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Facing increasing societal and economic pressure, many countries have
established strategies to develop renewable energy portfolios whose penetra-
tion in the market can alleviate the dependence on fossil fuels. In the case of
wind, there is a fundamental question related to the resilience and hence prof-
itability of future wind farms to a changing climate, given that current wind
turbines have lifespans of up to 30 years. In this work we develop a new non-
Gaussian method to adjust assimilated observational data to simulations and
to estimate future wind, predicated on a trans-Gaussian transformation and a
clusterwise minimization of the Kullback–Leibler divergence. Future winds
abundance will be determined for Saudi Arabia, a country with a recently
established plan to develop a portfolio of up to 16 GW of wind energy. Fur-
ther, we estimate the change in profits over future decades using additional
high-resolution simulations, an improved method for vertical wind extrapo-
lation and power curves from a collection of popular wind turbines. We find
an overall increase in daily profit of $272,000 for the wind energy market for
the optimal locations for wind farming in the country.

1. Introduction. The vast evidence of the negative effects of fossil fuel emissions (IPCC
(2014)) calls for a major systemic change in current strategies to produce and distribute en-
ergy throughout the world. Societies worldwide are adapting by developing renewable alter-
natives to reduce dependence on fossil fuels and to align with the standards imposed by the
Paris Agreement (Kinley (2017)). Wind has been the natural resource with the largest share
of power generation worldwide, with the United States and China being the two major lead-
ers (REN21 Secretariat (2018)). In the United States, renewable energies, with wind energy
being a major contributor, are predicted to surpass coal in terms of share of the energy mar-
ket by the end of this decade. Similarly, while European countries have an overall smaller
absolute installed capacity, the penetration of the energy in the national grid is in percentage
considerable, with a peak of 42% in Denmark.

The wind energy sector is at its early stages in developing countries such as Saudi Arabia.
Despite being one of the countries with the highest per capita energy consumption (World
Bank (2020)), the sixth largest consumer of oil worldwide (British Petroleum (2020)) and
the largest in the Gulf Cooperating Council (GCC) (International Renewable Energy Agency
(2018)), the transition to renewable energy is very recent and almost exclusively focused
on solar energy (International Renewable Energy Agency (2019)). Currently Saudi Arabia’s
contribution to the GCC’s renewable energy portfolio amounts to 16% of the total capacity,
with only 0.2% available for sharing and only 2% generated from wind (International Renew-
able Energy Agency (2018)). As part of the recently outlined “Vision 2030” plan (Nurunnabi

Received October 2020; revised March 2021.
Key words and phrases. Bias correction, Kullback–Leibler divergence, non-Gaussian process, nonstationary

model, spatiotemporal model, wind energy.

1831

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
https://doi.org/10.1214/21-AOAS1460
http://www.imstat.org
mailto:jzhang19@nd.edu
mailto:scastruc@nd.edu
mailto:pcrippa@nd.edu
mailto:marc.genton@kaust.edu.sa


1832 ZHANG, CRIPPA, GENTON AND CASTRUCCIO

(2017)), Saudi Arabia aims to generate 16 GW of wind energy (NREP (2018)), positioning
the country as one of the major global wind energy suppliers and considerably contributing
to the planned emissions reduction targets stipulated in the United Nations Framework Con-
vention on Climate Change (UNFCCC (2020)). Investments in wind energy would also result
in the increased reliability of renewable energy; for example, solar energy is only available
during daytime, whereas winds often peak at nighttime.

Under the aforementioned scenario, a comprehensive analysis must be conducted to iden-
tify optimal sites for developing wind farms based on a cost-benefit analysis. Several recent
studies with global climate models at annual (Jeong et al. (2018)), at monthly (Jeong et al.
(2019)) scale and later at daily level (Tagle et al. (2019, 2020)), including validation of ob-
servational and simulated data sets (Chen et al. (2018)) and extreme wind conditions (Chen,
Castruccio and Genton (2021)), provided initial evidence about the availability of sufficient
wind for installing wind turbines. Very recently, Giani et al. (2020) conducted the first full
feasibility study with a new high-resolution ensemble and identified the optimal locations and
types of turbine based on maintenance and operational costs. While their study provided the
first detailed assessment of the country’s resources, it relied on only four years of data, from
2013 to 2016, due to computational and storage constraints. This timescale is inconsistent
with the current lifespan of wind turbines, which can be as long as 30 years, and the multi-
decadal effects of climate change could have an impact on the wind resource availability.

In order to provide a pathway for a feasible and robust implementation of a wind energy
portfolio, the question of resilience under a changing climate must be addressed. Given the
computational impossibility to simulate high resolution numerical simulations for decades, an
alternative strategy focused on publicly available data must be devised. In this work we focus
on developing a methodology for assessing future winds, predicated upon the estimation
of the relationship between simulated and observed data for a historical period at the same
spatial and temporal scales. Under the assumption of an enduring relation between these two
data sets, future wind behaviors are estimated by applying the same relation to future climate
simulations.

Methods for adjusting observations and simulations have a long history in geoscience (see,
e.g., Kim, Kwon and Han (2015), Yuan et al. (2019) and Hawkins et al. (2013), Ho et al.
(2012) for a general review) and bear some resemblance but also substantial differences with
methodologies for calibrating observations with numerical simulations. Adjustment methods
can be generally divided into two categories: observation-driven and simulation-driven.

Observation-driven approaches focus on adjusting observations based on estimated
changes in simulations. This Delta method or change factor (Hawkins et al. (2013)) has
been subject to some recent generalizations beyond a simple mean correction. Indeed, Leeds,
Moyer and Stein (2015) proposed a spectral-based approach to the adjustment of time series,
thus resulting in an adjustment of the implied covariance structure. At the core of this method
is the notion of (penalized) estimation of the ratio between the spectral densities of observa-
tions and simulations. Poppick et al. (2016) proposed a generalization of the aforementioned
approach to a transient climate and multiple simulations under different future scenarios.

