋅(t), 𝝁̂ij⋅(t), 𝜶̂i(t), and 𝜷̂ j(t) as below:

𝝁̂… (t) = 1∑
i,j

mi,j

r∑
i=1

c∑
j=1

mi,j∑
k=1

Yi,j,k(t), 𝝁̂i⋅⋅(t) =
1∑

j
mi,j

c∑
j=1

mi,j∑
k=1

Yi,j,k(t),

𝝁̂⋅j⋅(t) =
1∑

i
mi,j

r∑
i=1

mi,j∑
k=1

Yi,j,k(t), 𝝁̂ij⋅(t) =
1

mi,j

mi,j∑
k=1

Yi,j,k(t)

𝜶̂i(t) = 𝝁̂i⋅⋅(t) − 𝝁̂… (t), i = 1, … , r,

𝜷̂ j(t) = 𝝁̂⋅j⋅(t) − 𝝁̂… (t), j = 1, … , c.

For each t ∈ 𝔉, we introduce a total sum of squares matrix

T(t) =
r∑

i=1

c∑
j=1

mi,j∑
k=1

{Yi,j,k(t) − 𝝁̂… (t)}{Yi,j,k(t) − 𝝁̂… (t)}⊤.

It can be decomposed into three parts:

Hr(t) =
r∑

i=1

c∑
j=1

mi,j{𝝁̂i⋅⋅(t) − 𝝁̂… (t)}{𝝁̂i⋅⋅(t) − 𝝁̂… (t)}⊤ =
r∑

i=1

c∑
j=1

mi,j𝜶̂i(t)𝜶̂i(t)⊤

as the row effect sum of squares and cross products matrix,

Hc(t) =
r∑

i=1

c∑
j=1

mi,j{𝝁̂⋅j⋅(t) − 𝝁̂… (t)}{𝝁̂⋅j⋅(t) − 𝝁̂… (t)}⊤ =
r∑

i=1

c∑
j=1

mi,j𝜷̂ j(t)𝜷̂ j(t)⊤

as the column effect sum of squares and cross products matrix, and

E(t) =
r∑

i=1

c∑
j=1

mi,j∑
k=1

{Yi,j,k(t) − 𝝁̂i⋅⋅(t) − 𝝁̂⋅j⋅(t) + 𝝁̂… (t)}{Yi,j,k(t) − 𝝁̂i⋅⋅(t) − 𝝁̂⋅j⋅(t) + 𝝁̂… (t)}⊤

as the error sum of squares and cross products matrix.
Common test statistics in the MANOVA (Carey, 1998) are as follows, where l={r,c} depends on the significance of

the effect tested:

1. Wilks Lambda Λ∗
l = |E||Hl+E| , (|⋅| denotes the determinant of a matrix)

2. Hotelling–Lawley trace LHl = trace(HlE−1),
3. Pillai trace Pl = trace{Hl(Hl +E)−1},
4. Roy’s maximum root Rl = 𝜆max (HlE−1).
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We reject the null hypothesis for small values of Λ∗
l and large values of LHl, Pl, and Rl in MANOVA. Extending the

sum of squares matrices to FMANOVA (Górecki & Smaga, 2017), we consider their mean behavior among all t values and
determine Hr, Hc, and E as follows:

Hr = ∫𝔉
Hr(t)dt =

r∑
i=1

c∑
j=1

mi,j∫𝔉
{𝝁̂i⋅⋅(t) − 𝝁̂… (t)}{𝝁̂i⋅⋅(t) − 𝝁̂… (t)}⊤dt,

Hc = ∫𝔉
Hc(t)dt =

r∑
i=1

c∑
j=1

mi,j∫𝔉
{𝝁̂⋅j⋅(t) − 𝝁̂… (t)}{𝝁̂⋅j⋅(t) − 𝝁̂… (t)}⊤dt,

E = ∫𝔉
E(t)dt =

r∑
i=1

c∑
j=1

mi,j∑
k=1

∫𝔉
{Yi,j,k(t) − 𝝁̂i⋅⋅(t) − 𝝁̂⋅j⋅(t) + 𝝁̂… (t)}{Yi,j,k(t) − 𝝁̂i⋅⋅(t) − 𝝁̂⋅j⋅(t) + 𝝁̂… (t)}⊤dt.

