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Abstract The Lagrangian reference frame has been used to model spatio-temporal
dependence of purely spatial second-order stationary random fields that are being
transported. This modeling paradigm involves transforming a purely spatial pro-
cess to spatio-temporal by introducing a transformation in the spatial coordinates.
Recently, it has been used to capture dependence in space and time of transported
purely spatial random fields with second-order nonstationarity. However, under this
modeling framework, the presence of mechanisms enforcing second-order nonsta-
tionary behavior introduces considerable challenges in parameter estimation. To
address these, we propose a new estimation methodology which includes modeling
the second-order nonstationarity parameters by means of thin plate splines and esti-
mating all the parameters via two-step maximum likelihood estimation. In addition,
through numerical experiments, we tackle the consequences of model misspecifica-
tion. That is, we discuss the implications, both in the stationary and nonstationary
cases, of fitting Lagrangian spatio-temporal covariance functions to data generated
from non-Lagrangian models, and vice versa. Lastly, we apply the Lagrangian mod-
els and the new estimation technique to analyze particulate matter concentrations
over Saudi Arabia.

1 Introduction

The need for models that explain spatio-temporal dependencies of environmental
processes has been answered with a growing number of studies on spatio-temporal
covariance functions. A number of the established spatio-temporal covariance func-
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tions can only model spatio-temporal random fields that are second-order station-
ary in space and time. The list includes the spatio-temporal separable stationary
covariance functions, spatio-temporal stationarymixturemodels (Ma 2003a), and the
Gneiting class of spatio-temporal stationary covariance functions (Gneiting 2002).
However, environmental processes are notorious for exhibiting second-order non-
stationarity in space and/or time. The number of available spatio-temporal nonsta-
tionary covariance functions catering to this challenging second-order nonstationary
behavior is slowly increasing but still lags behind its stationary counterpart. The
construction approaches that define the current state-of-the-art for spatio-temporal
nonstationary covariance functions modeling include the spatio-temporal dimension
expansion (Shand and Li 2017), the spatio-temporal convolution (Garg et al. 2012),
and the nonstationary Archimedean spectral densities (Porcu et al. 2009). Some
spatio-temporal nonstationary models built from spatio-temporal stationary covari-
ances and intrinsically stationary variograms were also proposed in Ma (2003b).
Several other works on incorporating spatial nonstationarity focused on allowing the
parameters in the covariance function to vary in space (Higdon et al. 1999; Neto
et al. 2014; Paciorek and Schervish 2006; Stein 2005). These types of nonstationary
covariance functions belong to a wider class of kernel convolution methods. Risser
(2016), Sampson et al. (2001) feature comprehensive overviews of this wider class.
Another flexible class of spatio-temporal nonstationary models termed the spatio-
temporal random effects (STRE) models was put forward in Cressie et al. (2010).
STRE combines the utilities of basis function approximations and Kalman filtering
to achieve dimension reduction in space and fast and dynamic predictions in time.
This class is highly useful in modeling large space-time nonstationary data.

A distinct class of spatio-temporal covariance functions has been championed
for capturing a special behavior of a subset of spatio-temporal random fields. The
class of Lagrangian spatio-temporal covariance functions was developed to model
spatio-temporal dependence of transported purely spatial random fields through the
use of the Lagrangian reference frame. Models springing from this technique obtain
higher covariances along the direction of transport than the covariances lying in the
other directions. However, much of the progress in this area was done in stationary
variants such as Cox and Isham (1988), where this modeling technique was first
proposed, and Salvaña et al. (2020), where the multivariate extension was explored.
A recent treatment of this modeling scheme in the multivariate nonstationary setup
was provided in Salvaña and Genton (2020). In this work, we formally establish
the univariate nonstationary variant of the Lagrangian approach to spatio-temporal
covariance construction. Moreover, we propose an efficient estimation methodol-
ogy such that the novelty of the Lagrangian spatio-temporal nonstationary models
translates to usability.

The rest of this paper is organized as follows. Section 2 reviews the developments
in theLagrangian spatio-temporalmodeling and formulates the univariate nonstation-
ary extension. Section 3 proposes a practical estimation procedure for nonstationary
covariance models of the Lagrangian type. Section 4 presents some simulation stud-
ies designed to illustrate the advantages of Lagrangian spatio-temporal models over
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other established spatio-temporal models. Section 5 details the application of the new
models to a spatio-temporal particulate matter dataset. Section 6 draws a conclusion.

2 Lagrangian Spatio-Temporal Covariances

Under second-order stationarity of the purely spatial random field, Cox and Isham
(1988) established that a new class of spatio-temporal stationary covariance functions
can be constructed frompurely spatial stationary covariance functions by utilizing the
principles of Lagrangian reference frame. That is, define a spatio-temporal second-
order stationary random field

Z(s, t) = Z̃(s − Vt), (s, t) ∈ R
d × R,V ∈ R

d , d ≥ 1,

such that Z̃(s) is a purely spatial second-order stationary random field. Here V is a
random vector, independent from the purely spatial random field, that describes the
velocity of the transport of Z̃(s) and is often called the advection velocity vector.
The resulting spatio-temporal stationary covariance function of Z(s, t) is

cov
{
Z(s1, t1), Z(s2, t2)

} = cov
{
Z̃(s1 − Vt1), Z̃(s2 − Vt2)

} = EV{CS(h − Vu)},
(1)

where h = s1 − s2, u = t1 − t2, and CS(·) is the purely spatial stationary covariance
function of Z̃(s) on R

d . By introducing a transformation on the spatial arguments
of CS(·), the number of available spatio-temporal stationary covariance functions
would greatly expand by as much as the number of valid purely spatial stationary
covariance functions.