Simulation-driven methods are instead focused on estimating an empirical relationship
between historical observation and simulation and use it to correct future simulations. This
bias correction approach, in its simplest form, focuses on an individual time series, estimates
the differences between observational and simulated historical climate and applies this dif-
ference to future simulations to obtain the future observations. Slightly more sophisticated
approaches also involve the use of variance (see Section 3 for a comprehensive review) or
transforming the quantiles of the distribution (quantile mapping, Cannon, Sobie and Mur-
dock (2015)). In more recent years, more studies have acknowledged the need for methods of
bias adjustment for spatially distributed (and possibly multivariate) data. Nguyen, Mehrotra
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and Sharma (2019) proposed a frequency based adjustment of spatial data. Among others,
Cannon (2018), Mehrotra and Sharma (2016) and Cannon, Piani and Sippel (2020) extended
quantile mapping to multivariate time series, and François et al. (2020) provided a recent
overview and comparison of multivariate bias correction methods.

In this work we propose a new bias correction approach based on a non-Gaussian clus-
terwise spatial transformation which is estimated by minimizing the distance between the
joint distribution of the observational and of the simulated data field. Our proposed approach
is based on three fundamental ideas: 1) non-Gaussianity can be accounted for through a
marginal transformation which is slowly varying in space; 2) the transformation to Gaussian-
ity can be inferred by minimizing the distributional distance between the two fields as long as
this value is comparable and, possibly, within the confidence interval of the maximum like-
lihood estimate and 3) transformation to Gaussianity allows a simple adjustment of first and
second moments and a back-transformation to the original scale.

Section 2 introduces the data sets used for this study, validates the historical wind speeds
across Saudi Arabia and proposes a model for the mean and temporal dependence. Section 3
reviews current approaches to observation-simulation corrections. Section 4 introduces the
proposed methodology for non-Gaussian adjustment. Section 5 validates the model with a
simulation study with non-Gaussian random fields and historical data. Section 6 applies the
proposed methodology, along with vertical wind extrapolation and power curve evaluation,
to estimate the change in daily profits from future winds in Saudi Arabia. Section 7 con-
cludes with a discussion. The code for this work is available in the Supplementary Material
(Zhang et al. (2021)) and online at the following GitHub repository: github.com/Env-an-Stat-
group/21.Zhang.AoAS.

2. Data and preprocessing. In this study we focus on daily wind speed data at 10 meters
above the ground level in Saudi Arabia which is bounded approximately by longitudes of
34◦E–56◦E and latitudes of 16◦N–33◦N (see Figure S1(a–b)). Wind speed is derived as the
Euclidean norm from the zonal and meridional velocity (i.e., over the x and y axes). We
present the data set of the power curves along with the information related to the cost of
energy in the Supplementary Material.

2.1. Observational data. We use the Modern-Era Retrospective Analysis for Research
and Applications, version 2 (MERRA-2, Gelaro et al. (2017)), available from 1980 to the
present day. Reanalysis data consists of observational data assimilated to a numerical weather
model and, in the geoscience community, this data product is considered the best representa-
tion of the state of the Earth’s system. MERRA-2 is the reference observational data set used
in our study and is available on a regular grid with a resolution of 0.625◦ × 0.5◦ in longitude
and latitude, respectively. We only use daily wind speed data from 1980 to 2005, for a total
of 26 years, to match the simulation data sets presented in Section 2.2. There are n = 614
locations in Saudi Arabia at MERRA-2 resolution for a total of T = 9497 days. Throughout
this manuscript we will denote the MERRA-2 wind fields as WO(si , tj ), where the subscript
O indicates the observation.

2.2. Regional simulations. We use the simulations from the Coordinated Regional Cli-
mate Downscaling Experiment (CORDEX) which is a set of coordinated regional experi-
ments. Specifically, we focus on the Middle East North Africa (MENA) CORDEX Program,
and among the five available simulations, we select CORDEX-4, which exhibits the best
agreement with MERRA-2 in Saudi Arabia, as demonstrated by Chen et al. (2018). The sim-
ulation resolution is 0.22◦ × 0.22◦, finer than MERRA-2, and boundary conditions for the
historical and future periods are provided by the Geophysical Fluid Dynamics Laboratory

http://github.com/Env-an-Stat-group/21.Zhang.AoAS
http://github.com/Env-an-Stat-group/21.Zhang.AoAS


1834 ZHANG, CRIPPA, GENTON AND CASTRUCCIO

global coupled climate-carbon Earth System Models (GFDL-ESM2M, Dunne et al. (2013)).
Future GFDL-ESM2M runs are simulated under the Representative Concentration Pathways
8.5 (RCP 8.5, van Vuuren et al. (2011)) scenario in which the global radiative forcing is as-
sumed to increase by 8.5 W/m2 by 2100 (Taylor, Stouffer and Meehl (2012)). We regrid and
upscale the MENA CORDEX data to the MERRA-2 resolution by considering the average of
locations in MENA CORDEX that are within the range of two consecutive MERRA-2 grids.
Even though the historical run spans from 1950 to 2005, we only consider data from 1980
to 2005 to align the observation window with MERRA-2; for future runs we only consider
simulations in the near future for the same number of years, that is, from 2025 to 2050. We
will denote the MENA-CORDEX wind fields as WS(si , tj ), where the subscript S indicates
the simulation.

2.3. Model for the mean and temporal dependence. We assume a periodic climatology
described by K harmonics in order to account for the interannual wind variability. If we
denote the wind speed for location s and time t by W(s, t), its interannual variability across
the year can be written as

(1)

W(si , tj ) = μ(si , tj ) +
P∑

i′=1

φi′,iε(si , tj−i′) + ε(si , tj ),

μ(si , tj ) = ωi ∗ yr(tj ) +
K∑

k=1

{
βk,i sin

(
2πktj

δ

)
+ β ′

k,i cos
(

2πktj

δ

)}
,

where δ ∈ {365,366}, depending on whether the year is nonleap or leap, si = (xi, yi),
i = 1, . . . , n, j = 1, . . . , T , and yr(t) represents the year of day t . Thus, the model assumes a
location-specific linear annual trend with K harmonics to explain interannual variability and
P autoregressive coefficients. We further assume that ε(si , tj ) is independent across tj with
a spatial dependence that will be specified later. The mean and the autoregressive coefficients
are estimated through site-specific inference, initially by assuming Gaussian errors and inde-
pendence in time for estimating {ωi,βk,i, β

′
k,i} and subsequently estimating φi by maximum

likelihood. In the Supplementary Material we present diagnostics to show that: 1) the linear
trend ωi is significant for the majority of points in both data sets (Figure S3); 2) three har-
monics (K = 3) are sufficient to explain the climatology for both data sets (Figure S4); 3) the
parameters βk,i , β ′

k,i , φi are constant in time (Figures S5, S6 and S7) and 4) the residuals of
(1) are uncorrelated in time (Figure S8).