In the one-way test, only H and E need to be considered. Since it is hard to find even the approximate distribution of
the above test statistics under the null hypothesis for FMANOVA, we adopt the permutation tests (Górecki & Smaga, 2017)
to determine the critical values. If the test statistics show there exist significant differences among the groups, we may
use the parametric tests in Sun and Genton (2012b) to make further inferences by computing the mean in each group and
use the functional t-test statistic for pairwise comparison.

3 SIMULATION STUDY

3.1 Simulation design

We conduct comprehensive simulation studies to assess the behavior of the proposed functional median
polish method using various contaminated models. The comparison with conventional methods illustrates
the robustness of our proposal. Specifically, we consider the two-way functional additive model (2) in
Section 2.2.

In our case, t is chosen from 50 equally separated points in [0,1]. We set the grand effect to be 𝝁(t) = (4t, 5t)⊤,
the row effects to be 𝜶i(t) = ((−1)i × 4(t − 0.6)2, (−1)i × 4(t − 0.3)2)⊤ for i= 1,2 and the column effects to be 𝜷 j(t) =
(3(j − 2) cos(2𝜋t), 3(j − 2) sin(2𝜋t))⊤ for j= 1,2,3 and mi,j = 100. We set 𝝐i,j(t) = ei,j(t) when no outliers exist. We choose
ei,j(t) from the bivariate Matérn cross-covariance function (Gneiting, Kleiber, & Schlather, 2010):

Cii(s, t) = 𝜎2
i (|s − t|; 𝜈i, 𝜂i), i = 1, 2,

Cij(s, t) = Cji(s, t) = 𝜌ij𝜎i𝜎j(|s − t|; 𝜈ij, 𝜂ij), 1 ≤ i ≠ j ≤ 2,

where (h; 𝜈, 𝜂) = 21−𝜈

Γ(𝜈)
(𝜂h)𝜈𝜈(𝜂h), h= |s− t|∈ [0,1], and 𝜈 is a modified Bessel function of the second kind of order

𝜈. Here, 𝜎2 is the marginal variance, 𝜈 > 0 adjusts smoothness, and 𝜂 > 0 is a scale parameter. For the bivariate Matérn
model to be applied, the parameters must be in some valid range. We choose 𝜎2

1 = 𝜎2
2 = 0.5, 𝜌12 = 0.5, 𝜈11 = 0.5, 𝜈12 = 1.25,

𝜈22 = 2, 𝜂11 = 2.5, 𝜂12 = 2.5, 𝜂22 = 2.5.
Outliers can be generated by transforming 𝝐i,j(t). We consider one clean model, together with two joint and three

marginal contamination models.
Model 1 (without contamination)
In Model 1: 𝝐i,j(t) = ei,j(t), and ei,j(t) is generated from the Matérn cross-covariance function as stated.
Model 2 (joint magnitude contamination)
Model 2 introduces magnitude outliers for two variables: 𝜖i,j,1(t) = ei,j,1(t) + 15ci,j and 𝜖i,j,2(t) = ei,j,2(t) − 15ci,j.
We let ci,j be 1 with probability qi,j and 0 with probability 1− qi,j. The outlier probability qi,j is different for each cell

according to the matrix Q:

Q =

(
0.07 0.03 0.05
0.05 0.07 0.03

)
.
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Model 3 (marginal magnitude contamination)
Model 3 only introduces magnitude outliers for Variable 1: 𝜖i,j,1(t) = ei,j,1(t) + 15ci,j and 𝜖i,j,2(t) = ei,j,2(t).
Model 4 (marginal peak contamination)
Model 4 introduces peak outliers for Variable 1: 𝜖i,j,1(t) = ei,j,1(t) + 15ci,j for t ∈ [S,S+ 0.1], where S follows a uniform

distribution in [0,0.9] and 𝜖i,j,2(t) = ei,j,2(t).
Model 5 (marginal partial contamination)
Model 5 introduces partial outliers for Variable 1: 𝜖i,j,1(t) = ei,j,1(t) + 15ci,j for t ∈ [S,1], where S follows a uniform

distribution in [0.3,0.9] and 𝜖i,j,2(t) = ei,j,2(t).
Model 6 (joint shape contamination)
In Model 6, we introduce shape outliers for both variables. For r = 1, we introduce outliers by 𝜖i,j,1(t) = ei,j,1(t) +

