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Abstract— We extend the capability of space-time geosta-
tistical modeling using algebraic approximations, illustrating
application-expected accuracy worthy of double precision from
majority low-precision computations and low-rank matrix ap-
proximations. We exploit the mathematical structure of the
dense covariance matrix whose inverse action and determinant
are repeatedly required in Gaussian log-likelihood optimization.
Geostatistics augments first-principles modeling approaches for
the prediction of environmental phenomena given the availability
of measurements at a large number of locations; however, tradi-
tional Cholesky-based approaches grow cubically in complexity,
gating practical extension to continental and global datasets
now available. We combine the linear algebraic contributions
of mixed-precision and low-rank computations within a tile-
based Cholesky solver with on-demand casting of precisions and
dynamic runtime support from PaRSEC to orchestrate tasks and
data movement. Our adaptive approach scales on various systems
and leverages the Fujitsu A64FX nodes of Fugaku to achieve up
to 12X performance speedup against the highly optimized dense
Cholesky implementation.

Index Terms—Space-Time Geospatial Statistics,
Climate/Weather Prediction, Task-Based Programming Models,
Dynamic Runtime Systems, Mixed-Precision Computations, Low-
Rank Matrix Approximations, High Performance Computing.

I. JUSTIFICATION FOR THE GORDON BELL PRIZE

Synergistic combination of mixed-precision computations
and low-rank matrix approximations. Dynamic task-based
runtime system and data movement. Scalability on 48,384
Fugaku nodes (2,322,432 cores) for maximum log-likelihood
estimation (MLE). Performance speedup up to 12X over
FP64 execution while attaining application-worthy accuracy.
Incorporation into path-finding software framework for geo-
statistical applications.

II. PERFORMANCE ATTRIBUTES

Performance Attributes Our submission
Problem Size Ten million geospatial locations
Category of achievement Time-to-solution and scalability
Type of method used Maximum Likelihood Estimation (MLE)
Results reported on basis of Whole application
Precision reported Double, single, and half precision
System scale 48,384 Fujitsu A64FX nodes of Fugaku
Measurement mechanism Timers; Flops

III. OVERVIEW OF THE PROBLEM

Geostatistics is a means of modeling and predicting desired
quantities directly from data. It is based on statistical assump-
tions and optimization of parameters and is often referred to
as emulation, in contrast to simulation. It is complementary
to first-principles modeling approaches rooted in conservation
laws and typically expressed in PDEs. It may draw upon data
from simulations and/or from observations. Alternative statis-
tical approaches to predictions from first-principles methods,
such as Monte Carlo sampling wrapped around simulations
with a distribution of inputs, may be vastly more computation-
ally expensive than sampling from an assumed parameterized
distribution based on a much smaller number of simulations.
Geostatistics is relied upon for economic and policy decisions
for which billions of dollars or even lives are at stake, such as
engineering safety margins into developments, mitigating haz-
ardous air quality, siting fixed renewable energy resources, and
estimating weather-dependent tourism demands. We consider
herein evapotranspiration, important to agricultural irrigation
and water resource management, as seen in Figure 1. Climate
and weather predictions are among the principal workloads
occupying supercomputers around the world and even minor
improvements for regular production applications pay large
dividends. A wide variety of such predictive codes have
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Fig. 1: Evapotranspiration for water evaporation / transpiration.

opportunistically migrated or are migrating to mixed-precision
environments and can extract high throughput (Pflops/s) from
special hardware components (i.e., matrix engines). However,
they still suffer from a large memory footprint that may prevent
them from running extreme-scale simulations. In this paper,
we design a novel adaptive computing paradigm by combin-
ing mixed precisions with low-rank matrix computations and
demonstrate it against one important class of such codes.

A main computational kernel of stationary spatial statistics
considered herein is the evaluation of the Gaussian log-
likelihood function, whose central data structure is a dense
covariance matrix of the dimension of the number of (pre-
sumed) correlated observations, which is generally the product
of the number of observation locations (in space or space-time)
and the number of variables observed at each. The covariance
matrix is symmetric and positive definite and possesses a
mathematical structure arising from its physical origin that mo-
tivates approximations of various kinds for high-dimensional
problems, especially in view of the demands on storage and
factorization of the Cholesky formulation. Classical Cholesky
bears quadratic and cubic complexities in the problem di-
mension for storage and arithmetic, respectively. These costs
occur inside the optimization loop that fits statistical model
parameters to the input data, which inhibits the application of
MLE to high-dimensional problems.

Traditional approximations from the statistics community
are rather severe and unrecoverable, such as setting vast
proportions of presumed small elements to zero a priori or
assuming global low-rank structure. The software at the heart
of this project, ExaGeoStat [1], is designed to provide
controllable approximations to extreme-scale MLE problems
by introducing novel algorithmic, architectural, and program-
ming model features and packing the power of supercomputers
under the high-productivity statistical package R [2].