3. Review of adjustment approaches. MERRA-2 represents the state of the system as-
similated from observations; it can be observed up to the present, and its future needs to be
estimated. The simulations obtained from MENA CORDEX can be used as a proxy to as-
sess the future wind speed. From the preliminary analysis in the Supplementary Material, a
systematic mismatch between the two data sets is apparent. The objective of this study is to
provide an adjustment of this mismatch in the historical period and, employing the available
future MENA CORDEX simulations, use it to predict future MERRA-2 observations. While
the methods are general, for consistency with the previous section we will denote the spa-
tiotemporal wind fields as W(H)

O and W(H)
S for MERRA-2 (O for observations) and MENA

CORDEX (S for simulations), respectively, for the historical period (1980–2005). The future
data will be denoted as W(F )

O and W(F )
S . Throughout this section we will refer to MERRA-2

as “observations” and MENA CORDEX as “simulations” to emphasize the generality of our
methodology.
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3.1. Correction for marginal distributions. The simplest approach to achieve adjusted
future simulations is bias correction, which assumes a simple additive bias between observa-
tions and simulations, estimates it in the historical period and then adjusts future simulations.
Bias correction has been widely used in a number of studies in geoscience (see, e.g., Chen,
Pryor and Li (2012), Hemer, McInnes and Ranasinghe (2012) for wind applications). This
approach assumes that there is no difference in marginal variance, spatial covariance or other
high-order moments. Formally, we assume that the observation-corrected data for a location
si can be expressed as

(2) W
(F)
O (si , tj ) = W

(F)
S (si , tj ) + {

μ
(H)
O (si , tj ) − μ

(H)
S (si , tj )

}
,

where tj refers to the j th time for the historical or future time period and μ
(H)
� (si , tj ) for

� = {O,S} is the mean in the historical period (from 1980 to 2005), which is estimated via
the location-specific inference of the mean parameters in (1), as described in Section 2.

Two data sets typically exhibit differences also in their temporal variability (see Fig-
ure S2), which cannot be accounted for by a simple bias correction. Therefore, a relatively
more articulated approach focuses on adjusting both the mean and variance (Li et al. (2019),
Teutschbein and Seibert (2012)). Formally,

(3) W
(F)
O (si , tj ) = μ

(H)
O (si , tj ) + σ

(H)
O (si )

σ
(H)
S (si )

{
W

(F)
S (si , tj ) − μ

(H)
S (si , tj )

}
,

where σ
(H)
� (si ) for � = {O,S} is the standard deviation in the historical period and is esti-

mated from the parameters of the autoregressive process in (1).

3.2. Covariance adjustment. In the previous section the adjustment was performed in-
dependently for every grid point, hence focusing only on the marginal distribution, without
considering the potential dependence across multiple locations. However, there is strong evi-
dence of spatial dependence in the observed and simulated field. Indeed, Figure S10 indicates
a strong empirical spatial correlation between two neighboring points for both data sets. It
is, therefore, of interest to develop methods to correct not just for the mean and variance but
also for the spatial correlation.

A simple generalization of (3) allows for adjustment of both the mean and covariance
matrix (therefore, including variance), and, under the assumption of Gaussianity for both
observations and simulations, this would be sufficient to fully characterize a transformation
for the joint distribution. Indeed, future observations can be expressed as

(4) W(F )
O (tj ) = μ

(H)
O (tj ) + (

�
(H)
O

)1/2{(
�

(H)
S

)−1/2}�{
W(F )

S (tj ) − μ
(H)
S (tj )

}
,

where μ
(H)
� (tj ) = (μ

(H)
� (s1, tj ), . . . ,μ

(H)
� (sn, tj ))

� (with the same convention being used

for the other quantities) and �
(H)
� for � = {O,S} denotes the covariance matrices for the

observational and simulated data sets in the historical period; the superscript 1/2 denotes
the Cholesky decomposition. While �

(H)
� could be estimated using a simple nonparametric

sample covariance matrix, the relatively large number of locations (n = 614) would result
in an unstable estimate. Instead, we assume spatial dependence via two parametric models
in increasing order of complexity. First, we consider a stationary and isotropic covariance
function modeled by the Matérn correlation (Stein (1999)), that is, if two measurement are
separated by distance h, then their correlation is

(5) C(h) = 21−ν

�(ν)

(√
2ν

h

ρ

)ν

Kν

(√
2ν

h

ρ

)
,
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where ρ > 0 is the range parameter, ν > 0 is the smoothness of the process and Kν is the
Bessel function of the second kind of order ν. Second, we consider a more articulated nonsta-
tionary covariance resulting from the kernel convolution representation of the random field
(Higdon (2002)), which can be written in closed form under a general class of kernels as
(Paciorek and Schervish (2006))

(6) C
(
s, s′) = σ(s)σ

(
s′) |�(s)|1/4|�(s′)|1/4

|�(s)+�(s′)
2 |1/2

g
(√

Q
(
s, s′)),

where

Q
(
s, s′) = (

s − s′)�(
�(s) + �(s′)

2

)−1(
s − s′).

In this study the function g is specified to be the exponential function (although several other
alternatives are possible) with a spatially varying range. All the spatially varying parame-
ters are defined through the mixture of fixed knots for A fixed locations ba , a = 1, . . . ,A.
Herein, we select A = 4, as a larger number of knots would imply a considerable increase in
computational cost. The spatially varying variance is defined as

σ(s) =
A∑

a=1

wa(s)σa, wa(s) ∝ exp
{
−‖s − ba‖2

2λσ

}
,

where the weights are normalized and λσ could be estimated, but for simplicity it is here as-
sumed to be fixed at one half of the minimum distance between the knots. A similar approach
is used to define �(s) and the exponential function range. Inference is performed through
local likelihood; see Risser and Calder (2017) for details.