U𝛼i,1 sin(6𝜋t); for r = 2, 𝜖i,j,2(t) = ei,j,2(t) + U𝛼i,2 cos(6𝜋t), with outlier probability 0.07 for each variable. When no out-
lier exists, 𝜖i,j,1(t) = ei,j,1(t) + U𝛼i,1 sin(2𝜋t) and 𝜖i,j,2(t) = ei,j,2(t) + U𝛼i,2 cos(2𝜋t). Here U follows a uniform distribution on
[− 0.3,0.3].

We want to compare the performance of the proposed median polish methods with the classical FMANOVA estimation
based on means, where the procedures of median polish include using multivariate functional depth in multivariables
and marginal functional depth, considering multivariables independently. The median results are not sensitive to the
choice of multivariate functional depth. In this article, we demonstrate the median results based on modified simplicial
band depth (MSBD); the remaining results using other multivariate functional depths are provided in the Supplementary
Material.

If the estimates using MSBD are better than those using MBD and mean, applying the median polish to multivariate
functional data when there is some concern about potential outliers is desirable. We implement 100 independent simu-
lations in each model, and the results are evaluated both marginally and jointly. Marginally, the estimates should provide
an accurate description of each component, which is assessed using the functional boxplots as shown in Figures 1 and
2. Jointly, the estimates should preserve the correlation structure among different variables, which are evaluated using
the cross-correlation coefficients (Figure 3).

3.2 Marginal evaluation

Generally, the median polish method makes the results robust but more variable, which can be seen from Model 1
(without contamination). In this model, the estimation obtained from median polish is not as good as the mean esti-
mation, since the latter is unbiased and less variable. For the five contaminated models, we focus on Model 2, in
which magnitude outliers for both variables exist. Results for the other models are provided in the Supplementary
Material. We choose the grand effect, the first-row effect, and the first-column effect to capture the estimation thanks
to the symmetry about 0 in each variable of the model. We get 100 functional medians and 100 mean estimations
after 100 simulation replicates, which can be visualized separately through functional boxplots to show their patterns
marginally.

Under Model 2 (Figures 1 and 2), there exist significant biases for the grand effect and column effect in the mean esti-
mation. The two median polish methods are not sensitive to the outliers and provide a visually unbiased estimate for each
effect. Although the estimation range from MSBD is a bit wider than those from MBD and mean as shown in the func-
tional boxplots, the MSBD and mean-based methods keep the correlation between multivariables, as shown in Section 3.3.
Since the median of Variable 1 and the median of Variable 2 chosen from MBD are not from the same multivariate sam-
ple, the combined median might deviate from the overall multivariate median, or more severely, be isolated from the
whole group of curves. Other contaminated models lead to similar conclusions in the marginal evaluation, except Model
6 (joint shape contamination), where the outliers are not shown in the magnitude. Model 6 does not seem to offer any
advantage for the median estimation over the mean estimates from the marginal evaluation, since the mean estimation
provides the smallest estimation range among all methods.

3.3 Joint evaluation

To assess the correlation structure of the estimation from MSBD, MBD, and mean, we calculate the average of the lagged
cross-correlation function (ccf) of the two variables among 100 simulations, for each method; according to Algorithm 2,
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F I G U R E 1 Model 2 (joint magnitude contamination), Variable 1: the three rows show functional boxplots of functional median polish
using MSBD, functional median polish using MBD, and the classical mean estimation, where the green dashed curve represents the true effect

when row and column effects exist, each effect is a summation of several medians until it does not change. To simplify
the iteration times, we remove the grand, row, and column effects, leaving only the errors to infer the average of lagged
cross-correlation functions from 100 simulations. Since the errors show no group disparity, we can quickly get the median
without the application of Algorithms 1 and 2.