In her presentation entitled Implementing Spatial Statistical
Methods for Massive Data in July 2019, the leader of the
Statistics and Data Science Section at NCAR stated [3], “In-
creasing amounts of data are being produced (e.g., by remote
sensing instruments and numerical models), while techniques
to handle millions of observations have historically lagged
behind. While a variety of statistical methods have been de-

veloped theoretically to tackle this problem, readily available
computational implementations that work with irregularly-
spaced observations are still rare.” A dense covariance matrix
of one million observations contains a trillion entries, which, in
double precision, after exploiting symmetry, is a data object of
4 TB whose Cholesky factorization requires (1/3)×1018 flops.
The aforementioned brute force reductions of this covariance
matrix do not satisfy the accuracy requirements of many
geostatisticians. Additional means of reducing this intractable
complexity, e.g., dimension-reducing PCA approaches, the
independent block approximation method [4], or blockwise
or hierarchically low-rank approximations [5], to name a
few, are systematically described and evaluated in [6], but
lead sometimes to technical limitations that slow down their
adoptions in practice.

The approach of this paper is to reshape geostatistical
modeling and prediction for extreme-scale environmental ap-
plications by combining mixed-precision computations with
the mathematically elegant Tile Low-Rank (TLR) matrix ap-
proximation technique [7], [8]. Based on tile algorithms [9],
the resulting Cholesky factorization takes advantage of the
covariance matrix structure, which under a proper order-
ing [10] clusters the most significant information around the
diagonal of the matrix. Instead of completely ignoring the off-
diagonal contributions, likely engendering a loss of accuracy,
we operate on diagonal, near-diagonal and other identified
tiles in double-precision while switching to lower precision
and/or performing low-rank matrix approximations for the
remaining off-diagonal tiles. This extends the mixed-precision
algorithms presented in [11], [12] not only to accelerate
the Cholesky factorization during the log-likelihood function
evaluation but also to further reduce its associated storage cost.
We do so through an adaptive tile-centric approach driven by
a performance model and a Frobenius norm-based formula
that determine at runtime the data structure (i.e., dense or
TLR) and the precision arithmetic (i.e., FP64/FP32/FP16) for
each tile, respectively. This synergistic combination inveighs
against the predictable load balancing found in traditional
dense linear algebra. We must therefore rely on a dynamic
runtime system, i.e., PaRSEC, to schedule asynchronously
tasks operating on dense or TLR data structures, executed
in one of the three supported precisions, and to mitigate
load imbalance overheads. We further empower PaRSEC by
embedding necessary decision-making mechanisms to marshal
data exchanges with on-demand data conversions. Adapting
to application data sparsity is paramount in assessing where
and how each algebraic approximation can be applied. While
mixed-precision and low-rank algorithmic optimizations may
translate into performance gains, we ensure numerical ro-
bustness on space and space-time real datasets by validating
the accuracy of the statistical parameter estimators, which
drive the modeling and the ultimate prediction phases for
environmental applications.



IV. CURRENT STATE OF THE ART
A. Climate Modeling and Prediction using MLE

Spatial data associated with climate and weather applica-
tions consists of a set of locations regularly or irregularly
distributed across a given specific geographical region where
each location is linked with one or more climate or environ-
mental variables, such as soil moisture, temperature, humidity,
or evapotranspiration. In geostatistics, spatial data are usually
modeled as a realization from a Gaussian spatial random field.

1) Space Datasets: Assume a realization Z of a Gaussian
random field Z(s) where Z = {Z(s1), . . . , Z(sn)}> at a
set of n spatial locations s1, . . . , sn in Rd, d ≥ 1. We
assume a stationary and isotropic Gaussian random field with
mean zero and a parametric covariance function C(h;θ) =
cov{Z(s), Z(s + h)}, where h ∈ Rd is a spatial lag vector
and θ ∈ Rq is an unknown parameter vector of interest. Here
C(h;θ) depends on the distance between any two locations
and we denote by Σ(θ) the discrete covariance matrix with
entries Σij = C(si− sj ;θ), i, j = 1, . . . , n. The matrix Σ(θ)
is symmetric and positive definite. Statistical inference about
θ is often based on the Gaussian log-likelihood function:

`(θ) = −n
2
log(2π)− 1

2
log |Σ(θ)| − 1

2
Z>Σ(θ)−1Z. (1)

The modeling operation depends on computing θ̂, the
parameter vector that maximizes equation (1). However, when
the number of locations n is large, the evaluation of the
log-likelihood function becomes computationally challenging.
Computing the log determinant and carrying out the linear
solve require O(n3) floating-point operations (flops) on O(n2)
memory containing a dense n-by-n covariance matrix.

The estimated θ̂ can be used to predict missing measure-
ments at some other location in the same region. Prediction
can be performed from a multivariate normal joint distribution
model with m missing measurements Zm and n known
measurements Zn [13], [14]:[

Zm
Zn

]
∼ Nm+n

([
µm
µn

]
,

[
Σmm Σmn

Σnm Σnn

])
, (2)

with Σmm ∈ Rm×m, Σmn ∈ Rm×n, Σnm ∈ Rn×m, and
Σnn ∈ Rn×n. The associated conditional distribution is:

Zm|Zn ∼ Nm(µm + ΣmnΣ−1nn(Zn − µn),

Σmm −ΣmnΣ−1nnΣnm).
(3)

Assuming that the observed vector Zn has a zero-mean
function (i.e., µn = 0, hence µm = 0), the unknown vector
Zm can be predicted [13] by solving:

Zm = ΣmnΣ−1nnZn. (4)

The associated prediction uncertainty is given by:

Um = diag[Σmm −ΣmnΣ−1nnΣnm], (5)

where diag denotes the diagonal of a matrix. Computing
the last two results requires applying the Cholesky factor
of the covariance matrix during the forward and backward
substitutions to several right-hand sides.

