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a b s t r a c t

The Mardia measures of multivariate skewness and kurtosis summarize the respective
characteristics of a multivariate distribution with two numbers. However, these mea-
sures do not reflect the sub-dimensional features of the distribution. Consequently, test-
ing procedures based on these measures may fail to detect skewness or kurtosis present
in a sub-dimension of the multivariate distribution. We introduce sub-dimensional Mar-
dia measures of multivariate skewness and kurtosis, and investigate the information they
convey about all sub-dimensional distributions of some symmetric and skewed families
of multivariate distributions. The maxima of the sub-dimensional Mardia measures
of multivariate skewness and kurtosis are considered, as these reflect the maximum
skewness and kurtosis present in the distribution, and also allow us to identify the
sub-dimension bearing the highest skewness and kurtosis. Asymptotic distributions of
the vectors of sub-dimensional Mardia measures of multivariate skewness and kurtosis
are derived, based on which testing procedures for the presence of skewness and of
deviation from Gaussian kurtosis are developed. The performances of these tests are
compared with some existing tests in the literature on simulated and real datasets.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Consider a p-variate random vector X = (X1, . . . , Xp)⊤ from a multivariate distribution with mean vector µ ∈ Rp and
p × p positive definite covariance matrix Σ. Mardia [27] defined the measures of multivariate skewness and kurtosis:

β1,p = E
[
{(X − µ)⊤Σ−1(Y − µ)}3

]
∈ R+, β2,p = E

[
{(X − µ)⊤Σ−1(X − µ)}2

]
∈ R+, (1)

espectively, where X and Y are independent and identically distributed. These measures are invariant under affine
transformations and each provide a single number to summarize the skewness and the kurtosis of that p-dimensional
istribution. Their sample counterparts have known asymptotic distribution and can be used to test for normality [27,28].
or the multivariate normal distribution, it is well known that β1,p = 0 and β2,p = p(p + 2).
One drawback of the Mardia measures of multivariate skewness and kurtosis is that they summarize the information

about skewness and kurtosis too much. Sub-dimensional distributions may exhibit evidence of skewness or kurtosis,
which may not be reflected in the overall Mardia measures of multivariate skewness or kurtosis. For example, consider
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Table 1
P-values of the Mardia skewness test in some sub-dimensions of Fisher’s iris setosa data. The variables denoted as 1,
2, 3 and 4 are sepal length, sepal width, petal length and petal width, respectively, of the iris setosa flower.
Sub-dimensions (4) (1, 4) (2, 4) (3, 4) (1, 2, 3, 4)
p-values 0.001 0.012 0.019 0.018 0.236

Fig. 1. (A) Contour plot of SN 2(0,Ω, α), which has marginal skewness β1,1,1 = β1,1,2 = 0.130. (B) Contour plot of SN 2(0, I2, α∗), which has marginal
kewness β1,1,1 = 0.889 and β1,1,2 = 0. Both the skew-normal distributions have the same Mardia measure of multivariate skewness β1,2 = 0.889.

he celebrated Fisher’s iris data for the species ‘iris setosa’ [12]. In Table 1, the p-values of the Mardia test of skewness are
resented for four sub-dimensions along with the whole dataset, that is, the sub-dimension (1, 2, 3, 4). Here, the variables
, 2, 3 and 4 correspond to sepal length, sepal width, petal length and petal width, respectively. One can see that in the
omplete dataset, there is no significant evidence of skewness, while evidence of skewness in the reported sub-dimensions
f dimension one (consisting of the fourth variable, namely, petal width) and of dimension two is quite strong at the 5%
evel as reflected by the corresponding p-values. This presence of skewness in the distribution of petal width of the species
iris setosa’ was also observed in [38]. Therefore, this motivates the investigation of the Mardia measures of multivariate
kewness and kurtosis on sub-dimensional marginals.
Let Xqi denote a subvector of dimension q for 1 ≤ q ≤ p from the random vector X, and let µqi and Σqi be the

orresponding entries of µ and Σ for i ∈ {1, . . . ,Qq} with Qq =
(p
q

)
. We define the following sub-dimensional Mardia

easures of multivariate skewness and kurtosis

β1,q,i = E
[
{(Xqi − µqi)

⊤Σ
−1
qi (Yqi − µqi)}

3]
∈ R+, β2,q,i = E

[
{(Xqi − µqi)