Figure 3 shows the ccf of estimation from MSBD, MBD, and mean, and the black solid curve indicates
the theoretical cross-correlation of the random errors. It appears that the estimation from MSBD retains the
original correlation structure, the estimate from the mean somewhat less so, whereas the estimate from MBD
loses the correlation between variables. Moreover, the combined median obtained from MBD may not come
from the original multivariate distribution, and cannot capture the overall median well. Under Model 2, we
can conclude that MSBD is a robust method that is stable under outliers and keeps the correlation informa-
tion, since the mean estimation produces bias and the MBD estimation fails to capture the correlation between
multivariables.
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F I G U R E 2 Model 2 (joint magnitude contamination), Variable 2: the three rows show functional boxplots of functional median polish
using MSBD, functional median polish using MBD, and classical mean estimation, where the green dashed curve represents the true effect

The results from marginal contamination models (Models 3–6) are shown in the Supplementary Material. The
cross-correlation structure in the mean estimation is maintained well, except for Models 4 and 5, where the exis-
tences of peaks and partial outliers disrupt the structure of cross-correlation in the mean estimation. By con-
trast, the cross-correlation structure in median estimation based on joint depths is preserved in all the above
models.

3.4 Simulation summary

The comparative drawbacks of the mean estimation with robust FMANOVA are discussed as below. In pure magni-
tude contaminated models, mean estimation leads to biases with cross-correlation structure maintained; in partial and
peak contaminated models, the mean estimation leads to biases and loses some cross-correlation structure. However, in
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F I G U R E 3 The empirical cross-correlation function (ccf) of the estimations from MSBD, MBD and means from Model 2. The red
dashed curve shows the empirical ccf and the black solid curve shows the theoretical ccf

shape-contaminated cases, the mean estimation is better than the robust FMANOVA with the least variable and visually
unbiased estimation range as well as maintaining cross-correlation structure. In the above cases, the cross-correlation
structure using the MBD method is lost, whereas it remains in the robust FMANOVA. Combining both marginal
and joint evaluations, the robust FMANOVA leads to better results in most cases, except for the case with marginal
contamination.

So far, we illustrated the robustness of FMANOVA when the observations are independent and smooth. However,
in the application of robust FMANOVA to spatial statistics problems, it is difficult to require that data be entirely inde-
pendent and smooth, as observations from nearby locations may share some features, and some raw climate data, such
as precipitation, are usually not smooth. To show that the robustness is not significantly affected in moderately depen-
dent data and nonsmooth data cases, we discuss the effects on median polish of nonindependent but smooth data, and
independent but nonsmooth data.

In Example 1, we introduce a slight dependence in the errors according to the functional autoregressive model of
order one (FAR(1), Martínez-Hernández, Genton, & González-Farías, 2019) while smoothness is maintained. For any
fixed i,j, n= 1,… ,mi,j, we add an observation index n to express the new error 𝝐

(n)
i,j (t) due to the correlation between

observations:

𝝐
(n)
i,j (t) = ∫𝔉

𝛽(s, t)𝝐(n−1)
i,j (s)ds + en(t), n = 1, … ,mi,j,

where 𝛽(s, t) = exp{−(s2 + t2)∕2} represents the kernel with {∫𝔉∫𝔉𝛽2(s, t)dsdt}1∕2 < 1, and en(t) has the Matérn
cross-covariance function. Then, we repeat Model 1 for the nonindependent data set, and find that the results are
similar to those with independent data, except that the estimation range with nonindependent data is wider. This is
because when observation data are not independent, the effective sample size is smaller; hence, the uncertainty is
more significant. Likewise, in Example 2, by only adjusting smoothness parameters in the Matérn cross-covariance
model (set 𝜈1 = 0.05, 𝜈2 = 0.1, and 𝜈12 = 0.075), we consider the nonsmooth but independent data case in Model 1
to see whether the robust FMANOVA only applies to smooth data. It turns out that although the estimation ranges
of nonsmooth data are larger than estimation ranges of smooth data from marginal evaluation, the empirical ccf
with nonsmooth data is close to the theoretical ccf in the joint evaluation. In Examples 1 and 2, we observe that
the robustness of our method is not seriously affected in the moderate dependence and nonsmooth scenarios, at
the cost of wider estimation ranges in the marginal evaluation and rougher cross-correlation functions in the joint
evaluation.