4. Adjusting for non-Gaussian spatial data. The methods presented in Section 3 allow
to correct the joint distribution under the assumption that the mean and covariance are the
only quantities for which the adjustment is necessary. This is appropriate only for physical
variables whose temporal aggregation is sufficiently large to ensure, at least, approximate
Gaussianity. Wind data aggregated at daily or subdaily level are generally expected to exhibit
non-Gaussian behaviors and, in particular, to be skewed to the right, owing to occasionally
high values because of local meteorological events, such as storm fronts or persistent wind
gusts. This is indeed the case in our application. Figure 1(a) shows the histogram of the
MENA CORDEX data from a location at the northwest end of Saudi Arabia represented
by a cross in Figure S1(a–b). The superimposed best fit for a Gaussian distribution is vastly
inadequate, as it fails to capture the aforementioned right skew. Furthermore, the red boxplots
in Figure 1(c–d) show the skewness and excess kurtosis for all locations in MENA CORDEX
with a characteristic right skew and some degree of excess kurtosis.

We propose a correction method for non-Gaussian data based on marginal, spatially vary-
ing transformations. We denote this transformation to Gaussianity by gλ, a function depend-
ing on λ, and we assume the same class of transformation by gλ with λ = (λ1, . . . , λn)

�,
indicating the elementwise transformation at each location. Future observations are then ob-
tained as

(7) W(F )
O (tj ) = g−1

λO

[
μ

(H)
O (tj ) + (

�
(H)
O

)1/2{(
�

(H)
S

)−1/2}�{
gλS

(
W(F )

S

)
(tj ) − μ

(H)
S (tj )

}]
,

where now μ
(H)
� (tj ) and �

(H)
� for � = {O,S} represent the mean and covariance matrix of

the transformed process gλ�
(W(H)

� )(tj ), respectively. In the next sections we will discuss the
particular choice of transformation gλ and the assumptions on λ to allow an approximately
optimal choice across the entire spatial domain.
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FIG. 1. Comparison of the MENA CORDEX data from 1980 to 2005 before and after transformation. Histogram
of the (a) original and (b) transformed data at one selected location (see the cross in Figure S1(a–b)). The red
line represents the Normal distribution that best fits the data. Boxplot of (c) skewness and (d) excess kurtosis at
all locations.

4.1. Relative merits of the proposed approach and the Kennedy and O’Hagan framework.
The methodology we propose in this work bears some similarities but also differences with a
widely used framework for coupling data and simulations initially proposed by Kennedy and
O’Hagan (2000) and Kennedy and O’Hagan (2001). Indeed, their model can be written as

(8) WO(s) = ρ · WS(s) + δ(s) + ε(s),

where the subscripts O and S indicate observations and simulations, respectively. In its sim-
plest form this is a deterministic correction with ρ and δ(s), which is identifiable as long as
ρ is constant (Tuo and Wu (2015)). Equation (4) resembles this expression, but it is more
general, as it proposes a linear transformation of the entire spatial field. Indeed, the closest
equivalent in the Kennedy and O’Hagan (2000) framework would be

(9) WO = ρ · WS + δ + ε,

where WO , WS , δ and ε are n-dimensional vectors and ρ = ρIn is an n × n matrix. Our
approach as detailed in equation (7) is more general, as it does not just assume a linear
transformation but also a nonlinear function for both observations and simulations to achieve
Gaussianity and hence, theoretically, justifies our transformation. It is, therefore, more similar
in spirit to some of the most recent work in calibration using nonlinear functions, such as deep
neural networks (Bhatnagar et al. (2020)).

Another important difference is that, while (8) articulates a stochastic relationship, our
model is instead deterministic, as the adjustment parameters are chosen by simple linear
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algebra operations to transform a Normal vector into another one and a (nonlinear) transfor-
mation to normality. Our choice of a deterministic relationship was mostly justified by the
need to align our work with the current practice in bias correction.

On the computational side the choice of our deterministic transformation has the advantage
of requiring an estimation of parameters from observations and simulations separately. In the
context of our problem, where the observational data set has n×T = 614×9497 ≈ 5.8×106

observations, this is a very desirable feature especially for a nonstationary spatiotemporal
model already considerably time consuming such as the one we propose.

Finally, our work focuses on bias correcting observations with a computer simulation,
such as MENA CORDEX, for which we do not have control over the input parameters.
This approach is extremely common in geoscience, and a wide range of literature can be
found, mostly focused on Earth system models. The approach by Kennedy and O’Hagan
(2000, 2001) is generally applied for calibration of computer models, that is, determining
the best choice of numerical model input so that the simulations would resemble the obser-
vations. Calibration is typically performed assuming tens, or even hundreds of simulations
are available for a given problem with input specified from some design criterion, such as a
Latin hypercube design. This number is simply not achievable here; we only have five MENA
CORDEX simulations with an extremely large input space, so in Chen et al. (2018) we chose
the best one according to some in situ observations.

4.2. The Yeo–Johnson transformation. The standard Box–Cox transformation (Erdin,
Frei and Künsch (2012)) cannot be used for gλ, as our objective is to transform residu-
als, which are not necessarily nonnegative. Instead, we rely on a similar function, the Yeo-
Johnson transformation (Yeo and Johnson (2000)),

gλ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
(x + 1)λ − 1

]
/λ, x ≥ 0, λ �= 0,

log(x + 1), x ≥ 0, λ = 0,

−[
(−x + 1)2−λ − 1

]
/(2 − λ), x < 0, λ �= 2,

− log(−x + 1), x < 0, λ = 2.