⊤Σ
−1
qi (Xqi − µqi)}

2]
∈ R+, (2)

or i ∈ {1, . . . ,Qq}, where Xqi and Yqi are independent and identically distributed. When q = p, we get back β1,p,1 ≡ β1,p
and β2,p,1 ≡ β2,p. For q ∈ {1, . . . , p}, we collect these measures in the following vectors

M1,q =
(
β1,q,1, . . . , β1,q,Qq

)⊤
∈ RQq

+ , M2,q =
(
β2,q,1, . . . , β2,q,Qq

)⊤
∈ RQq

+ , (3)

each of dimension Qq =
(p
q

)
. We call (3) the q-th vectors of sub-dimensional Mardia measures of multivariate skewness

and kurtosis. For the multivariate normal distribution, Np(µ,Σ), we have

MN
1,q = 0Qq , MN

2,q = q(q + 2)1Qq , (4)

for all 1 ≤ q ≤ p, where 0Qq and 1Qq are Qq-dimensional vectors of zeros and of ones, respectively.
We further define

M∗

1 =
(
M⊤

1,1,M
⊤

1,2, . . . ,M
⊤

1,p

)⊤
=
(
β1,1,1, . . . , β1,p,1

)⊤
∈ R2p−1

+
, (5)

M∗

2 =
(
M⊤

2,1,M
⊤

2,2, . . . ,M
⊤

2,p

)⊤
=
(
β2,1,1, . . . , β2,p,1

)⊤
∈ R2p−1

+
. (6)

Here, M∗

1 and M∗

2 collect all the sub-dimensional Mardia measures of multivariate skewness and kurtosis.
Due to affine invariance, the Mardia measures of multivariate skewness and kurtosis cannot detect any difference

between distributions which are affine transformations of one another, but whose marginal skewness and/or kurtosis
values are very different. In Fig. 1, we depict such an example for the skew-normal distribution [3] with p = 2. Let
Ω = (ω ), where ω = 0.5 + 0.5I(i = j) and α = (5, 5)⊤. Consider the skew-normal distribution SN (0,Ω, α) and
ij ij 2

2
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its ‘canonical form’ SN 2(0, I2, α∗); see [1, Proposition 4] and [2, subsection 5.1.8]. The contour plots of the densities
f SN 2(0,Ω, α) and SN 2(0, I2, α∗) are presented in Fig. 1. From Propositions 3 and 4 in [1], it follows that the skew-
ormal distributions SN 2(0,Ω, α) and SN 2(0, I2, α∗) have the same values of Mardia measure of multivariate skewness,

β1,2 = 0.889. However, the distribution SN 2(0, I2, α∗) has all its skewness in its first component X1 with the marginal
distribution of X2 being symmetric, while both the components of the distribution SN 2(0,Ω, α) have the same marginal
skewness. This further supports the study of Mardia measures of multivariate skewness and kurtosis on sub-dimensional
marginals.

There are certain non-Gaussian distributions for which all the lower-dimensional marginals are Gaussian. An example
of such a distribution, which is a trivariate generalized skew-normal distribution [16] with all the univariate and bivariate
marginal distributions being standard normal, is given in [25]. Here, any procedure based on M1,q or M2,q, defined in (3),
for q < 3 would not be able to detect the presence of non-Gaussianity in the distribution. However, a procedure based
on M∗

1 defined in (5) would be able to detect non-Gaussianity, since M∗

1 and M∗

2 incorporate the Mardia measures on all
the sub-dimensions including the whole dimension. This further motivates developing procedures based on M∗

1 and M∗

2,
which are defined earlier in (5) and (6).

In this paper, we start by studying the forms of M1,q and M2,q defined in (3) for some parametric classes of non-
Gaussian distributions, including, for example, the multivariate Student’s t distribution and the multivariate skew-normal
and skew-t distributions. Then, we propose tests of normality for each dimension q based on the maximum entry of M1,q
and of M2,q, as well as global tests of multivariate normality based on the maximum entry of M∗

1 and of M∗

2 in (5) and
(6). One important advantage of our approach is the ability of the test, when it rejects multivariate normality, to identify
the dimension q and the associated sub-dimensions for which the rejection occurs.