The model in (1) can be extended to accommodate multiple variables of interest
as shown in Salvaña et al. (2020). That is, suppose at each spatio-temporal location
(s, t) there are p > 1 observations corresponding to p different features. This means
that the purely spatial second-order stationary random field is now vector valued,
i.e., Z̃(s) = {

Z̃1(s), . . . , Z̃ p(s)
}�

. A multivariate spatio-temporal random field can
be similarly defined as above, i.e.,Z(s, t) = Z̃(s − Vt) = {

Z̃1(s − Vt), . . . , Z̃ p(s −
Vt)

}�
, with matrix-valued spatio-temporal stationary cross-covariance function

cov
{
Z(s1, t1),Z(s2, t2)

} = cov
{
Z̃(s1 − Vt1), Z̃(s2 − Vt2)

} = EV{CS(h − Vu)},
(2)

where CS(·) is the p × p matrix-valued purely spatial stationary cross-covariance
function of Z̃(s) on R

d . This newly defined multivariate spatio-temporal random
field is second-order stationary in space and time.

Using these two previous developments of spatio-temporal covariance functions,
a recent review paper further developed the Lagrangian approach in the multivariate
nonstationary arena. Salvaña and Genton (2020) established that the model in (2)
can be tailored to accommodate an underlying cross-covariance function CS that is
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nonstationary. This is particularly useful when the multivariate purely spatial ran-
dom field being transported has nonnegligible second-order nonstationarity. Models
arising from their proposal have the form

cov
{
Z(s1, t1),Z(s2, t2)

} = cov
{
Z̃(s1 − Vt1), Z̃(s2 − Vt2)

} = EV

{
CS(s1 − Vt1, s2 − Vt2)

}
,

(3)
whereCS(·, ·) is a matrix-valued purely spatial nonstationary cross-covariance func-
tion of Z̃(s) on R

d .
The models in Eqs. (1)–(3) suggest how the Lagrangian framework can be used

to create spatio-temporal covariance functions when one has at one’s disposal purely
spatial covariance functions that are either univariate stationary, multivariate sta-
tionary, or multivariate nonstationary. The univariate nonstationary formulation of
the Lagrangian construction can be readily established from (3) when p = 1. For
completeness, we state this as a theorem below.

Theorem 1 Let V be a random vector on R
d . If CS(s1, s2) is a valid purely spatial

nonstationary covariance function on R
d , then,

C(s1, s2; t1, t2) = EV
{
CS(s1 − Vt1, s2 − Vt2)

}
, s1, s2 ∈ R

d , t1, t2 ∈ R, (4)

is a valid spatio-temporal nonstationary covariance function on R
d × R provided

that the expectation exists.

The validity of this theorem follows because it is a special case (p = 1) of a theorem
proved for general p in Salvaña and Genton (2020). The construction approach in
Theorem 1 requires a purely spatial nonstationary covariance function, CS(·, ·), and
returns a spatio-temporal covariance function that is nonstationary in both space and
time. Theorem 1 implies a purely spatial random field with second-order nonsta-
tionarity that is transported to new locations at a velocity V. The transport behavior,
dictated by the velocity V, influences the covariance through shifting the original
spatial arguments of CS(·, ·) by Vt . The derived Lagrangian spatio-temporal non-
stationary covariance function C(s1, s2; t1, t2) is nonstationary in space, as its fun-
damental building block is a purely spatial nonstationary covariance function, and
is also nonstationary in time, as the transformation from purely spatial to spatio-
temporal depends on time t .

There is a rich literature on valid purely spatial nonstationary covariance functions
from which we can choose CS(·, ·) including the dimension expansion (Bornn et al.
2012), deformation approach (Sampson and Guttorp 1992), kernel-based methods
(Higdon et al. 1999), convolution-based methods (Heaton et al. 2014; Higdon 1998,
2002), spectral methods (Fuentes 2002), orthogonal expansions (Nychka and Saltz-
man 1998), spatially varying parameters (Neto et al. 2014; Paciorek and Schervish
2006; Gelfand et al. 2004), piece-wise Gaussian process (Kim et al. 2005), covariate-
driven approaches (Schmidt et al. 2011), and basis function models (Nychka et al.
2002; Wikle 2010; Chang et al. 2010). Other purely spatial nonstationary models
to which Theorem 1 can be applied are discussed in Sampson et al. (2001), Risser
(2015), and Stephenson et al. (2004).
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Lagrangian spatio-temporal random fields can be classified into two general cat-
egories, namely, frozen and non-frozen random fields. The former characterizes
Lagrangian spatio-temporal random fields with a constant advection velocity, that is,
V = v. Meanwhile, Lagrangian spatio-temporal random fields that are termed non-
frozen are those transportedwith a random advection velocityV. Salvaña andGenton
(2020) showed realizations of frozen Lagrangian spatio-temporal random fields sim-
ulated from (3) when p = 2 using prominent classes of purely spatial nonstationary
cross-covariance functions, such as the multivariate spatially varying parameters
and the multivariate deformation models. Realizations of frozen Lagrangian spatio-
temporal nonstationary random fields from themodel in (4) can be obtained similarly
by assuming that Z1 and Z2 in Fig. 2 of Salvaña and Genton (2020) are independent.
In the following figures, we show non-frozen Lagrangian spatio-temporal random
fields for two models when V ∼ N2(μ,Σ). Figure 1a plots the simulated Z(s, t)
from the model

C(s1, s2; t1, t2) = EV

(
σ(s1 − Vt1, s2 − Vt2)Mν

[
{s1 − s2 − V(t1 − t2)}�

× D(s1 − Vt1, s2 − Vt2)−1 {s1 − s2 − V(t1 − t2)}
]1/2)

, (5)

where σ(s1 − Vt1, s2 − Vt2) is the spatially varying variance parameter and
the matrix D(s1 − Vt1, s2 − Vt2) serves as the spatially varying scale parame-
ter (Kleiber and Nychka 2012). Here Mν(·) is the univariate Matérn correlation
with smoothness parameter ν > 0, D(s1, s2) = 1

2 {D(s1) + D(s2)}, and σ(s1, s2) =
|D(s1)|1/4|D(s2)|1/4

∣∣D(s1, s2)
∣∣−1/2

. The matrix D(s) is parameterized through its
spectral decomposition, i.e.