While the standard approach for estimating λ is to maximize the likelihood of transform-
ing the data to Gaussianity, in this work we propose a different inference approach for both
observation and simulation so that their (joint) distributional distance, which in this work is
measured as the Kullback–Leibler divergence (KL divergence) (Kullback and Leibler (1951);
see Section 4.3)) is minimized. The key idea of our proposed approach is that, even if the
parameter is estimated by minimization of KL divergence and not maximum likelihood esti-
mator (MLE), their difference is not substantial. Indeed, a sizable number of sites (50% and
37% for observations and simulations, respectively) have clusterwise transformation param-
eters within the (asymptotic, likelihood based) 95% MLE confidence interval including the
parameter obtained via distance minimization, despite its narrow range owing to the sample
size from T = 9497 days (see Figure S11). Once the parameter has been inferred for both
data sets and the transformation has been applied, the bias and covariance from the correc-
tion method in Section 3.2 are estimated under the assumption of Gaussianity, and the results
are applied to the future simulated data to obtain an estimate for future observational data, as
explained in equation (7). As an example, Figure 1(b) shows the result for the transformed
wind field according to the method proposed in this study for one location, resulting in an
approximately Gaussian distribution. Figure 1(c–d) show the skewness and excess kurtosis at
all the locations before and after the transformation (with MLE, see Figure S12 for the results
with KL divergence), and it is readily apparent how the transformation is sufficiently flexible
to transform the data to Gaussianity at all locations.
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4.3. k-Nearest neighbors approximation of the Kullback–Leibler divergence. The KL di-
vergence is a measure of how one probability distribution differs from a second reference
probability distribution. In this study we estimate the KL divergence between the simulations
and observations, denoted as fS and fO , respectively,

(10) DKL
(
fO ‖ fS

) =
∫

fO(x) log
{
fO(x)

fS(x)

}
dx.

In our case, a direct evaluation is computationally impossible, as comparing two multivariate
distributions of dimension n = 614 would require an integration over the same number of
dimension in (10). While a simplifying expression is available for the Gaussian distribution,
it will not be used here as a comparison with different methods in the original non-Gaussian
scale must be made. Therefore, we rely upon a numerical approximation of the integral using
k-nearest-neighbor (k-NN) (Li et al. (2019), Wang, Kulkarni and Verdú (2009)). Let us as-
sume that we have two n-dimensional random samples from two populations with probability
density functions fO and fS . We define the distance between the ith sample from fO and:
1) its k-NN in the same population as ρk′(i) and 2) its k-NN in the other population as νk′(i).
Then, we use the following approximation (Wang, Kulkarni and Verdú (2009)):

(11) D̂KL
(
fO ‖ fS

) = 1

n

n∑
i=1

log
f̂O(Xi )

f̂S(Xi )
= n

m

m∑
i=1

log
νk′(i)

ρk′(i)
+ log

m′

m − 1
,

where f̂
(k′)
O (Xi ) = k′

m−1 · 1
v1(n)ρd

k′ (i)
and f̂

(k′)
S (Xi) = k′

m′ · 1
v1(d)νd

k′ (i)
are the k-NN estimators of

fO and fS , respectively, v1(n) = πn/2

�( n
2 +1)

and �(·) is the Gamma function.

In our case the dimension is equal to the number of locations, that is, n = 614, and the
number of samples m = m′ = 4749 (13 years of data in the testing set, as detailed in Section 2)
since we evaluated MENA CORDEX and MERRA-2 for the same time period. One critical
aspect of this approximation is the selection of k′, that is, the number of nearest neighbors.
In this study the standard convention of using the square root of the number of observations
is used (Boltz, Debreuve and Barlaud (2007)) so that k′ = √

4749 ≈ 70.

4.4. K-means clustering. To determine the transformation in (7), λO and λS must be esti-
mated. While it is possible in principle to estimate all 2n = 1222 location-specific parameters
jointly, this would lead to an unnecessary and severe overparametrization, as geographically
close locations are expected to have similar estimates. In practice, a joint estimation is also
computationally infeasible, since it would require a simultaneous optimization over all 2n

parameters.
In order to reduce the parameter space and, consequently, the computational time, we

assume that λO and λS are constant across some regions with a k-means clustering approach,
that is, for some p-variate observations x1, . . . ,xn and a fixed k′′, we aim to minimize the
distance between elements of each cluster and its mean.

While our main interest is to obtain regions with similar λO , it would be desirable to have
spatially coherent clusters for interpretability. Therefore, we assume that, for each site, we
have p = 3 covariates: the MLE of the element of λO corresponding to that site, the latitude
and the longitude. Preliminary exploratory analysis (not shown) indicates that a weighted
version of k-means with even a small weight on latitude and longitude allows for spatially
coherent clusters. Therefore, we will assume a weight of 0.98 on the MLE and a weight of
0.01 each for the latitude and longitude, and k′′ = 20 clusters, each with thirty to fifty grids, as
shown in Figure 2(b–c). The usage of clusters, instead of location-specific parameters, implies
some loss of information. For MENA CORDEX, Figure 2(a) shows the map of the pointwise
MLEs (see Figure S11(a) for MERRA-2), whereas Figure 2(b) shows the clusterwise MLEs.
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FIG. 2. MENA CORDEX maps of: (a) the Yeo–Johnson MLE, (b) the clusterwise MLE and (c) the cluster-wise
parameter estimated by minimizing the KL divergence. (d) The log-likelihood profile of the cluster indicated in (c),
the red cross represents the cluster-wise parameter and the outer-most dashed lines indicate the 95% confidence
interval of the MLE.

Both the values and spatial patterns are visually similar. Figure S11(b–c) show the map of the
points whose (asymptotic, likelihood-based) confidence interval for pointwise MLEs include
the MLE for the corresponding cluster of both data sets. Despite the very small intervals
resulting from T = 9497 observations, a sizable portion of the sites (50% MERRA-2 and
37% for MENA CORDEX) includes the cluster MLE.

Even though our objective is to estimate λ� = (λ�;1, . . . , λ�;k′′)�, � = {O,S} (i.e., the pa-
rameters for each cluster) such that the KL divergence is minimized, the resulting value must
not be too different from the MLE to still achieve Gaussianity. Figures 2(b) and 2(c) com-
pare the clusterwise MLE and KL minimizer for MENA CORDEX. Their patterns are very
similar, albeit with a few noticeable differences. 12 clusters from among k′′ = 20 have the
KL minimizer inside the MLE confidence interval for both MENA CORDEX and MERRA-
2, and Figure 2(d) shows an example of the cluster highlighted in the southern part of the
country. In the case of pointwise MLEs, despite the narrow interval from the large number of
observed days, the KL minimizers in panel (c) fall within the interval from panel (b).