The definitions of the Mardia measures require that the population covariance matrix Σ is non-singular. On the other
hand, the estimation of the Mardia measures requires the sample covariance matrix to be non-singular. Estimation based
on g-inverses is considered in [29], but the null distributions of the Mardia tests get altered when the sample covariance
matrix is singular. For these reasons, the Mardia measures and associated tests are not applicable in a high-dimensional
setup, particularly when n ≤ p. While the quantities M∗

1 and of M∗

2 cannot be used because they include the Mardia
measures, the quantities M1,q and M2,q can be considered for small values of q even when n ≤ p. If it is known that the
sub-dimension supporting skewness or kurtosis has a small dimension q considerably less than the sample size n, then
the quantities M1,q and M2,q can be employed to investigate the presence of skewness or kurtosis. Some possible ways in
which the methodology can be extended to the general high-dimensional setup are discussed in Section 9.

This paper is organized as follows. The vectors of sub-dimensional Mardia measures of multivariate skewness and
kurtosis in the case of some symmetric distributions are investigated in Section 2, whereas in the case of some
skewed distributions are considered in Section 3. The invariance of these sub-dimensional measures under location-
scale transformations is studied in Section 4. The new hypothesis tests are introduced in Section 5 and their asymptotic
distributions are established in Section 6. The results of a Monte Carlo simulation study of the empirical sizes and powers
of the new tests, as well as of the sub-dimensional detection, are reported in Section 7. Sub-dimensional data analyses
of Fisher’s iris data and of wind speed data near a wind farm in Saudi Arabia are presented in Section 8. The paper ends
with a discussion in Section 9. Some additional numerical results are provided in the supplementary material.

2. Sub-dimensional Mardia measures for some symmetric distributions

First, let X d
= S ◦ T ∈ Rp be a standardized symmetric random vector, in which ◦ represents the componentwise

Hadamard) product, S = sign(X) = (sign(X1), . . . , sign(Xp))⊤ ∼ U{−1, +1}p (discrete uniform), and S is independent of
T = |X| = (|X1|, . . . , |Xp|)⊤. Let Xπ = Sπ ◦ X = Sπ ◦ S ◦ T, where Sπ is formed by a permutation π = (π1, . . . , πp) of
the components of S. Note that s ◦ t = D(s)t = D(t)s, where D(a) = diag(a1, . . . , ap). Suppose that X has finite fourth
moment with E(X) = 0p and Var(X) = Ip. This implies E(∥X∥

2) = p, where ∥ · ∥ denotes the Euclidean norm. Also, let
Xπ∗

= Sπ∗
◦X, where π∗ represents a permutation where no component remains in its original position. For example, for

p = 3, π ∈ {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2), (1, 3, 2)} and π∗ ∈ {(2, 3, 1), (3, 1, 2)}. Since Sπ∗
◦ S has mean

vector 0p and covariance matrix Ip, we then have E(Xπ∗
) = E(Sπ∗

◦ S) ◦ E(|X|) = 0p and Var(Xπ∗
) = Ip. Also, obviously

∥Xπ∗
∥

d
= ∥Xπ∥

d
= ∥X∥, hence E(∥Xπ∗

∥
k) = E(∥Xπ∥

k) = E(∥X∥
k), k ≥ 1. So, for the random vector Xπ∗

, we have β1,p = 0
and β2,p = E(∥X∥

4). In particular,

1. If X ∼ Np(0p, Ip), with probability density function (pdf) given by f (x) = (2π )−p/2 exp(−∥x∥2), x ∈ Rp, then
∥Xπ∗

∥
2 d

= ∥X∥
2

∼ χ2
p and β2,p = p(p + 2). Therefore, for any q-dimensional subvector Xq of X, we have

Xq ∼ Nq(0q, Iq) and so β1,q = β1,p = 0 and β2,q = q(q + 2). Therefore, the qth vectors of sub-dimensional Mardia
measures of multivariate skewness and kurtosis are as in (4).