2) Space-Time Datasets: We consider a Gaussian ran-
dom field Z(s, t) where t ∈ R represents time. It is still
assumed herein to be stationary and isotropic with mean
zero and a parametric covariance function C(h, u;θ) =
cov{Z(s, t), Z(s + h, t + u)}, where u ∈ R is a temporal
lag. Then Σij = C(si − sj , ti − tj ;θ). The same equations
(1)-(5) can be used but now the discrete dimension of Σ(θ)
is larger due to the temporal dimension; hence the arithmetic
complexity is even more challenging in the space-time setting.

3) Covariance Functions: Constructing a corresponding
covariance matrix Σ(θ) for a set of given locations in MLE
modeling or prediction operations requires defining a covari-
ance function to describe the correlation over a given distance
matrix. The Matérn family [15] has shown its utility on a wide
variety of applications, for example, geostatistics and spatial
statistics [16] and machine learning [17].

For the space-time case, a popular covariance function
model proposed in [18] has the form:

C(h, u) =
σ2

at|u|2α + 1
Mν

{
‖h‖/as

(at|u|2α + 1)β/2

}
, (6)

where Mν is the univariate Matérn correlation function
parametrized with ν, σ2 > 0 is the variance parameter, ν > 0
and α ∈ (0, 1] are the smoothness parameters in space and
time, respectively, as, at > 0 are the range parameters in space
and time, respectively, and β ∈ [0, 1] is the space-time inter-
action parameter. When β = 0, it factors into purely spatial
and purely temporal components and the model is classified
as separable. Nonzero values of β imply that the correlation
structure in space relates to some degree with that in time.
The resulting models when β > 0 are termed nonseparable
and deemed more realistic for real-world applications.

B. A Three-Decade (R)Evolution in Dense Linear Algebra

Dense matrix algorithms (e.g., the Cholesky factorization)
have witnessed an exponential performance enhancement over
the last 30 years, closely following the hardware trend in
HPC with HPL as the proxy benchmark. Taking advantage of
the surface-to-volume effect characterized by compute-bound
workloads, such algorithms achieve sustained performance
close to theoretical performance peak. With the advent of
manycore architectures, these bulk-synchronous algorithms
were redesigned to expose more concurrency using fine-
grained computations, expressed via task-based programming
models. The resulting tile algorithms [9] can be represented as
Directed Acyclic Graphs (DAGs), where nodes and their edges
correspond to computational tasks and their data dependencies,
respectively. The recent hardware development in mixed-
precision floating point arithmetic supported by dedicated
matrix engines to accelerate AI workloads has created opportu-
nities for traditional dense linear algebra algorithms to exploit
fast matrix operations performed in lower precisions. While
this improves absolute performance in dense linear algebra,
it does not address the curse of dimensionality encountered
when solving large dense problems. This is where TLR matrix
approximations [7], [8] come to the rescue by leveraging the



data sparsity structure of the matrix operator to reduce not only
the algorithmic complexity but more importantly the memory
footprint, allowing more of the workingset to dwell in fast
memory. It becomes critical to employ a dynamic runtime
system framework to address the challenges in orchestrating
these tasks, intrinsically heterogeneous by their data structures
(dense or TLR) and their actual precisions (i.e., IEEE 754
FP64/FP32/FP16).

C. Dynamic Runtime Systems

Task-based dynamic runtimes have been introduced to
schedule fine-grained computational tasks onto the underlying
hardware resources. They execute tasks in an asynchronous
fashion and break out from the overly constraining bulk-
synchronous programming model. They target shared- and
distributed-memory systems, possibly equipped with GPU ac-
celerators. They reduce process idle time during the execution
of imbalanced workloads. They implement various scheduling
heuristics to reduce remote and expensive data movement,
while favoring data locality. In particular, StarPU [19] and
OmpSs [20] provide a convenient task-insertion API that
abstracts the hardware complexity. The user is still in charge
of ensuring sequential numerical correctness of the task-based
code before these runtimes proceed with the scheduling onto
parallel resources. This separation of concerns has enabled
wide adoption of these runtimes in the community, which
eventually led to the support of tasks into the OpenMP stan-
dard. These runtimes build the DAG dynamically and unroll it
as computational progress occurs. However, both runtimes suf-
fer from sequential task insertion, which along with the DAG
pruning phase, may have potential limitations on scalabil-
ity [21]. There are numerous runtimes (HPX [22], Legion [23],
Charm++ [24], etc.) that employ asynchronous many-tasking
executions. In this paper, we focus on PaRSEC [25], which
relies on a domain-specific language that represents the entire
DAG in a compressed and parametrized manner. This permits
to identify and leverage collective communications that are
crucial in dense matrix algorithms. PaRSEC decouples the
data distribution from the actual task operations. This level of
abstraction provides the technical basis for our novel research
contributions.