5. Validation with simulations and real data. In this section we validate our pro-
posed methodology with respect to traditional approaches in terms of the KL divergence
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for: 1) two simulated non-Gaussian random fields and 2) the MENA CORDEX simulations
and MERRA-2 data. Throughout this section we use M to denote the marginal bias correction
with mean (2), MV to denote mean and variance (3), MC and MN to denote the mean and
covariance in model (4) via the Matérn parameters in (5) and the nonstationary model (6),
respectively. Further, we compare these methods with our proposed approach in (7) for two
cases in which the nonstationary covariance (6) is used. In the first case, denoted as T1, a
single transformation parameter is considered for each of the observations and simulations
so that all locations are transformed by the same parameter, minimizing the KL divergence.
In the second case, denoted as TC, we use a clusterwise parameter determined by k-means,
as specified in Section 4.4, for each of the two data sets. Thus, the locations in the same
cluster are transformed by the same parameter, and the vector of all cluster transformations
minimizes the KL divergence across all the sites. Computational details are presented in the
Supplementary Material.

5.1. Simulated data. We perform a simulation study to assess the model performance in
capturing varying degrees of non-Gaussianity. Both data sets are simulated from two ran-
dom fields that cannot be transformed to Gaussianity with a simple marginal transformation.
Furthermore, to simplify the setting we do not assume any interannual or annual trend or
temporal dependence (i.e., φi′,i = βk,i = β ′

k,i = ωi = 0 for all i = 1, . . . , n, i′ = 1, . . . ,P and
k = 1, . . . ,K in (1)). The spatial domain of our simulation comprises of 200 locations di-
vided into R = 8 spatial regions with 25 points each on a 5 × 5 grid in a square of length 1.
For each simulation, 100 replicates were generated, among which the first 50 were consid-
ered the historical period and the last 50 were considered the future period. A total of 1000
simulations was performed.

As “observational” data, we simulated samples from a biresolution model with a non-
Gaussian marginal distribution (Tagle, Castruccio and Genton (2020), Tagle et al. (2020)).
For each region r = 1, . . . ,R, we have

(12) W
(�)
O (s) = λSKT|USKT

r | + ηSKT
r (s)√

ZSKT
r

,

where � = {H,F } for historical and future time period, the temporal index has been omitted
for simplicity, ZSKT

r ∼ Gamma(νSKT/2, νSKT/2) independent and identically distributed and
USKT = (USKT

1 , . . . ,USKT
R )� ∼ N (0,�SKT

0 ) and ηSKT
r (s) indicate a zero mean Gaussian ran-

dom field independent across r with covariance matrix �SKT
r . The model assumes that, for

each region r , the two effects ZSKT
r and USKT

r are constant, and the small scale variation is ac-
counted by the field ηSKT

r (s). Across the regions the vector USKT characterizes the large-scale
dependence. This model (12) exhibits a skew-t marginal distribution, that is, a perturbation
of the t distribution accounting for skewed behavior (Azzalini and Capitanio (2003)), and
it can be represented hierarchically, thereby allowing relatively fast frequentist or Bayesian
inference. For our simulation we fix the parameters λSKT = 0.8 and νSKT = 8 and assume
that �SKT

r and �SKT
0 are generated from exponential covariance functions with ranges of

0.2 and 0.5, respectively, corresponding to maximum correlations of 0.77 and 0.24, respec-
tively. The large correlation within each region is in accordance with the previous results
with biresolution models, where the majority of the dependence is explained by the small
scale (Castruccio, Ombao and Genton (2018), Tagle et al. (2020)). Additional simulations
with parameter choices, leading to weaker and stronger correlation, are shown in Figure S13.

The “simulation” data are obtained from a Gaussian-Log-Gaussian model (GLG, Palacios
and Steel (2006)), which assumes

(13) W
(�)
S (s) = ηGLG(s)√

ξGLG(s)
+ εGLG(s),
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FIG. 3. Boxplot of KL divergences between (a) MV and the MC, MN, T1 and TC method for the simulated data
and (b) M and the MV, MC, MN, T1 and TC method for the estimated and actual MERRA-2 from 1993 to 2005.
Each of the 1000 elements of the boxplot represents an independent simulation in (a) and a random subsample of
300 locations in (b).

where � = {H,F } for historical and future time period and ηGLG(s) is an isotropic zero
mean Gaussian field with covariance function CGLG, which is considered to be an expo-
nential with a range parameter of 0.2. The process ξGLG(s) is such that log{ξGLG(s)} is a
Gaussian field with mean −νGLG/2 and covariance function νGLGCGLG, where CGLG is ex-
ponential with a range of 0.7, so that marginally ξGLG(s) is lognormal with mean 1 and
variance exp(νGLG) − 1 and νGLG = 8 in our simulation. The error term εGLG(s) represents
an independent Gaussian noise with zero mean and variance τ 2;GLG = 0.1, representing the
micro-scale variability or the nugget effect. As for the biresolution model (12), model (13)
cannot be transformed to Gaussianity with a simple marginal transformation; thus, our pro-
posed approach is not trained to obtain an exact transformation to Gaussianity for either the
“observed” or “simulated” data sets.

Figure 3(a) shows the results in terms of the KL divergence ratio between the MV method
and MC, MN, T1 and TC (M is not applied because the “simulated” data have zero mean
by construction), where each element of the boxplots represents one of the 1000 simulations.
Despite the considerably different and nontrivial non-Gaussian structures of the two data sets,
the proposed approach can more closely estimate the true future observations against a Gaus-
sian transformation with an improvement of 29% in the median using a single transformation
in T1. The clusterwise transformation TC yields a further improvement to 31%, although at
an increased computational cost, because the transformation parameters must be separately
estimated for each region.

5.2. Wind speed data. Since future observations cannot be used to validate our model,
we only consider the historical data period, and we separated it into a training and testing set.
We use the first 13 years of data (1980 to 1992) as the training set and the last 13 years (1993
to 2005) as the test set. Thus, the models are estimated according to the training set, and the
predictions in the test period are made by assuming that only MENA CORDEX is available.
Then, MERRA-2 is estimated and compared with the original data.