Overall, in both joint and marginal contamination cases considered, as long as a moderate correlation between two
variables exists, using MSBD leads to robust and visually unbiased results maintaining the correlation structure. Moreover,
when shape contaminations exist, the advantage of robust FMANOVA with median estimates over mean estimation
is not apparent. Based on the discussion above and the results from the other models, we recommend median polish
using MSBD as an alternative method to the mean-based FMANOVA when the practitioner has concerns about abnormal
observations.
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T A B L E 1 p-values of mean-based and rank-based tests for the Saudi Arabia wind
speed data

p-values Mean-based test

First stage .029

Second stage: U .043

Second stage: V .015

p-value Rank-based test

Bivariate .037

4 ENVIRONMENTAL APPLICATIONS

Functional additive models can be applied to environmental data to analyze disparities of dependent variables in various
levels of factors. In this section, we use three real data sets from environmental science and compare the representa-
tion based on the functional median polish with mean-based counterparts. The Saudi Arabian wind image data set in
Section 4.1 is an instance of a one-way bivariate FANOVA visualized by heat maps, and the Canadian and Spanish spatial
weather data in the next two subsections are examples of one-way bivariate FANOVA and two-way trivariate FANOVA,
respectively, shown with functional boxplots.

4.1 Saudi Arabia bivariate wind speed data

We apply the functional median polish to daily wind-speed data from NOAA (National Oceanic and Atmospheric Admin-
istration), using the GFDL-ESM2M model based on historical wind speeds during 1976–2005. This model was used by
Chen, Castruccio, Genton, and Crippa (2018) to analyze the wind-power potential in Saudi Arabia. The project is based on
the Coordinated Regional Climate Downscaling Experiment (CORDEX) MENA-22 (Middle East North Africa) domain
and the grid resolution is 0.22 by 0.22 degrees with a rotated pole system where one quasi-uniform resolution represents
approximately 25 km. The response variables are two wind-speed components: U (zonal velocity) and V (meridional
velocity) at 10 m above the displacement height. Considering that averaging the data over different years directly loses
much information because of the existence of phase and amplitude variation, we implement the time warping by Sri-
vastava, Wu, Kurtek, Klassen, and Marron (2011) and Tucker, Wu, and Srivastava (2013) for the data in each location,
respectively. Then, for each day, we average the data over these 30 years and get 365 daily wind speed images. Given the
climate in Saudi Arabia, we divide the wind data into two parts: speed in the dry season (April to October) and speed in
the wet season (November to March).

After implementing the one-way bivariate FANOVA algorithm in Section 2.1, we obtain Figure 4, which presents
the seasonal effects. Generally, the median and mean estimations in both U (eastward wind) and V (northward wind)
components show some common patterns, except that the mean estimation tends to be smoother since the mean con-
siders all observations and averages them. Observations of positive and negative values exist when one area experiences
winds with reverse directions for various times of the year. Hence, median estimates of different components of wind
speed provide a more intuitive overview of the wind direction and the wind speed across all of Saudi Arabia. Accord-
ing to Table 1, both the rank-based test and the mean-based test reject H0 at the 5% significance level; this means that
there exist significant disparities between the wind speed in wet and dry seasons. As we cannot get a clear view of the
wind speed after decomposing the data into the grand and season effects, we obtain the fitted wind speed by apply-
ing model (1) in Section 2.1 and combining the grand effect and the seasonal effect together. We compare the fitted
median polish estimation and the fitted mean estimation in Figure 5. The pattern of the median estimation resembles
that estimated by means except in some boundary regions where the wind speed in the median polish version is more
significant. Typically, in the dry season, for the U component, large values appear more evident in a wider range of areas
in Western Saudi Arabia, which shows that median polish provides a more precise method to estimate Saudi Arabia’s
wind speed.

By combining the two components, we realize that the prevailing wind direction is northeast in the dry season and
southeast in the wet season in Saudi Arabia. The prevailing wind direction in different seasons partially explains why the
climate in Saudi Arabia is semiarid to arid even though it is mostly surrounded by the sea. The northeast trade winds in
the dry season come from arid land masses, such as the Iranian Plateau. When the offshore wind blows from the continent



14 of 23 QU et al.