V. INNOVATIONS REALIZED

A. Combining MP with Dense/TLR for Cholesky-based Solver

The rise of mixed-precision (MP) algorithms in scientific
computing rides the technology wave of machine learning and
analytics on big data problems. Because of the convergence
of HPC and big data [26] at the forefront of digital innovation
in, e.g., healthcare, security, and climate/weather modeling,
hardware vendors have invested heavily during the last decade
in designing chips that provide fast and energy-efficient low
precision floating-point units [27], [28]. This hardware/algo-
rithm synergism for MP has proved to be a game-changer for
solving challenging scientific problems, such as those neces-
sary for Gordon Bell submissions [29]–[31]. Moreover, MLE-
based climate/weather prediction applications can benefit from

MP [11], [12] during the Cholesky factorization, as shown in
Fig. 2(a-c).

TLR matrix approximations make up yet another algo-
rithmic class that further reduces memory footprint and al-
gorithmic complexity [7], [8]. TLR approximations exploit
data sparsity within the matrix operator by compressing off-
diagonal tiles up to a target accuracy threshold, without de-
grading the overall accuracy sought from the solution beyond
a user-specified tolerance. TLR has the potential to dramati-
cally improve the resolution and accuracy of climate/weather
predictions for a given memory footprint and computer time
allocation, as illustrated in Fig. 3(a-b) of [32].

These two computing paradigms (i.e., MP and Dense/TLR)
have thus far been considered as separate swim lanes. They
have independently mobilized researchers to identify oppor-
tunities within legacy numerical algorithms and to leverage
hardware features accordingly. The overarching opportunity is
to determine which computational phases within an algorithm
are amenable to algebraic approximations or lower precision
execution while maintaining and delivering the required level
of accuracy for the final result. Given this fertile landscape,
we are migrating geostatistics modeling and prediction to MP
and TLR matrix algorithms, synergistically extracting benefits
of each.

Geostatistics augments first-principles modeling approaches
for the prediction of environmental phenomena, given the
availability of measurements at a large number of locations.
One of the main computational kernels is the evaluation of
the Gaussian log-likelihood function performed via MLE. The
required evaluation of the determinant of the covariance matrix
and the application of its inverse translate into iteratively
solving a number of large systems of linear equations. The
large dense symmetric and positive definite covariance matrix
can be processed with the dense MP+TLR Cholesky factor-
ization to reduce memory footpring and algorithm complexity
and enable solving space-time geospatial datasets otherwise
intractable. We extend the ExaGeoStat framework [1] to
simultaneously execute MP and TLR operations within the
Cholesky factorization on the covariance matrix. We rely on
the PaRSEC dynamic runtime system not only to orchestrate
the task scheduling but also to supervise the tile-centric
decision for the choice of the data structures (dense or TLR)
and precision (FP64/FP32/FP16).

B. Empowering PaRSEC with Structure-Aware and Precision-
Aware Runtime Decisions

We extend the features of PaRSEC [25], a dynamic, task-
based runtime system that takes advantage of the concise Pa-
rameterized Task Graph DSL [33]. PaRSEC allows us to focus
on algorithmic features and program in a style independent of
the data distribution to reach unprecedented levels of efficiency
for solving extreme-scale linear algebra matrix operations [25].
This effort is part of a larger ongoing research collaboration, as
earlier described in [12], [32], [34], [35]. We further extend
this work to seamlessly combine MP+Dense/TLR Cholesky
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Fig. 2: Mixed-precision dense computations.
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Fig. 3: Combining mixed precision and TLR approximations.

factorization with numerically-driven runtime decisions to
reduce time-to-solution.

1) When to use MP: MP selection may be based in a brute
force way on a band structure, as shown in Fig.2(c). This

approach has been previously analyzed [11], [12] on large-
scale homogeneous x86 systems, i.e., full-scale Shaheen II
(KAUST, Saudi Arabia), half-scale HAWK (HLRS, Germany),
and Summit (ORNL, USA). This fast-path approach permits
to empirically determine the band size. It may engender more
operations than required in case actual low precision tiles
reside in a band region with high precision. Figure 2(d) shows
how a tile-centric precision-aware decision can be incorporated
into the dataflow of any matrix computations. It is precisely
in such scenarios where user-productivity is challenged that
one may need to sacrifice performance for code simplicity.
However, with a Frobenius norm-based adaptive formula (see
Section IV.C), we can lower the precision of selected tiles
depending on the ratio of the tile norm to the global matrix
norm. Algorithm 1 presents the MP dense Cholesky factoriza-
tion composed of nested loops calling the four dense kernels,
with GEMM being the most time-consuming kernel. The +

sign on the parameter of the functions indicates the precision-
lead operand for which the corresponding precision kernel will
be called. This means that PaRSEC will move and convert on-
the-fly the operands with the ∗ sign to match the precision at
the receiver side.