D(s) =
[
cos {φ(s)} − sin {φ(s)}
sin {φ(s)} cos {φ(s)}

] [
λ1(s) 0
0 λ2(s)

] [
cos {φ(s)} sin {φ(s)}

− sin {φ(s)} cos {φ(s)}
]

.

Figure 1b illustrates the random field generated from the non-frozen Lagrangian
deformation

C(s1, s2; t1, t2) = EV
[
σ 2Mν {a‖f(s1 − Vt1) − f(s2 − Vt2)‖}

]
, (6)

where f : Rd → R
d is a deterministic nonlinear smooth bijective deformation func-

tion and σ 2 and a are the variance and scale parameters, respectively. In the example
in Fig. 1b, σ 2 = a = ν = 1.

To illustrate the effect of the advection velocity V ∼ N2
{
(0.1, 0.1)�, 0.01 × I2

}

on the space-time dependence of the random fields in Fig. 1, we examine two loca-
tions, marked with ‘×’, which we call “reference locations”. We plot as heatmaps
the covariance between the observations at each reference location and the observa-
tions at all locations, including the reference locations themselves. For example, in
Fig. 2a, the first image in the first row gives the covariance between Z(sRef Loc 1, 1)
and Z(sl , 1), at every pixel location sl , l = 1, . . . , 2500. The second image in the first
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Fig. 1 Simulated realizations in the unit square on a 50 × 50 grid from the non-frozen Lagrangian
nonstationary covariance models in (5) and (6) with V ∼ N2

{
(0.1, 0.1)�, 0.01 × I2

}
, I2 is

the 2 × 2 identity matrix. (a) The spatially varying parameters have the following represen-
tations: for s = (sx , sy)�, φ(s) = (sx − 0.5) + 2(sy − 0.5) + (sy − 0.5)2, λ1(s) = −3 − 6(sx −
0.5)2 − 7(sy − 0.5)2, and λ2(s) = −5 + (sx − 0.5)2 − 4(sy − 0.5)2. (b) The deformation func-
tion assumed is the point-source deformation, i.e., f(s) = b + (s − b){1 + 2 exp(−0.5‖s − b‖2)},
b = (0.15, 0.15)�. Reference locations 1 and 2 are marked with ‘×’
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Fig. 2 Heatmaps of the non-frozen Lagrangian nonstationary covariance models in (5) and (6)
observed at two reference locationsmarkedwith ‘×’. (a) shows the strengths of dependence between
any two locations in space and time under the spatially varying parameters model and (b) under the
deformation model. See Fig. 1 for the corresponding random field realizations

row plots the covariance between Z(sRef Loc 1, 1) and Z(sl, 2), at every pixel loca-
tion sl , l = 1, . . . , 2500. Lastly, the third image in the first row plots the covariance
between Z(sRef Loc 1, 1) and Z(sl , 3), at every pixel location sl , l = 1, . . . , 2500. All
the other plots are organized in the same manner. Notice that among the covariances
taken at the same temporal locations, i.e., t1 = t2, the maximum covariance occurs
at the reference location. However, among the covariances taken between any two
space-time locations that are one time step apart, the maximum covariance no longer
occurs at the reference location. Instead, it can be observed at a spatial location
(0.1, 0.1)� away from the reference location. A similar observation can be made
when taking covariances between any two space-time locations that are two time
steps apart.



Lagrangian Spatio-Temporal Nonstationary Covariance Functions 433

3 Estimation

The parameters for any spatio-temporal nonstationary covariance functions spawned
by theLagrangian approach include both purely spatial and advection velocity param-
eters. The estimation methods to recover the former depend on the form of CS and
are already fully developed in their respective references; see Sect. 2. Here we pro-
pose a way to extend those estimation methods to space-time in order to recover both
the purely spatial and the additional advection velocity parameters. We focus on an
estimation strategy that operates on the spatio-temporal nonstationary covariance
matrix built using all the spatio-temporal locations. This allows inferences regarding
the second-order nonstationarity structure of the transported purely spatial random
field possible. However, alternative estimation strategies which involve fitting local
spatio-temporal stationary models can also be considered (Kuusela and Stein 2018).

3.1 Thin Plate Splines

Throughout the remainder of thiswork,we narrowour attention toLagrangian spatio-
temporal nonstationary models whose CS are the deformation and spatially varying
parametersmodels.We focus on these two classes because their second-order nonsta-
tionarity parameters can be considered a surface and we aim to leverage a technique
used to model surfaces, namely, thin plate splines (TPS). The TPS is a basis function
and is used to interpolate surfaces using a predetermined set of landmarks or the loca-
tions where the basis functions are centered (Bookstein 1989; Wahba 1990; Donato
and Belongie 2002; Chen and Geman 2014). TPS is a central topic in morphometrics
and has found a wide range of applications including biomedical, computer vision,
data mining, and engineering (Whitbeck and Guo 2006; Hegland et al. 1997; Ten-
nakoon et al. 2013; Chen et al. 2017; Bazen and Gerez 2003). This section describes
how TPS can be appropriately applied to model the second-order nonstationarity
parameters of the Lagrangian spatio-temporal nonstationary models.