2. If X is spherically distributed with pdf f (x) = h(∥x∥2), x ∈ Rp, for some density generator function h, i.e., h(u) > 0 for
u > 0 and

∫
∞

0 up/2−1h(u)du = Γ (p/2)/πp/2, and Var(X) = σ 2Ip, then X d
= RU(p), where R d

= ∥X∥, with E(R2) = pσ 2,

and R is independent of U(p) d
= X/∥X∥, the uniform vector on the p-dimensional unit sphere. Therefore, β1,p = 0

by symmetry and

β2,p =
p2E(R4)

= p(p + 2)(κ + 1),

{E(R2)}2

3
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where κ = γ2 = {E(X4
1 )−3}/3 is the excess of kurtosis in the corresponding spherical univariate distribution, which

can be computed from the relation

κ + 1 =
β2,p

p(p + 2)
=

p
p + 2

E(R4)
{E(R2)}2

,

with the assumption E(R4) < ∞. Moreover, any q-dimensional subvector Xq of X, is also spherically distributed
with stochastic representation Xq = RqU(q), where Rq =

√
BqR with Beta Bq ∼ B(q/2, (p − q)/2) and R, Bq and U(q)

are mutually independent. Using the fact that E(Bs
q) = {Γ (p/2)Γ (q/2 + s)}/{Γ (q/2)Γ (p/2 + s)}, we find again that

β1,q = 0 and

β2,q =
q2E(B2

q)E(R
4)

{E(Bq)E(R2)}2
=

q(q + 2)
p(p + 2)

β2,p = q(q + 2)(κ + 1).

Hence, for spherical distributions

MSPH
1,q = 0Qq , MSPH

2,q = q(q + 2)(κ + 1)1Qq ,

for all 1 ≤ q ≤ p. For example:
(a) If X ∼ Np(0p, Ip), then R2

∼ χ2
p , with E(R2) = p, E(R4) = p(p + 2) and so

κ =
p

p + 2
E(R4)

{E(R2)}2
− 1 = 0.

(b) If X ∼ tp(0p, Ip, ν), where tp(ξ,Ω, ν) denotes the multivariate Student’s t distribution with location vector ξ,
dispersion matrix Ω, ν degrees of freedom with ν > 4 and pdf cp(ν)|Ω|

−p/2
{1 + (x − ξ)⊤Ω−1(x − ξ)/ν}

−(ν+p)/2,
x ∈ Rp, where cp(ν) = Γ {(ν + p)/2}/{Γ (ν/2)(νπ )p/2}, then R2

∼ pFp,ν with

E(R2k) = pk
(

ν

p

)k
Γ (p/2 + k)Γ (ν/2 − k)

Γ (p/2)Γ (ν/2)
, ν ≥ 2k,

thus κ = 2/(ν − 4).
(c) If X ∼ EPp(0p, Ip, ν), where EPp(ξ,Ω, ν) denotes the multivariate exponential power distribution, with location
vector ξ, dispersion matrix Ω and kurtosis parameter ν > 0, and pdf cp(ν)|Ω|

−p/2 exp[−{(x − ξ)⊤Ω−1(x − ξ)}ν/2}],
x ∈ Rp, where cp(ν) = {pΓ (p/2)}/{Γ (p/(2ν) + 1)2p/(2ν)+1πp/2

}, then R2 d
= V 1/ν with Gamma V ∼ G(p/(2ν), 1/2).

Thus, we find that

E(R2k) =
2k/νΓ {(p + 2k)/(2ν)}

Γ {p/(2ν)}
, k ≥ 1,

so

κ =
p

p + 2
Γ {(p + 4)/(2ν)}Γ {p/(2ν)}

[Γ {(p + 2)/(2ν)}]2
− 1.

In this case, note that κ = κ (p) depends on the dimension p. This is due to the fact that each marginal distribution
of a p-variate exponential power distribution depends on p. In particular, the univariate marginal distributions are
not equivalent to the univariate one obtained by putting p = 1. Another relevant characteristic of this distribution
is that it allows both lighter (ν > 1) and heavier (0 < ν ≤ 1) tails than the normal distribution.

3. The class of random vectors Xπ−π∗
is also very interesting because E(Xπ−π∗

) ̸= 0p, but some of its marginal
distributions have zero mean vector. For instance, for p = 3, a random vector in this class is given by
(S11|X1|, S23|X2|, S23|X3|)⊤, where Sij = SiSj, in which the first component has mean E(|X1|) > 0, while the remaining
components have zero mean.