2) When to Use Dense Over TLR: We integrate into
PaRSEC a tile-centric structure-aware heuristic to decide at
runtime whether a specific tile should remain dense or approxi-
mated with TLR instead, depending on its rank. This choice of
data structures is guided by a formula that estimates at runtime,
right after the generation/compression of the matrix and just
before the Cholesky factorization starts, the required number
of flops and estimated time-to-solution. If the rank of a given
tile is high enough that the overhead of compression during
the Cholesky factorization is not justified, PaRSEC takes the
decision to translate the tile back to its original dense structure.
This decision leads to establishment of a band structure since
tiles with high ranks are typically located around the diagonal.
This process is illustrated in the matrix transformation going
from Fig. 3(a) to Fig. 3(b) with a band of three tiles. This
runtime decision has been previously studied on two large-
scale HPC systems, i.e., full-scale Shaheen II [32], [34],
[35] and Fugaku [36]. However, the decision therein did not
take into account the precision of each tile as we address it
here.

The structure-aware runtime decision relies only on the
number of flops/time-to-solution of the actual matrix opera-

Algorithm 1: Pseudo-code of the MP Dense Cholesky
Factorization.

1 for k = 0 to NT − 1 /∗ Panel Factorization (PF) ∗/
2 DPOTRF (C+

kk)
3 for m = k + 1 to NT − 1

4 TRSM (C∗
kk , C+

mk)
5 for m = k + 1 to NT − 1

6 DSYRK (C∗
mk , C+

mm)
7 for m = k + 2 to NT − 1 /∗ Trailing Submatrix Update ∗/
8 for n = k + 1 to m− 1

9 GEMM (C∗
mk , C∗

nk , C+
mn)



tions, while the precision-aware runtime decision depends only
on the required accuracy of the application.

C. Supporting MP+Dense/TLR for Space-Time Datasets

In previous work [11], [12], we introduced a MP matrix
algorithm (see Fig. 2(c)) to accelerate the Cholesky factor-
ization during the log-likelihood function evaluation for 2D
space models in the context of environmental applications.
Since we are modeling behaviors that are continuous in
time, by considering the time dimension herein, the resulting
space-time model can deliver more accurate predictions than
uncorrelated spatial snapshots, especially with the precision-
aware tile-centric runtime decision (see Fig. 2(d)).

Supported by the flexibility, efficiency and scalability of
the PaRSEC runtime, ExaGeoStat is now able to effi-
ciently solve geospatial applications on large-scale distributed-
memory systems.

VI. HOW PERFORMANCE WAS MEASURED

We validate the numerical robustness of our mixed precision
dense+TLR approach by training on real datasets until con-
vergence, followed by prediction. We report time-to-solution
and scalability up to 48,384 Fugaku nodes of a single
iteration of MLE that is a proxy of the overall simulation. We
link against the vendor optimized numerical library SSL for
BLAS/LAPACK routines. However, we have to disable sector
cache optimizations due to an incompatibility discovered on
SSL when using task-based programming model powered
by MPI+Pthreads. This drops sustained node performance to
65% of peak. This has several implications, as described in
Section VIII.

A. Real Dataset Descriptions

We describe two real datasets (i.e., space and space-time)
that we use in this study to assess the accuracy and the
performance of our adaptive approaches, i.e., MP+dense/TLR.
Figure 4 shows the geographical regions for both datasets.

We consider 2D high-resolution soil moisture data on Jan-
uary 1st, 2004 coming from the top layer of the Mississippi
River basin, U.S [37]. This dataset has around 2M spatial
locations. We randomly pick 1M locations as the training
dataset and 100K locations for testing.

The Evapotranspiration (ET) 2D space-time dataset, ob-
tained from the NASA Goddard Earth Science Data Informa-
tion and Services Center (GES DISC) [38], includes water
evaporation and transpiration processes to move the water
from the earth’s surface into the atmosphere. We consider
monthly aggregated data over the Central Asia Region con-
sisting of approximately 83K spatial locations. We collected
such datasets from 2001 to 2021, giving 12 spatial fields
each year for 21 years. To remove the temporal trend in
the data and make its mean stationary, we take the average
for each location for a given month for years from 2001 to
2020 and subtract it from 2021 monthly aggregates for that
exact location. This gives us 12 correlated spatial fields, which
are residuals of the observations for the year 2021, yielding

around 1M space-time locations. Along with the temporal
stationarity, spatial stationary is also required for running a
spatio-temporal Gaussian model on the data. We have fitted
a simple linear regression model of the observations with the
locations for each month separately and then subtracted the
predictions based on this linear model from the observations.
The resulting values or residuals of our variable of interest are
now approximately stationary and display Gaussianity.

B. Performance Model for Structure-Aware Runtime Decision

We develop and embed a performance model into PaRSEC
to facilitate the structure-aware runtime decision (dense or
TLR). This performance model is driven by the algorith-
mic complexity of dense GEMM (compute-bound) and TLR
GEMM (memory-bound) kernels. The flops of the latter
depend on the accuracy tolerance, set to 1e − 8 for this
application. Figure 5 reports the time-to-solution (left y-axis)
as well as its ratio (right y-axis) of a dense FP64 GEMM to a
TLR FP64 GEMM on a single core of the A64FX node. FP64
TLR GEMM can be more expensive than FP64 dense GEMM
when the rank exceeds a threshold (i.e., 200), determined by
the arithmetic complexities of TLR. We need then to factor
the actual precision of the tile into the final runtime decision,
which leads to Algorithm 2 for deploying the structure-
aware decision mechanism. PaRSEC will then automatically
determine how many tiles need to be stored back in the original
dense format after compression.