Supposeψ(s) is an unknown second-order nonstationarity parameter of interest at
spatial location s. This parameter might be the x− or y−coordinate in the new spatial
domain for the deformation model or the spatially varying parameters λ1(s), λ2(s),
or φ(s). The TPS model for ψ(s) is

ψ(s) = A1 + A2sx + A3sy +
L∑

i=1

wiU (‖s∗i − s‖2), (7)

where U (h) = h2 log h, for h > 0, and zero otherwise, is a basis function, A =
(A1, A2, A3)

� ∈ R
3 and w ∈ R

L are the parameters responsible for the affine and
nonlinear components of the transformation, respectively, and L is the number of
landmarks. Sampson (2015) pointed out several problems springing from the for-
mulation in (7), including multiple local maxima in the log-likelihood function and
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highly correlated parameters. Hence, following their recommendation, we adopt
the form in (7) with wi = ∑L−3

j=1 β j gi, j , such that g j = (g1, j , . . . , gL , j )
� ∈ R

L ,
j = 1, . . . , L − 3, also called the principal warps, are the last L − 3 eigenvec-
tors of the bending energy matrix B corresponding to its L − 3 nonzero eigen-
values. The bending energy matrix B is the upper left L × L sub-matrix of B̃ =[
D P;P� O

]−1 ∈ R
(L+d+1)×(L+d+1) with elements:

• D ∈ R
L×L such that for l, r = 1, . . . , L , Dlr = d2

lr log(dlr ), if l 	= r , and Dlr = 0,
otherwise, where dlr = ‖s∗l − s∗r ‖,

• P ∈ R
L×(d+1), where the l-th row of P is (1, s�l ), s ∈ R

d , and l = 1, . . . , L , and
• O is a zero matrix in R

(d+1)×(d+1).

Together, the linear combinations of the coefficients, βi, j , and the principal warps,
g j , are termed partial warps.

A key ingredient in the TPS model is the set of landmarks, {s∗1, s∗2, . . . , s∗L}. The
TPS model interpolates at these landmark points while preserving maximal smooth-
ness (Bazen and Gerez 2003). The placement of these landmarks dictates the quality
of the parameter estimates (Lewis et al. 2004). The landmarks and the number of
landmarks are fixed prior to modeling and the choice is left to the discretion of the
modeler. In the morphometrics literature, the landmarks are often positioned where
important features can be observed (Gunz and Mitteroecker 2013). In the spatial
statistics literature, the observation locations are commonly designated as landmarks
(Kleiber et al. 2014).

In studying Lagrangian spatio-temporal random fields, there is a need to distin-
guish between the observation locations and the domain of the transported random
field. The former refers to the predefined locationswheremeasurements are obtained,
e.g., regular latitude/longitude grid, wireless sensor networks, wind turbine sites,
meteorological towers, and many others. The latter has its own coordinate system.
The measurements contained in the transported random field get picked up by the
data collection tools at the observation locations as the randomfield travels past them.
In frozen Lagrangian spatio-temporal random fields, the measurement Z(s, t) col-
lected at observation location s at time t corresponds to themeasurement Z(s − vt) at
spatial location s − vt in the domain of the transported random field. Figure 3 shows
a frozen Lagrangian spatio-temporal deformed random field traveling at a constant
velocity of v = (0.5, 0.5)�. While the observation locations are fixed at any time,
the corresponding locations in the Lagrangian random field are not. Choosing the
observation locations as landmarks, therefore, will not suffice in capturing the non-
stationarity of the entire Lagrangian spatio-temporal random field as every region
in the domain should be represented by these landmarks. Assuming that the domain
of the Lagrangian spatio-temporal random field is larger than the domain of obser-
vation locations, we advocate to situate the landmarks on a regular grid that covers
the entire Lagrangian spatio-temporal random field. In practice, unfortunately, the
appropriate size and resolution of this regular grid of landmarks cannot be identified
prior to modeling. However, cross-validation studies can be performed to determine
the suitable positioning and number of landmarks.
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Fig. 3 Marked in red are the observation locations on a regular 10 × 10 grid. Superimposed in black
are the spatial locations on the domain of the frozen Lagrangian spatio-temporal deformed random
field which travels past the observation locations with an advection velocity v = (0.5, 0.5)�, and
in green are the landmarks. The landmarks (green) may or may not coincide with the observation
locations (red)

3.2 Maximum Likelihood Estimation and Likelihood
Approximations in the Temporal Domain

Having established the representation of the unknown nonstationarity parame-
ters, we introduce the estimation procedure carried out in this work. Suppose
Z = {

Z(s1, t1), Z(s2, t2), . . . , Z(sn, tn)
}�

is a zeromeanmeasurement vector where
n ∈ Z

+ is the total number of space-time locations. Inference is performed through
maximizing the log-likelihood

l(Θ;Z) = −n

2
log(2π) − 1

2
log |Σ(Θ)| − 1

2
Z�Σ(Θ)−1Z (8)

with respect to all the parameters collected in Θ ∈ R
q . Here Θ includes all the

purely spatial, advection velocity, and the TPS parameters, and q is the total number
of parameters. The n × n covariance matrix Σ(Θ) is formed by a parametric spatio-
temporal nonstationary covariance function. Penalties can be introduced to Equation
(8) such as the L1 penalty for the deformation models in order to avoid folding of
the surface (Sampson 2015).