We compute the KL divergence (estimated and true MERRA-2 data in the testing set) ra-
tio between the simple mean bias correction (M) and other approaches. The MV, MC and
MN approaches result in ratios of 0.93, 0.88 and 0.81, respectively, indicating an increas-
ingly faithful representation of MERRA-2 if the variance and covariance are estimated. Our
proposed approach can further decrease the KL ratio to 0.58 and 0.51 for T1 and TC, respec-
tively.

To assess the uncertainty in the KL ratio, for 1000 times we sample 300 points (from the
total n = 614) from the spatial domain, perform the correction methods and estimate the
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KL ratio for each sample. Each boxplot in Figure 3(b) represents the KL ratio between M
and the other approaches for each subsample. For MC, MN and T1 methods, we estimate
the covariance function parameters for each sample. In the case of the transformation, we
used the same parameters as for the full data set for computational convenience. For TC we
used k-means and a stratified sampling method to select 50% of the locations in each cluster.
Overall, the improvement in the proposed model is apparent throughout the subsamples, with
an increasingly small KL divergence and with our proposed T1 and TC methods yielding the
smallest divergence.

6. Application. We use the proposed approach to estimate how the daily revenue from
the current optimal turbines build-out in Saudi Arabia will be impacted by a changing climate
over the next few decades. In Section 6.1 we describe our approach for extrapolating the
predicted surface wind to hub height, whereas in Section 6.2 we assess the final change in
profits implied by the corrected data extrapolated at hub height.

6.1. Extrapolation to hub height. In Figure 4(a) the daily surface wind speed according
to MERRA-2 is presented. This map indicates spatial patterns of potential interest for wind
harvesting, especially in the northwest corner, which is a site of particular interest, because
of the ongoing project to build a selfsustainable city (NEOM, Farag (2019)). However, the
surface wind does not necessarily represent the wind at higher altitudes. Indeed, the wind
speed data from both MENA CORDEX and MERRA-2 are computed or observed at a ref-
erence height of 10 meters, whereas wind turbines normally operate at a height of 80–120
meters. Therefore, in order to assess the wind energy output the surface wind speed must be
extrapolated to the height at which wind turbines operate. There is a vast literature on extrap-
olating wind speed from surface to a height within the boundary layer; see Emeis (2018) for
a comprehensive review. In the vast majority of studies, the power law is used,

(14)
W

(F)
O (si , tj , hk) = W

(F)
O (si , tj , hr)

(
hk

hr

)αij

eη(si ,tj ),

η(si , tj ) ∼ N
(
0, σ 2

i

)
,

where hk is the height to which we want to extrapolate and hr is the height at which data are
available (in our case it is 10 meters). The α is the shear coefficient of the power law, and its
value is assumed to change, depending on local spatial properties, such as surface roughness
and thermal stability (i.e., the temperature gradient for the first layers in the boundary layer)
(Gualtieri (2019)). In the absence of any meteorological information, the standard approach is
to assume that αij = 1/7 which corresponds to a value observed on flat terrain under neutral
atmospheric conditions (Rehman et al. (2007), Tagle et al. (2019)). Direct estimation of αij ,
using MERRA-2 or MENA CORDEX, is impossible, as direct estimation of the power law
from (14) would require sufficient vertical wind levels below 100 meters, and neither data
sets is designed for this level of accuracy near the surface. In this study we rely instead on
a high-resolution WRF ensemble and select a run by adopting a planetary boundary layer
parameterization, resolution and boundary conditions, resulting in simulations closer to a
few in situ data available (Giani et al. (2020)). The WRF simulation is specifically designed
to capture the wind at a high resolution near the surface and resolves the wind speed vertical
profile at six levels which are approximately equally spaced from the ground level to an
altitude of 100 meters. Therefore, these data will be used to estimate αij and σ 2

i in (14).
Since we focus on daily data (neither MERRA-2 nor MENA CORDEX has hourly data) and
a preliminary analysis (not shown) did not highlight temporal changes in the shear coefficient,
αij = αi is estimated from the power law with a simple log regression.
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FIG. 4. Maps of averaged daily wind speed at: (a) the surface and (b) 100 meters from 2025 to 2050 and
(c) average differences between the future and historical wind energy profits and their standard deviations (d).

The map of the estimated wind shear coefficients, along with their standard deviations
and the coefficients of determination R2 can be observed from Figure S14. The map of the
estimates indicates a considerable spatial variability with very small and even negative values
of the shear coefficient closely associated with the mountainous areas of the Hejaz region in
the west. While slower wind at high altitudes is an unexpected (yet physically admissible)
behavior within the boundary layer, it often occurs in areas exhibiting the smallest R2 and
the largest standard deviation, indicating that the power law (14) is likely not an appropriate
model, as also indicated in many studies (Crippa et al. (2021), Gualtieri (2019)). Since the
installation of wind turbines is not cost effective in the rough terrains of Saudi Arabia (Giani
et al. (2020)), the model misspecification over these regions is not a major concern. Once
the αi are estimated, MERRA-2 data are then downscaled from the 50 × 50 km to the 6 ×
6 km WRF resolution with ordinary kriging using another Matérn (5) covariance, and the
wind speed at the desired hub height is computed. Finally, given the uncertainty associated
with the determination of the shear coefficients, we performed 1000 extrapolations for each
site by simulating both the shear coefficient with its variability, as well as the random noise
from the parameters estimated in (14).

Figure 4(b) shows the extrapolated average daily wind at 100 meters for MERRA-2 during
2025–2050. Besides being uniformly faster than wind at the surface, the spatial patterns are
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not drastically different from those in panel (a), as expected. Figure S15 shows the relative
change of 100 meter wind against surface wind and highlights how the increase in wind speed
ranges from 60% to about 85%.

6.2. Assessing changes in future wind energy revenues. Giani et al. (2020) showed that
the most cost effective choice of turbines depends upon the site, because the construction
and maintenance cost as well as the potential for harnessing the wind vary. Here, we use the
same map of the most efficient turbines as indicated in Figure 5(a) of the aforementioned
manuscript and extrapolate the surface wind to the hub height of each turbine type. The wind
speed is translated into energy through a turbine-specific power curve which is a function that
represents the ability of the turbine to translate the blade movement into energy. Power curves
are zero until a given wind speed, increase up to a maximum rated power and are constant
for any stronger wind. We make use of of proprietary database purchased from The Wind
Power (www.thewindpower.net/about_en.php), providing the nominal power curves for the
most popular turbines worldwide. The actual power curves are generally not available and
require ad hoc methodology for their estimation (Ding (2019)). The total energy output per
cell can be calculated by multiplying the power for a single turbine with the total number of
turbines, is dependent on the diameter of the rotor blade and has to allow for sufficient spac-
ing among turbines to avoid local turbulence (wake effect) which would reduce the overall
efficiency.