C. Adaptive Precision-Aware Runtime Decision

We implement in PaRSEC a decision that adapts the
precision of a tile at runtime. Each tile Aij of matrix A is
stored in a precision derived by thresholding the ratio of the
Frobenius norms of the tile and the global matrix [39]. Let
uhigh and ulow be the machine epsilons of the high precision
and a given lower precision, respectively, and NT the number
of tiles in one dimension. Then a tile Aij with Frobenius
norm less than uhigh ∗ ‖A‖F /(NT ∗ ulow) may be stored
in the lower precision. The matrix Â thus formed satisfies
‖Â−A‖F ≤ uhigh‖A‖F . (The Frobenius norm of the global
matrix is accumulated tile-by-tile during generation, and a
copy of the global matrix need not be stored.)

Algorithm 2: Auto-tuning band_size_dense.
Input : Matrix data descriptor

1 Generate the matrix with band_size_dense = 1
2 Globalize the rank distribution to all the processes
3 Set ID = 1 and initialize fluctuation
4 do
5 ID := ID + 1
6 time to solution dense = total time-to-solution of TRSM

and GEMM (FP64/FP32/FP16) of all tiles in sub-diagonal with
band_ID = ID if executing in dense format

7 time to solution tlr = total time-to-solution TRSM and
GEMM (FP64/FP32) of all tiles in sub-diagonal with
band_ID = ID if executing in low-rank format

8 while time to solution dense <
fluctuation× time to solution tlr;

Output: band_size_dense = ID − 1



(a) 1M point 2D soil moisture
data at the top layer of the Mis-
sissippi River basin. (b) 2021 monthly total evapotranspiration (ET) residuals over the Central Asia Region.

Fig. 4: Visualizations of two real datasets in space (soil moisture) and space-time (ET) domains.

Fig. 5: FP64 TLR GEMM vs dense GEMM on Fugaku.

D. Strong and Weak Scaling Experiments

We provide strong scaling experiments up to 16K Fugaku
nodes of three Cholesky variants: the reference FP64 dense,
the MP dense, and the MP+dense/TLR. The first two are
compute-bound and can extract high sustained peak perfor-
mance. The latter variant is memory-bound and achieves
only a small percentage of the theoretical peak performance.
However, it may attain up to an order of magnitude speedup
compared to the two dense variants. Weak scaling is of high
interest when performing parallel optimization to accelerate
and improve the training, as discussed in [40]. The particle
swarm optimization [41] approach requires launching a set
of independent executions for the log-likelihood function that
allows parallel execution of the MLE operation. This translates
into executing several Cholesky factorizations in an embarrass-
ingly parallel fashion. The single tightly-connected MLEs are
then synchronized in a loose manner at each iteration and the
parallel optimizer procedure carries on until convergence.

E. Description of HPC Systems

ExaGeoStat has been ported to most of the major
commercial hardware architectures of the Top10 supercom-
puters [12], [32], [35], including IBM+NVIDIA (Summit)
and AMD (Hawk). In this paper, we run and validate our
accuracy experiments on Shaheen II, a Cray XC40 su-
percomputer with 6,174 nodes composed of two-socket 16-
core Intel Haswell (AVX2) processor and 128GB of main

memory, using the Cray Aries network interconnect. For half
precision support, we trim the operands of the GEMM kernel
to FP16 and call an SGEMM BLAS routine to accumulate
in FP32, similar in functionality to what cuBLAS provides
for mixed precision SGEMM on NVIDIA GPUs. We run our
performance benchmarking campaign on Fugaku, a Fujitsu
ARM (SVE) system with 152,064 A64FX nodes composed
of four 12-core core memory groups (CMGs) and 32GB of
main memory, connected through the TofuD interconnect.
Fugaku does not support mixed-precision HGEMM with
FP32 accumulation, but only pure FP16 HGEMM.

VII. PERFORMANCE RESULTS

A. Qualitative Analysis using Synthetic Data

In this section, we assess the performance of our proposed
adaptive computation approaches using synthetic datasets. The
assessment consists of evaluating the ability of the proposed
approaches to recover the space and the space-time model
parameters. We simulate 100 space realizations at 50K spatial
locations from the Matérn space 2D kernel and 100 space-time
realizations at 5K spatial locations in 10 time-slots from the
Matérn space-time 2D kernel. For each kernel, we have three
different combinations of parameters that represent different
space/space-time interactions between the spatial locations.
These sets of parameters combinations have been used to
generate synthetic datasets using the ExaGeoStat software [1].