For spatio-temporal measurements that are regularly spaced in time, Z can be
rewritten asZ = (

Z�
1 , . . . ,Z�

T

)� ∈ R
NT such thatZt = {Z(s1, t), . . . , Z(sN , t)}� ∈

R
N , for t = 1, . . . , T . Here N and T specify the number of spatial and temporal loca-

tions, respectively, and n = N · T . Furthermore, the log-likelihood function above
can be approximated as follows:

l(Θ;Z1, . . . ,ZT ) ≈ l(Θ;Z1,t∗) +
T∑

j=t∗+1

l(Θ;Z j |Z j−t∗, j−1), (9)
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whereZa,b = (Z�
a , . . . ,Z�

b )� ∈ R
Nt∗ , for a < b, and t∗ specifies the number of con-

secutive temporal locations included in the conditional distribution. Here l(Θ;Z j |
Z j−t∗, j−1) is the log-likelihood function based only on the vector of space-time mea-

surements Z j−t∗, j−1 = (
Z�

j−t∗ , . . . ,Z
�
j−1

)�
. This kind of approximation is usually

preferred when T is large and the dependence in time relies heavily only on the more
recent measurements (Stein 2005c).

3.3 Two-Step Maximum Likelihood Estimation

The inclusion of the nonstationarity parameters in the model increases the dimen-
sion of the estimation problem. This kind of setup is known to run into numerical
difficulties and complications (Kathuria et al. 2019; Zhu and Wu 2010; Li and Sun
2018). Therefore, as a practical alternative to joint estimation of all the parame-
ters, in this work, the estimation problem is split into two parts. First, a Lagrangian
spatio-temporal stationary model is assumed and all the associated purely spatial and
advection parameters are estimated by maximizing the approximated log-likelihood
in (9). Second, fixing the estimates found in the first step, the nonstationary version
of the model is assumed and the parameters involved in the TPS are estimated also by
maximizing (9). After the second step, it is likely that the optimization routine may
still not reach the global maximum of (9). Hence, assuming the nonstationary model,
iterating between the two steps several times is pursued until a stopping criterion is
satisfied.

4 Simulation Study: Lagrangian Versus Non-Lagrangian
Spatio-Temporal Models

The Lagrangian spatio-temporal covariance functions are primarily used to model
transported space-time data. There are other classes of spatio-temporal covariance
functions that model space-time data that are not necessarily transported. In this
section, we investigate the outcome of fitting a non-Lagrangian model to transported
space-time data and the outcome of fitting a Lagrangian model to space-time data
that are not transported. We conduct the study under both second-order stationarity
and nonstationarity assumptions.

4.1 Second-Order Stationarity

For the Lagrangian spatio-temporal model, we hinge our simulation studies on a par-
ticular class of non-frozen models whose explicit forms were derived in Schlather
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(2010).WhenV ∼ Nd(μV,ΣV) andCS is the stationary squared exponential covari-
ance function, the model in (1) takes the form

C(h, u) = 1
√|Id + ΣVu2|

exp
{
−a (h − μVu)�

(
Id + ΣVu

2
)−1

(h − μVu)
}

,

(10)
where a > 0 is a scale parameter in space inherited from CS , and μV and ΣV are
the Lagrangian parameters. When μV = 0 and ΣV = σ 2

VId , the Lagrangian model
above reduces to

C(h, u) = 1

(1 + σ 2
Vu

2)d/2
exp

(
− a‖h‖2
1 + σ 2

Vu
2

)
, (11)

which is a spatio-temporal isotropic covariance function under the Gneiting class
(Gneiting 2002). The Gneiting model in (11), therefore, corresponds to a particular
Lagrangian model wherein the advection velocity vector has mean zero and has
independent components with common variance. While σ 2

V is interpreted as the
marginal variance of each component ofV in Lagrangian models, in non-Lagrangian
models such as that in (11), σ 2

V serves as a scale parameter in time, whose inverse
controls the range of dependence in time.

A question of scientific interest is how the twomodels differ when the components
of the advection velocity are no longer uncorrelated or when they do not share a
common variance or when the advection velocity vector has a nonzero mean. To
answer the first inquiry, we can scrutinize the form in (10) and compare it with (11).

Suppose d = 2, μV = 0, and ΣV = σ 2
V

[
1 ρ
ρ 1

]
then (10) reduces to

C(h, u) = 1
√

(1 + σ 2
Vu

2)2 − (ρσ 2
Vu

2)2
exp

[

−a

{
(h2x + h2y)(1 + σ 2

Vu
2) − 2hyhxρσ 2

Vu
2

(1 + σ 2
Vu

2)2 − (ρσ 2
Vu

2)2

}]

.

(12)

Direct comparisons between (11) and (12) for different values ofρ are not straight-
forward since the terms bearing ρ involve the temporal lag u and the components of
the spatial lag h = (hx , hy)

�. However, we can plot the values of (12) for different ρ,
u, and h, in order to visualize how the non-frozen Lagrangian spatio-temporal model
deviates from the non-Lagrangian spatio-temporal model when the components of
V are correlated. Figure 4 provides such illustrations. It juxtaposes the covariance
function values of the non-frozen Lagrangian spatio-temporal model,CLGR for nota-
tional convenience, at different combinations of spatial lags with Euclidean norm
equal to 1, at u = 1, 2, and 3, and at different strengths of dependence between the
components of the advection velocity. In the plots, the values of the covariance func-
tion are plotted as the distance from the origin (0, 0) to (hx , hy). Note that the case
ρ = 0 corresponds to the spatio-temporal Gneiting model in (11), denoted as CG.
The isotropy of CG , at any u, manifests by the constant value of CG when evaluated
at any (hx , hy). Another standout observation is that the value of CLGR depends on
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Fig. 4 Values of the non-frozen Lagrangian spatio-temporal covariance model in (12) for ρ =
0, 0.1, 0.5, and 0.9, at temporal lags u = 1, 2, and 3, at every h = (hx , hy)

� such that ‖h‖2 = 1.
Note that the case ρ = 0 corresponds to the non-Lagrangian Gneiting model in (11)

the signs of the components of the spatial lag and the magnitude of the correlation
parameter ρ.