F I G U R E 4 Saudi Arabian wind speed: comparison of estimation of the functional grand and seasonal effects using both functional
median polish and using mean FMANOVA. A positive U component is eastward wind, and a positive V component is northward wind. The
dry season is from April to October, and the wet season is from November to March
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F I G U R E 5 Saudi Arabian fitted wind speed (adding the functional grand effect and functional seasonal effects). The four plots on the
left are median estimations, and the four plots on the right are mean estimations. A positive U component is eastward wind and a positive V
component is northward wind. The dry season is from April to October and the wet season is from November to March

to the sea, on one hand, the wind does not bring much water vapor, but on the other hand, the water vapor does not
condense into rain and moves to the ground at higher temperatures under the influence of the subtropical high pressure.
On the contrary, the southeast wind in the wet season is mainly from the Ethiopian Highlands and the Indian Ocean. If
the wind from the sea is stronger than that from arid Ethiopian Highlands, it may carry much water vapor and turning
the vapor into rain becomes possible. Still, the yearly average precipitation in Saudi Arabia is less than 200 mm and the
wet season every year is quite short; even if the wind from the Indian Ocean arrives in Southern Saudi Arabia, factors
such as air pressure, ocean currents, topography, vegetation coverage, and human activity affect the formation of rain. In
general, wind from the south is moister compared with that from the north in Saudi Arabia.

It is worth noting that not all locations in Saudi Arabia share the same wind direction. For example, when most of the
areas are under the influence of the northeast wind in the dry season, the southern boundary area is influenced by the
southeast wind from the mountainous regions on the north side of the Gulf of Aden while the west part of Saudi Arabia is
under the influence of the west wind from the Red Sea. The terrain of Saudi Arabia is high in the west and low in the East,
with a long narrow plain in the far western area close to the Red Sea. Although there is wind from the Red Sea toward
the mainland, it is limited to the plain in the west and mostly cut off by the Arabian Highlands, which prevent the wind
from going deep into the middle of Saudi Arabia.

4.2 Canadian bivariate weather stations data

We consider the weather data from Canada analyzed by Ramsay and Silverman (2005) and Sun and Genton (2012b).
We choose both temperature and log-precipitation data from 35 weather stations located in four climatic regions:
the Arctic, Atlantic, Continental, and Pacific averaged over 1960 to 1994. The data are presented in Figure 6,
together with their partitions. According to the one-way functional additive model (1) in Section 2.1, we per-
form median polish as well as the classical mean version to estimate the grand and regional effects illustrated
in Figure 7.

The functional grand effect shows that both the temperature and the log-precipitation tend to fluctuate, and that the
functional regional effects consist of different temperature and log-precipitation patterns of the four climatic regions. As
shown in the left column of Figure 7, the overall tendency of temperature to fluctuate in the mean version of FMANOVA
is smoother and less fluctuating in Winter and Spring. In addition, the whole trend of the log-precipitation pattern in
the mean version is flatter and higher. Also, we note that the regional effects for the Continental area are 0 for both the
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F I G U R E 6 Averaged daily
temperature and log-precipitation
data from 35 weather stations
located in four climatic regions in
Canada

F I G U R E 7 Canadian weather: comparison of estimations of the functional grand effect and functional region effects using functional
median polish and using mean FMANOVA

temperature and the log-precipitation, which means that the grand effect describes an overall tendency in the Continental
Area. When we compare the divergence of the grand effect in the median polish and the mean versions, we compare
potential abnormal observations in other areas than those in the Continental area. The left plot in Figure 6 shows that,
in the Pacific and Atlantic, the temperatures during the Winter and Spring months are higher than the temperatures in
the Continental region. The right plot in Figure 6 shows that all observations in the Atlantic region and one observation
in the Pacific region in log-precipitation are quite flat between 0.2 and 1, whereas observations in the Continental area
fluctuate between −0.5 and 0.5, which makes the grand effect in the mean version flatter and above most of the grand
effect from the functional median polish.
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T A B L E 2 p-values of mean-based and
rank-based tests for the Canadian data

p-values Mean-based test

First stage .041

Second stage Ar–At Ar–C Ar–P At–C At–P C–P

Temp .032 .043 .034 .043 .047 .036

Precip .024 .144 .041 .045 .090 .048

p-values Rank-based test

Bivariate .015 .036 .022 .041 .038 .047

Note: Ar, At, C, and P represent Arctic, Atlantic, Continental, and Pacific areas, respectively. Values
in bold mean the group differences are not significantly different at 5% level.