We assess the effectiveness of an approach by its ability
to recover the parameter set used to generate the synthetic
dataset. Figure 6 shows boxplots of 100 synthetic datasets
in the space domain. Three sets of correlation parame-
ters are used, i.e., weak (0.03), medium (0.1), and strong
(0.3). As shown from the boxplots, both the MP+dense
and MP+dense/TLR approaches compete with dense FP64
in recovering the spatial parameters in most of correlation
settings. For weak and medium correlations, the proposed
adaptive approaches more efficiently estimate the underlying
model parameters. Strongly spatially correlated data is more
sensitive to precision loss engendered by the MP and/or TLR
numerical approximations. This may require further tightening
the tolerance for TLR or investigating new floating-point



Fig. 6: Boxplots of parameter estimates using 100 samples of 50K synthetic space datasets with different degrees of space
dependence. Weak/medium/strong correlations in space θ1 = 0.03, 0.1, 0.3, respectively. The red line represents the true values.

representations (e.g., BF16 and TF32, not currently supported
on Fugaku) to obtain the proper estimates.

B. Real Dataset Accuracy Analysis

In this section, we show the effectiveness of the proposed
approximation methods in estimating the statistical model
parameters and predicting missing values at new locations
using our two main datasets, i.e., the soil moisture and the
evapotranspiration (ET) datasets.

The original soil moisture dataset at the top layer of the Mis-
sissippi River basin has around 2M locations. We selected 1M
spatial locations for training and 100K locations for testing.
Table I reports the results of the estimation. After obtaining
the estimated parameters, we predict using Equation (4) the
measurements at the space locations included in the 100K
testing dataset and compute the prediction errors measured
by the mean square prediction error (MSPE). The results
show very close estimations between the three variants, i.e.,
dense FP64, MP+dense, and MP+dense/TLR. Moreover, the
prediction errors closely match, confirming the effectiveness
of the proposed adaptive approximation methods relative to
the dense FP64 default. The results identify medium space
correlation between the given spatial locations (θ1 = 0.15)
with rough random field (θ2 = 0.44) for this real dataset. This
medium correlation gives more opportunities to represent the
covariance matrix tiles in lower accuracy without impacting
the overall accuracy of both the parameter estimation and the
prediction.

For the ET dataset, we select 1M locations for the twelve
months of the year, i.e., around 83K locations each month,
for training the space-time model. The testing data (for pre-
diction) was also selected throughout the year with the size
of 100K locations. Table II shows the results of the estimated

parameters and predictions error using the three computation
approaches.

The parameter estimates in Table II imply several properties
regarding the given space-time dataset. First, the correlation in
space between different locations is very high and could be
described as a strong correlation. This strong space correlation
makes most of the matrix values important and increases the
number of dense FP64 tiles when using the adaptive approach.
Second, as shown by the table, the estimation coming from
the two approximation approaches is very close to the result
of the dense FP64 variant, and this is also shown by the MSPE
values on the given testing dataset, which demonstrates better
tolerance to precision loss for the prediction phase. Third, the
non-separable parameter represents the interaction between the
space and the time dimensions. In the ET dataset, the estimated
value shows medium interaction, i.e., 0.18. Some studies drop
this value to reduce the complexity of the optimization process
from six parameters to five. However, it may dramatically
impact the prediction accuracy as illustrated in [40].

C. GEMM Performance Evaluation on A64FX

It is crucial to assess the GEMM performance kernel on
A64FX. The Fujitsu SSL numerical library provides GEMM
performance for the three precisions close to the theoreti-
cal peak, thanks to Sector Cache Optimizations (SCO) that
allocate a fast throughput region on HBM2 to stream data
to registers. SCO makes a strong assumption that GEMM
calls can only be made in parallel multithreaded OpenMP.
Task-based programming models usually rely on sequential
task performance. Tasks are then executed in an asynchronous
parallel fashion following the data dependencies captured in
the DAG. We therefore had to disable SCO due to memory
conflicts that engender a segfault. Our parallel implementation



TABLE I: Qualitative assessment of the MLE based on the adaptive approach using the soil moisture 2D space dataset.

Approach Variance (θ0) Range (θ1) Smoothness (θ2) Log-Likelihood (llh) MSPE
Dense FP64 0.6720 0.1730 0.4358 -52185.7336 0.0330
MP+dense 0.6751 0.1740 0.4357 -52185.7643 0.0330

MP+dense/TLR 0.6621 0.1882 0.3921 -52188.2341 0.0332

TABLE II: Qualitative assessment of the MLE based on the adaptive approach using the ET space-time dataset.

Approach Variance (θ0) Range (θ1) Smoothness (θ2) Range-time (θ3) Smoothness-time (θ4) Nonsep-param (θ5) Log-Likelihood (llh) MSPE
Dense FP64 1.0087 3.7904 0.3164 0.0101 3.4890 0.1844 -136675.1 0.9345
MP+dense 0.9428 3.8795 0.3072 0.0102 3.4941 0.1860 -136529.0 0.9348

MP+dense/TLR 0.9247 3.7756 0.3068 0.0102 3.5858 0.1857 -136541.8 0.9428

Fig. 7: Mixed-precision Cholesky on 1024 nodes; tile size 800.

of GEMM calling sequential GEMM kernels via Pthreads
scores only 65% of the peak performance on single node,
as opposed to 90% when running SSL multithreaded GEMM
with SCO enabled.