It can also be seen in the example in Fig. 4 that at u = 1, when hx and hy have
the same signs, CG is less than CLGR. However, when hx and hy have different signs,
CG is greater than CLGR. This relationship between CG and CLGR at u = 1 does not
persist as the temporal lag increases as other scenarios are observed. At u = 3, for
example, CG and CLGR are almost identical when ρ is near zero. However, when
ρ = 0.5 or ρ = 0.9, CG is less than CLGR in any direction. The difference, there-
fore, between CG and CLGR under the presence of a nonzero dependence parameter
between the components of V is not clear-cut but can be explored under some sce-
narios. Nevertheless, the deviation of CLGR from CG gets more pronounced as ρ

increases.
We turn to some numerical experiments to answer the other unexplored ques-

tions, including what happens when CG is fitted to data simulated from CLGR,
denoted DLGR, such that the components of V have different marginal variances
or V has a nonzero mean. Suppose T = 10, N = 100, d = 2. The values DLGR =
Z = (Z�

1 , . . . ,Z�
10)

�, such that Zt = {Z(s1, t), . . . , Z(s100, t)}�, (s, t) ∈ R
2 × R,

are simulated from (10), with a = 5, on a 10 × 10 grid in the unit square, under
the following distributions of V:

(a) V ∼ N2

{
μ = 0,Σ =

(
1 ρ
ρ 1

)}
at different values of ρ;

(b) V ∼ N2

{
μ = 0,Σ =

(
1 0
0 σ 2

y

)}
at different values of σ 2

y ;

(c) V ∼ N2
{
μ = (μ,μ)�,Σ = I2

}
at different values of μ.

We reserve the values of Z10 for prediction purposes and use the remaining 900
spatio-temporal realizations for estimation. Given the small problem size, full maxi-
mum likelihood estimation is performed; see (8). At this point, we question the effect
of different values of ρ, σ 2

y , andμ on the estimates of σ 2
V in the non-Lagrangianmodel
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in (11). Figure 5 gives the boxplots of parameter estimates σ̂ 2
V for 100 rounds of fit-

ting CG on DLGR. The values of σ̂ 2
V reflect the changing degree of dependence in

space-time as we change the values of the different parameters associated to the
distribution of V. In the first panel in Fig. 5, for example, when ρ = 0.9, the median
of the estimates is 0.887 which translates to a stronger dependence in time, a fact
also established in Fig. 4. In the middle set of boxplots, interestingly, the median
of σ̂ 2

V is approximately equal to (1 + σ 2
y )/2. This result cannot be easily explained

mathematically. Numerically, however, this is expected as the optimization routine
finds the isotropic model parameters that maximize the log-likelihood given data
simulated from a model with elliptical contours that are stretched in the x-axis.
Lastly, as the mean of V gets farther from 0, the estimate for σ 2

V has to compensate
for a faster decorrelation in time which explains the increasing median of σ̂ 2

V as μ

increases. In the initial experiments concerning Fig. 5c, a number of experimental
replicates obtained σ̂ 2

V with values greater than 100 as μ increases. To obtain more
compact boxplots, we re-ran the experiments and bounded the values that σ̂ 2

V can
take to 10. This does not alter the insights provided by the unconstrained version
of the experiments for Fig. 5c and the results presented in Fig. 5a and b. That is, as
the non-frozen Lagrangian spatio-temporal model deviates from the non-Lagrangian
scenario, i.e.,V ∼ N2(μV,ΣV), whereμV = 0, andΣV = σ 2

VI2, the more disparate
the models (10) and (11) become.

Next, we study the effect of ρ on the predictions and the quality of those predic-
tions. Often, the assessment of the quality of the predictions is done by computing
the Mean Square Error (MSE)

MSE = 1

100

100∑

l=1

{
Ẑ(sl, 10) − Z(sl , 10)

}2
,

where Ẑ(sl, 10) is the prediction for Z(sl , 10) at spatial location sl , l = 1, . . . , 100,
and temporal location t = 10.Assuming themeanof themeasurement vector thatwas
used to estimate the parameters is 0, i.e., E

(
Z1,9

) = 0, whereZ1,9 = (
Z�
1 , . . . ,Z�

9

)�
,

predictions are computed using the simple kriging predictor

Ẑ(sl, 10) = c�
l Σ(Θ)−1Z1,9.

Here cl is the vector of N × (T − 1) covariance function values between Z(sl , 10)
and Z(sr , t), r = 1, . . . , N and t = 1, . . . , 9, i.e.

cl = {C(sl, s1; 10, 1), . . . ,C(sl , sN ; 10, 1),C(sl , s1; 10, 2), . . . ,C(sl , sN ; 10, 9)}� .

(13)
Nevertheless, the MSE is unable to give an appropriate measure of the loss of

statistical efficiency in cases when a different model is used instead of the truemodel.
In this regard, we turn to the proposed criteria of Stein (1999), namely, the Loss of
Efficiency (LOE) and the Misspecification of the Mean Square Error (MOM). The
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Fig. 5 Estimates of σ 2
V in (11) when fitted to DLGR generated using (10) with (a) V ∼

N2

{
μ = 0,Σ =

(
1 ρ
ρ 1

)}
at different values of ρ, (b) V ∼ N2

{
μ = 0,Σ =

(
1 0
0 σ 2

y

)}
at different

values of σ 2
y , and (c) V ∼ N2

{
μ = (μ,μ)�,Σ = I2

}
at different values of μ

LOE and MOM at space-time location (sl, t) are computed as follows:

LOE(sl, t) = Etr,m(sl, t)
Etr (sl, t)

− 1 and MOM(sl, t) = Em(sl, t)
Etr,m(sl, t)

− 1, (14)

where Etr (sl, t) and Em(sl, t) are the mean square errors of the predictors under the
true, tr , and misspecified, m, models, respectively, and are calculated as follows:

E j (sl, t) = C(sl , sl; t, t) − c j
l

�
Σ(Θ∗)−1c j

l , j = {tr,m} , (15)

where c j
l and Σ(Θ∗) are computed using Θ∗ = Θ , for model tr , and Θ∗ = Θ̂

m
for

model m. Here Θ is the true parameter vector while Θ̂
m
is the estimated parameter

vector under the model m. On the other hand, Etr,m(sl, t) is the mean square error,
with respect to the true model, of the predictor that is derived from the misspecified
model, and is given as

Etr,m(sl, t) = C(sl, sl; t, t) − 2ctrl
�
Σ(Θ̂

m
)−1cml + cml

�
Σ(Θ̂

m
)−1Σ(Θ)Σ(Θ̂

m
)−1cml .