Finally, the wind power is translated into actual revenue, using the current tariffs of the
Saudi Electricity Company (www.se.com.sa/en-us/customers/Pages/TariffRates.aspx), which
is approximately five U.S. cents per kWh. The current number is likely to be a sensible over-
estimation because the associated direct and indirect costs were not accounted for. The dif-
ference in revenue, as implied by the changes between future and present wind, is presented
in Figure 4(c). Overall, the map indicates increased revenues of up to approximately $4000
per day for the vast majority of the sites. Most importantly, the sites with increased future
revenues are those located near the coasts, hence with more potential for wind harvesting,
especially the NEOM region in the north west. The regions toward the center of Saudi Ara-
bia, including the neighborhoods of the capital Riyadh, would incur a loss in revenue from
changes in wind if turbines were to be installed there, although it would not be as substan-
tial as in the other areas. The uncertainty map is presented in Figure 4(d) and indicates large
uncertainties in some areas, especially near the Persian Gulf. While these uncertainties are
arguably large in some areas, they are a direct consequence of the considerable daily variabil-
ity of the power law (14). The uncertainty in the use of the power law has been acknowledged
(Crippa et al. (2021), Gualtieri (2019)), even though it has not been frequently used with the
goal of uncertainty quantification but in relation to additional covariates, such as temperature
gradients and stability metrics, which cannot be determined in this study given the coarse
vertical structures of MERRA-2 and MENA CORDEX.

While the aforementioned maps provide an overall estimation of the difference in profits
across the country, the areas of highest interest are the ones where the installation of wind tur-
bines would be the most cost-effective choice. Therefore, we estimate the difference in profits
for the 75 wind farms locations identified in Giani et al. (2020) to be the most promising sites.
We add the difference in profits across the sites, and we obtain a total increase in profit of ap-
proximately $272,000 and a standard deviation of $14,000, hence lending additional support
for the long-term profitability of the selected sites. In Figure S16 we have recalculated the
daily profits using a simple MV approach, that is, by adjusting only mean and variance in the
optimal sites, and we obtained a considerably decreased daily profit of $111,000 (standard
deviation $26,000).

http://www.thewindpower.net/about_en.php
http://www.se.com.sa/en-us/customers/Pages/TariffRates.aspx
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7. Conclusion. In this study we have addressed the issue of resilience of Saudi Arabia’s
current plan to diversify its energy portfolio with wind energy under changing climate condi-
tions. The key element associated with this assessment is the estimation of future winds using
reanalysis data. In order to provide that, we proposed a novel trans-Gaussian clusterwise ad-
justment model based on minimizing the KL divergence between reanalysis and simulated
data. Once the model was properly validated with a simulation study and with historical
data, we estimated future winds from 2025 to 2050. These estimates were extrapolated to the
turbine hub height using the output from high resolution numerical model simulations specif-
ically designed to capture the vertical structure in the boundary layer. Finally, these estimates
were translated into wind power and changes in revenue from future to present winds. Results
show a sizable increase of approximately $272,000 in daily revenues at the ideal construction
sites, albeit with a standard deviation of $14,000 due to the uncertainty propagated by the
extrapolation of wind from the surface to hub height.

From a methodological perspective, our model generalized some of the most common
approaches used for correcting spatial fields to the non-Gaussian case and proposed an infer-
ential approach that could be scaled to considerably higher spatial resolutions for future data
sets with: 1) clustering of the trans-Gaussian transformation and 2) numerical approximation
of the KL divergence with k nearest neighbors. The limitations of the current approach will
likely become apparent if hourly or subhourly resolution were made available: in that case,
the space-time interaction could not be reduced to a simple vector moving average model
and would likely require nonseparable models, the application of which would considerably
increase the computational cost. Furthermore, high-resolution wind data would: 1) result in
sparse wind such that a simple trans-Gaussian model could not capture, and a more involved
latent Gaussian model would be required and 2) invalidate extrapolation with the power law,
which available literature suggests to use only up to hourly resolution. This would prompt
the development of more sophisticated nonparametric approaches, such as neural networks
(Vassallo, Krishnamurthy and Fernando (2020)).

From the applied perspective, even though extrapolation is widely acknowledged to be the
most important source of uncertainty associated with the determination of wind energy from
surface wind, this study did not account for other sources. First, MERRA-2 is only one of
the available reanalysis data products, so further comparison with other products, such as the
new ERA5 from the European Centre for Medium-Range Weather Forecasts (Hersbach et al.
(2020)), could be performed. Second, power curves have been obtained from proprietary
data, but the raw data used to determine them are confidential and would likely indicate
some degree of uncertainty with respect to the determination of the said curve. Third, the
translation of power into revenue is highly dependent upon policies and negotiations between
the turbine operators and local authorities; therefore, this may vary across different regions
of Saudi Arabia. Future work will focus on better assessing these sources of uncertainty by
engaging both industrial partners and policymakers and discussing potential changes in the
siting work conducted by Giani et al. (2020) in light of these new results.

Finally, we emphasize how the scope of this study could be generalized to any country
with an emerging wind energy portfolio. Even though vertical extrapolation required a high-
resolution ensemble focused on Saudi Arabia and energy costs are expected to change across
different countries, the core of our methodology involves only publicly available data and
hence can be used to inform strategies for other Gulf countries and beyond. Furthermore,
in lieu of new data from a high-resolution ensemble, the power law could be simplified to
the case of neutral atmospheric stability and flat terrain, a simplifying assumption widely
accepted in wind power literature.
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SUPPLEMENTARY MATERIAL

Supplementary document (DOI: 10.1214/21-AOAS1460SUPP; .zip). A document pro-
viding additional technical details and supplementary details.
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