Even with SCO disabled, we reach a performance effi-
ciency using Dense FP64 on 1024 Fugaku nodes up to
94% compared to single node performance, as shown in
Figure 7. Enabling mixed precision increases the performance
throughput as expected. We omit the FP16 HGEMM since our
MLE application requires HGEMM with FP32 accumulation.
This kernel is not available in SSL at this time.

BLIS developer Ruqing Xu recently provided a missing
FP32 SHGEMM kernel. Figure 8 shows performance com-
parisons against SSL without SCO. This enables us to reach
the accuracy needed for MLE. In terms of performance,
BLIS FP32 SHGEMM achieves lower performance than SSL
regular SGEMM. This may be improved with proper hardware
support, as seen on NVIDIA GPUs. Therefore, we fall back
to SGEMM from SSL for performance, without trading off
accuracy.

D. Matrix Heatmaps of Precision/Structure-Aware Decisions

Figure 9 shows matrix heatmaps of our structure-aware and
adaptive precision-aware runtime decisions for weak/strong
correlations (WC/SC) for Matérn 2D space on a matrix of
dimension 1M. We see that WC creates more opportunities
to compute in lower precision computations than SC for
two Cholesky variants in MP+dense and MP+dense/TLR.
Thanks to its precision-aware adaptivity, PaRSEC does much
more than task scheduling. PaRSEC engages in the execu-
tion of the application in a holistic manner and converts

Fig. 8: BLIS and SSL single node performance with Pthreads.

the operands to the corresponding precision on-demand. The
memory footprint (MF) to store the dense matrix achieves up
to 79% (MP+dense/TLR) reduction compared to dense FP64
(MF=4356GB).

E. Time-to-Solution of Various Cholesky Variants

Figure 10 reports time-to-solution of the Matérn 2D space
on 2048, 4096, 8192, and 16384 Fugaku nodes using
weak/medium/strong correlations (left to right). While the
dense FP64 Cholesky variants are compute-bound and can
achieve high absolute performance, they are not competitive
with memory-bound MP+dense/TLR Cholesky variants in
terms of elapsed time. Moreover, the memory footprints of
the dense variants are prohibitive in solving large-scale geo-
statistics applications and can only handle the smaller matrix
sizes considered. If we assume we have enough memory
capacity to host a matrix of size 9M in pure FP64, the
MP+dense/TLR variant of Cholesky can achieve up to 12X
speedup on 16K Fugaku nodes using weak correlations,
which is representative of our soil moisture real datasets.
Figure 11 shows the performance of the Matérn 2D space-time
kernel using strong correlation on 4096 and 48384 Fugaku
nodes. This is representative of our ET real datasets. The
MP+dense/TLR approach achieves up to slightly less than an
order of magnitude speedup compared to pure dense FP64
on 4096 nodes, since ranks are higher and opportunities
for low precision computations are rare. The performance
superiority of MP+dense/TLR approach compared to pure
dense FP64 on 48384 nodes is further reduced due to strong
scalability limitations, i.e., there may not be enough tasks
to keep the computational resources busy. Exposing more
tasks and optimizing PaRSEC runtime system are both areas



(a) WC, MP+dense
(MF 1607GB).

(b) WC, MP+Dense/TLR
(MF 915GB).

(c) SC, MP+dense
(MF 3877GB).

(d) SC, MP+Dense/TLR
(MF 1830GB).

Fig. 9: Adaptive decision map for Matérn 2D space on 1M matrix with tile size 2700 using Weak/Strong Correlations (WC/SC).

Fig. 10: Performance of Matérn 2D space on 2048, 4096, 8192, and 16384 Fugaku nodes. WC; MC; SC.

Fig. 11: Performance of Matérn 2D space-time of strong
correlation on 4096 and 48384 Fugaku nodes.

for improvements to pursue in future work. However, the
gain in memory footprint remains significant, allowing to
handle larger problem sizes for the same allocated resources.
Moreover, once decent strong scaling is attained for a given
problem size, hybrid parallelization with weak scaling can be
triggered using particle swarm optimization, as studied in [40],
reaching effectively full Fugaku scale.

VIII. IMPLICATIONS

Tile low-rank and mixed-precision algorithms for problems
dominated by covariance matrix operations can be applied
across a wide variety of scientific domains beyond environ-
mental applications. This campaign is one of many ongoing
that demonstrate how traditional HPC applications may turn
out to be resilient to precision loss in specific computational

phases. Many calls to “blackbox” linear algebra routines
inside of applications that dominate supercomputer centers
likely oversolve, relative to the precision needed to fully
exploit the resolving power of the discretization or the output
requirements. The APIs of much scientific software should
be extended to support MP and TLR, in particular in the
ARM software ecosystem. Identification of the operations
within an application that are resilient with respect to precision
loss requires interdisciplinary interaction. Moreover, adaptive
tuning of file rank and precision puts new demands on runtime
load balancing for scaling to distributed and shared memory
environments. We demonstrate how one fine-grained task-
based programming model can be extended to accommodate
them.

In uncertainty quantified optimization, not yet considered
in this paper, but a relevant extension in policy contexts,
the inverse of the covariance again plays a central role. The
Bayesian UQ application and its solution can follow naturally
upon our work.
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