(16)
Figure 6 plots the LOE and MOM values at every prediction location at t = 10. The
LOE is closer to zero when ρ is near zero compared to the LOE when ρ = 0.9. An
LOE near zero indicates that the misspecified model is similar to the true model.
Furthermore, the change in the LOE at each prediction location as we increase ρ is
different and is somehowdictated by the contours of the distribution ofV. Thismeans
that the quality of predictions is not equal everywhere and the worst misspecification
occurs in the direction where the highest correlation under CLGR occurs. The plots
for the MOM convey the same story.
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Fig. 6 Values of the LOE and MOM at every spatial location when CG is fitted to DLGR simulated
with ρ = 0.1, . . . , 0.9. The closer the LOE values are to zero or the bluer the plots are, the better.
Similarly, the closer the values of the MOM are to zero or the redder the plots are, the better

4.2 Second-Order Nonstationarity

Similar analyses cannot be easily adapted to the nonstationary counterparts of the
models in the previous section since the covariances may depend on arbitrary nonsta-
tionarity parameters at each spatio-temporal location. However, we can draw insights
on the consequences of fitting CG to data generated fromCLGR and vice versa, under
second-order nonstationarity, by again looking at the quality of predictions.

The non-Lagrangian nonstationary covariance model used in the succeeding
numerical experiments, CG

NS , is the nonstationary version of (11) proposed in Garg
et al. (2012). It has the form

C(s1, s2; u) = σ(s1, s2)
(1 + atu2)d/2

Mν

[{
(s1 − s2)�D(s1, s2)−1(s1 − s2)

}1/2

(1 + atu2)1/2

]
, (17)

where σ(s1, s2) and D(s1, s2) are defined in Sect. 2 and the parameter at > 0 is the
scale parameter in time.Data generated from (17) are labeled DG

NS . On the other hand,
CLGR

NS is the non-frozen Lagrangian spatio-temporal nonstationary model in (5) and
data from this model are tagged as DLGR

NS . We assess the quality of the predictions
by comparing the mean LOEs (MLOE) and mean MOMs (MMOM) when CG

NS is
fitted to DLGR

NS and when CLGR
NS is fitted to DG

NS (Hong et al. 2021). Figure 7 plots the
medians of the computed MLOE and MMOM for both scenarios after 100 rounds of
parameter estimation via maximization of the full log-likelihood at different values
of ρ. It can be seen that at every ρ, the medianMLOE is greater whenCG

NS is fitted to
DLGR

NS compared to the median MLOE when CLGR
NS is fitted to DG

NS . Moreover, both
scenarios of model misspecification yield median MMOMs that are far from zero.
However, the median MMOMs are more favorable in cases when CLGR

NS is fitted to
DG

NS at larger values of ρ. This should advocate the use of Lagrangian models even
when the random field does not appear to be transported.
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5 Application to Particulate Matter Data

A spatio-temporal process that is known to be heavily influenced by the presence of a
transport medium is pollutant measurements. Pollutants in the atmosphere are trans-
ported by the wind to neighboring sites over time (National Research Council 2010).
This behavior causes the pollutant measurements at one site to be strongly correlated
to the pollutant measurements at a site along the path of transport. Thus, a model
incorporating this transport behavior to its spatio-temporal dependence structure is
physically reasonable.

5.1 PM 2.5 Data

Westudy the spatio-temporal dependence of log particulatematter (logPM2.5) resid-
uals. We retrieve the Modern-Era Retrospective Analysis for Research and Appli-
cations, Version 2 (MERRA-2) reanalyses dataset of hourly PM 2.5 measurements
from NASA Earthdata. Preliminary processing of the raw PM 2.5 data was done to
ensure that the resulting spatio-temporal residuals fulfill the modeling assumptions
of Gaussianity and zero mean. We consider the first 744 hourly measurements for
each year from 1980–2019, at 550 spatial locations, as spatio-temporally dependent,
while measurements across years are regarded as spatio-temporally independent.
Since the measurements between any two years are at least 11 months apart, this
independence assumption is reasonable. Figure 8 maps the log PM 2.5 residuals at
550 locations in Saudi Arabia, at 4 h intervals, starting from 0:00 of January 1, 2017.
The transport behavior is evident and can be identified when following the red, blue,
and yellow blobs. The direction of transport at every spatial and temporal location
appears to be different as the displacements of the red blob indicate transport to the
South or South East direction while a North or NorthWest movement can be detected
from the yellow blob.
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Fig. 8 Snapshots of the log PM 2.5 residuals on January 1, 2017. The spatial images are 4 h apart.
Two reference locations are marked for ease of transport movement detection

5.2 Models

Wefit six different spatio-temporal covariance functionswithMatérn spatialmargins.
The models under consideration are the following:

• M1: Non-frozen Lagrangian spatio-temporal stationary covariance:

C(h; u) = σ 2EV {Mν (a‖s1 − s2 − Vu‖)} ;

• M2: Non-frozen Lagrangian spatio-temporal spatially varying parameters model
in (5);

• M3: Non-frozen Lagrangian spatio-temporal deformation model in (6);