F I G U R E 8 Spanish weather: comparison of estimation of the functional grand effects using functional median polish and using mean
FMANOVA

Then, we show the regional effects of temperature and log-precipitation according to the median estimation (mid-
dle column in Figure 7). The Continental region remains the same in the functional grand effect of temperature and
log-precipitation, using the median polish estimation. Also, the Atlantic area tends to be warmer and has more precipita-
tions overall. The Pacific region is warmer with heavier rainfalls, especially during the Winter season. The Arctic region
is always colder particularly in the Winter and Spring, and the level of precipitations is a bit higher than that in the Con-
tinental area and more substantial in most seasons of the year except for Summer. As a comparison, regional effects fitted
by means (right column in Figure 7) fluctuate less and closer to each other, especially during Winter and Spring for both
temperature and log-precipitation. Therefore, we tend to get bigger p-values that do not show significant differences of
regional effects in the mean version.

From the first stage mean-based tests in Table 2, we reject H0 at the 5% significance level in one-way FMANOVA, sug-
gesting that there exists at least one regional difference in temperature or log-precipitation. The second stage mean-based
tests in Table 2 show that in precipitation, regional effects between Arctic and Continental and between Atlantic and
Pacific are not significantly different at the 5% significance level. However, median-based tests show all the regional
effects are significantly different at the 5% significance level. Therefore, functional median polish provides a more robust
estimation of the factor effects free from outliers.

4.3 Spanish trivariate weather data

We analyze the Spanish weather data studied by Dai and Genton (2018). We choose the daily temperature,
log-precipitation, and wind speed data averaged over 1980–2009 from 73 weather stations and consider the effects of loca-
tion and altitude with four levels and two levels, respectively. We perform a two-way functional median polish as well as
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F I G U R E 9 Spanish weather: comparison of estimation of the functional regional effects using functional median polish and using
mean FMANOVA
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T A B L E 3 p-values of mean-based and rank-based test for the Spanish weather data

p-values Mean-based test

First stage .031

Second stage: altitude Low–high

Temp .018

Log precip .036

Wind speed .047

Second stage: region SW–SE SW–NE SW–NW SE–NE SE–NW NE–NW

Temp .065 .019 .023 .017 .044 .040

Log precip .042 .035 .031 .032 .037 .263

Wind speed .014 .002 .008 .187 .644 .330

p-values Median-based test

Altitude Low–high

Trivariate .022

Region SW–SE SW–NE SW–NW SE–NE SE–NW NE–NW

Trivariate .070 .035 .041 .142 .032 .469

Note: SW, SE, NE, and NW represent southwest, southeast, northeast, and northwest areas, respectively. Values in bold mean the
group differences are not significantly different at 5% level.

the mean FMANOVA version to estimate the grand, the regional and the altitude effects shown in Figures 8,9, and 11 for
model (2) in Section 2.2.

From Figure 8, we can see that the grand effect of temperature for the median polish and for the mean version are
quite similar, whereas the grand effects of log-precipitation and wind speed in median polish fluctuate more than those
in the mean version.

Mean-based tests from the first stage in Table 3 reject H0 in two-way FMANOVA at the 5% significance level from the
first stage, which means that at least one variable shows a difference in some factor levels. Then, we do pairwise com-
parisons to find if some group behaves significantly differently. We start with regional effects. As shown in the first row
of Figure 9, temperature in the southwest region is zero on the top representing the overall tendency, followed by the
southeast, northeast, and northwest in the median polish, whereas the four areas have disparities in the mean estimate.
For log-precipitations, regional effects in the median polish estimation show that the northwest region has higher pat-
tern, followed by the northeast and southeast; the southwest region is 0 and represents the overall tendency. However,
for log-precipitations, regional effects in the mean version are smoother and fluctuate less. As shown in the last row of
Figure 9, for the wind speed variable, regional effects from the median polish do not show any visible difference, but
regional effects from the mean estimation show that the southwest regional effect is significantly larger than the other
three regional effects. Hence, in Table 3, for wind speed, mean-based tests suggest that the southwest region is significantly
different from the other areas at the 5% significance level.