• M4: Non-Lagrangian spatio-temporal stationary covariance:

C(h; u) = σ 2

(at |u|2α + 1)βd/2
Mν

{
a‖h‖

(at |u|2α + 1)β/2

}
,

where α ∈ (0, 1] is the smoothness parameter in time and β ∈ [0, 1] is the space-
time interaction parameter;

• M5: Non-Lagrangian spatio-temporal nonstationary model:

C(s1, s2; u) = σ(s1, s2)
(at |u|2α + 1)βd/2

Mν

[{
(s1 − s2)�D(s1, s2)−1(s1 − s2)

}1/2

(at |u|2α + 1)β/2

]
,

a more flexible version of the model in (17); and
• M6: Non-Lagrangian spatio-temporal nonstationary covariance II:

C(s1, s2; t1, t2) = σ(s1, s2)

{|(t1 − t2)D(t1, t2)|2α + 1}β Mν

[
{(s1 − s2)�D(s1, s2)−1(s1 − s2)}1/2

{|(t1 − t2)D(t1, t2)|2α + 1}β/2

]

,

where D(t1, t2) = 1
2 {D(t1) + D(t2)} and D(t) controls the temporally varying

parameters. This is a more general nonstationary version of model M5; see Garg
et al. (2012).
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Table 1 A summary of the models fitted to the log PM 2.5 residuals and their corresponding
AIC∗, BIC∗, and MSE. The lower the values, the better. The best scores are in bold. The number
of parameters, q, are also reported

Model q AIC∗ BIC∗ MSE

M1 (S) 8 −13, 823, 238 −13, 823, 121 0.0050

M2 (NS) 37 −15, 051, 228 −15, 050, 688 0.0018

M3 (NS) 28 −14, 859, 980 −14, 859, 571 0.0023

M4 (S) 6 −13, 408, 544 −13, 408, 456 0.0171

M5 (NS) 35 −13, 808, 486 −13, 807, 975 0.0081

M6 (NS) 44 −14, 315, 594 −14, 314, 951 0.0035

The expectations in models M1, M2, and M3 are evaluated numerically with
respect toV ∼ N2(μV,ΣV). Furthermore, the covariancematrixΣV is parametrized
using its Cholesky decomposition to guarantee positive definiteness.

Each pixel in Fig. 8 is 0.5◦ × 0.625◦. The spatial coordinates are transformed
to their appropriate projections in kilometers (km). This means that the unit of the
advection velocity is in km/hr. The minimum distance between any two stations
is 16.9 km. Following the techniques presented in Sect. 3, we order the measure-
ments based on their locations in time and group them into blocks of 6 consecutive
purely spatial random fields and maximize the approximated log-likelihood in (9).
Moreover, we perform a two-step estimation where we retrieve first the estimates
of the space and time parameters of the stationary versions and plug in those esti-
mates to the nonstationary models in the next round of maximizing the approximated
log-likelihood with respect to the nonstationarity parameters.

To validate the models, we leave out the spatio-temporal observations in the last
5 h of January 31 and predict the measurements at all spatial locations. Table 1
reports the performance of the six models as measured by the MSE, Akaike (AIC∗),
and Bayesian information criteria (BIC∗), where AIC∗ = −2l(Θ̂1, Θ̂2) + 2q and
BIC∗ = −2l(Θ̂1, Θ̂2) + q log(Mn). Here l(Θ̂1, Θ̂2) is the value of the approxi-
mated log-likelihood function at the second estimation step with parameter esti-
mates Θ̂2 while fixing the parameters Θ̂1 obtained at the first estimation step and
M is the number of independent replicates of the spatio-temporal random field.
The nonstationary models show more favorable AIC∗ and BIC∗ values compared to
their stationary counterparts. The additional nonstationarity parameters provided the
nonstationary models more flexibility to model the space-time data. In terms of pre-
diction, the Lagrangian models report lower MSEs than the non-Lagrangian models.
Overall, the non-frozen Lagrangian spatially varying parameters model M2 is the
best performing model across all criteria. The estimated mean and covariance matrix
of V under M2 are μ̂ = (−0.0003, 0.0017)� km/hr and Σ̂ = (

1.719 2.257
2.257 3.301

) × 10−5

km2/hr2. This indicates that the estimated value of the correlation between the com-
ponents of V is ρ̂ = 0.948.
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6 Conclusion

The theme of this work focused on the practicalities of using Lagrangian spatio-
temporal covariance functions to model space-time data, especially under second-
order nonstationarity assumptions. The work undertaken in this article aims to illus-
trate the usability and utility of Lagrangian spatio-temporal models.

We demonstrated the use of thin plate splines in modeling second-order non-
stationarity parameters. We also advocated the maximization of the approximated
log-likelihood function when data are available at regular time intervals. We showed
through several numerical studies the effect of fitting Lagrangian models to data gen-
erated from non-Lagrangian models, and vice versa. We found that the predictions of
non-Lagrangian models on Lagrangian data are of inferior quality compared to the
quality of predictions of Lagrangian models on non-Lagrangian data. This should
provide support to using Lagrangian models even when the spatio-temporal random
field is not transported.

Furtherworkwouldbe to validate the estimateddistributionof the advectionveloc-
ity vector against the real wind data used as inputs to a partial differential equation
which generated the PM 2.5 measurements under study. The equivalence between
Lagrangian spatio-temporal models and physical models such as the advection-
dispersion equations in Physics is not straightforward and is worth exploring.

The models used in this work as underlying purely spatial nonstationary covari-
ance functions were limited to only two classes. There are other classes in the litera-
ture whose Lagrangian formulations deserve attention in terms of model interpreta-
tion and parameter estimation, such as the dimension expansion and basis functions
models. Future work will focus on these other classes.
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