As shown in Figure 10, the wind speed samples in the southeast, northwest, and northeast are almost the same.
In the southwest, the curves on the bottom have similar patterns as those in other areas, but the six curves on
the top show more massive fluctuations. It is likely that the median is still close to the median of other areas,
so median regional effects in the wind speed do not show much difference. In the mean estimation, the regional
effect in the southwest is influenced by the top curve observations and shows a higher value than that in other
areas.

Figure 11 shows the altitude effects of the temperature, log-precipitation, and wind speed in both median and
mean versions. Although we reject H0 when we make a pairwise comparison of altitude effects of log-precipitation in
mean-based tests from Table 3, or a comparison of the effects of altitude in trivariate median-based tests, it is worth
noting that the log-precipitation has different trends in the mean and median polish versions. In the mean version, the
low-altitude effect is smaller than the high-altitude effect during Summer and Autumn, but the median polish shows that
the low-altitude effect is smaller and keeps swinging during the whole year.
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Figure 12 shows that the observations have different fluctuation tendencies between low and high altitude regions,
where some fluctuate a lot and others fluctuate a little. In low-altitude areas, there are more observation samples, where
two curves are quite steep and flat for the whole year but more observations swing and stay low in Summer and Autumn.
In high-altitude regions, two curves are above the majority and are quite flat, but most curves keep fluctuating during the
whole year. Since the mean is not resistant to outliers, the altitude effects estimated by traditional means combine both
the flat and fluctuating shapes, which tend to be smoother than effects from median polish. In addition, the low-altitude
effect is shifted downward by abnormal observations on the bottom, and the high altitude effect is moved upward by
outliers on the top in the mean version.

5 DISCUSSION

This article, combining the advantages of median polish with the use of multivariate functional depth, considered multi-
variate functional data and proposed functional median polish in FMANOVA in order to determine the median estimates.
The iterative algorithm and the hypothesis tests were respectively generalized to perform the estimation and to check
whether the factor effects were significant. The functional median polish, compared with the classical mean estimate, is a
more robust method to fit the additive one-way and two-way FMANOVA models because it is less influenced by outliers.

As an extension of the functional median polish from Sun and Genton (2012b), we generalized the algorithm for
one-way and two-way FMANOVAs and the hypothesis tests where no interaction term appears. Our simulation studies
showed that the functional median polish was robust under the existence of magnitude and shape outliers, whereas the
classical mean version of FMANOVA was not resistant to outliers. Magnitude (pure, peak, and partial contamination)
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outliers produced some biases in the mean estimation. Also, the cross-correlation structure of the mean estimation was
not maintained in the peak and partial contamination. However, we found that the shape contamination neither brought
apparent biases nor disrupted the cross-correlation structure for the mean estimation. Hence, the median polish in the
magnitude case had an advantage over the mean estimate, but the benefit of median polish was not shown in the shape
contamination case. Furthermore, by using nonindependent and nonsmooth data in the FMANOVA model separately,
we noticed in our examples that neither independence nor smoothness was necessary for the robust FMANOVA to be
applied.

We found that the determination of the median in multivariate functional data was not sensitive to the choice of
multivariate functional depth, which displayed the generalizability of the median polish in FMANOVA. We extended the
hypothesis rank-based test for the median polish to multivariate functional data. Therefore, in the multivariate functional
additive model framework, alongside the estimation of the grand effect and factor effects by functional median polish,
the response variables could be fitted by summation of the grand effect and factor effects. Hypothesis tests could be
constructed where nonparametric rank-based tests are compared with mean-based tests.

The applications consisted of three environmental data collected from Saudi Arabia, Canada, and Spain, respectively.
The first application (Saudi Arabia) involved functional spatial data, and the latter two were functional temporal cases.
From all examples, the functional median polish provided robust estimates of the grand effect and factor effects as an
alternative to FMANOVA fitted by means.
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