3. Sub-dimensional Mardia measures for some skewed distributions

Consider a generalized skew-normal [16] random vector X ∼ GSN p(0p,Ω, λ) with probability density function
fX(x) = 2φp(x;Ω)G(λ⊤x), x ∈ Rp and some absolutely continuous symmetric cumulative distribution function G defined on
R. Since β1,p and β2,p are invariant with respect to non-singular linear transformations, they can be computed by using the
canonical representations Z = ΓX and Z′

= ΓY of X and Y, respectively, in which Γ is a p×p orthonormal matrix such that
ΓΩΓ⊤

= Ip and Γλ = λ∗e1:p, where λ∗ =

√

λ⊤Ωλ and e1 is the first p-dimensional unit vector. Then, Z1 ∼ GSN 1(0, 1, λ∗)
which has mean µ∗ and variance 1 − µ2

∗
, and Z1 is independent of Z2 = (Z2, . . . , Zp)⊤ ∼ Np−1(0p−1, Ip−1), where

µ∗ = 2λ∗E{G′(λ∗Y )} = 2
dE{G(λ∗Y )}

,

dλ∗

4
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a

with Y ∼ HN 1(0, 1) (half-normal). The same holds for Z ′

1 and Z′

2 = (Z ′

2, . . . , Z
′
p)

⊤. Note that µZ = µ∗e1 and ΣZ =

p − µ2
∗
e1e⊤

1 . Since (X − µX)⊤Σ
−1
X (X′

− µX) = (Z − µZ)⊤Σ
−1
Z (Z′

− µZ) = Z01Z ′

01 + Z⊤

2 Z
′

2, where Z01 = (Z1 − µ∗)/
√
1 − µ2

∗

nd Z ′

01 = (Z ′

1 − µ∗)/
√
1 − µ2

∗
are standardized and independent random variables

β1,p = E{(Z01Z ′

01 + Z⊤

2 Z
′

2)
3
} = E{(Z01Z ′

01)
3
} + 3E{(Z01Z ′

01)
2(Z⊤

2 Z
′

2)} + 3E{(Z01Z ′

01)(Z
⊤

2 Z
′

2)
2
} + E{(Z⊤

2 Z
′

2)
3
}

= E{(Z01Z ′

01)
3
} = γ 2

1,1,

where γ1,1 ≡ γ1 =
√

β1,1 = E(Z3
01). Similarly, we have (X − µX)⊤Σ

−1
X (X − µX) = Z2

01 + Z⊤

2 Z2 and thus

β2,p = E{(Z2
01 + Z⊤

2 Z2)2} = E(Z4
01) + 2E(Z2

01)E{(Z
⊤

2 Z2)} + E{(Z⊤

2 Z2)2} = E(Z4
01) = γ2,1 + p(p + 2),

ith γ2,1 ≡ γ2 = E(Z4
01) − 3 = β2,1 − 3 being the excess of kurtosis. In this case, we can also consider the Mardia

ultivariate excess of kurtosis index γ2,p = β2,p − p(p + 2) which equals γ2,1.
In the skew-normal case with G(x) = Φ(x), we have γ1 = b(2b2 − 1)γ 3/2

∗ and γ2 = 2b2(2 − 3b2)γ 2
∗
, where

∗ = λ2
∗
/{1+ (1−b2)λ2

∗
}, b =

√
2/π and λ∗ =

√

λ⊤Ωλ as defined above. However, the indices γ1 and γ2 corresponding to
he subvectors of X are different through subvectors with different dimensions. As was shown in [1], if X ∼ SN p(0p,Ω, λ)
nd A is a q × p fixed matrix, then AX ∼ SN q

(
0q,ΩA, λA

)
, where ΩA = AΩA⊤ and λA = {(AΩA⊤)−1AΩλ}{1 + λ⊤(Ω −

A⊤Ω
−1
A AΩ)λ}

−1/2. In particular, if we consider the partition X = (X⊤
q ,X⊤

p−q)
⊤ with the corresponding partition for the

scale matrix Ω = (Ωrs)r,s=q,p−q and the skewness vector λ = (λ⊤

q , λ⊤

p−q)
⊤, we then have

Xq = AX ∼ SN q
(
0q,Ωqq, λ

(q)) , λ(q)
=

λq + Ω−1
qq Ωq,p−qλp−q√

1 + λ⊤

p−qΩp−q,p−q:qλp−q

,

where AA⊤
= Iq andΩp−q,p−q:q = Ωp−q,p−q−Ωp−q,qΩ

−1
qq Ωq,p−q. The associated canonical transformation to Xq has summary

skewness parameter

λ(q)
∗

=

√
λ(q)⊤Ωqqλ

(q)
=

√
(λq + Ω

−1
qq Ωq,p−qλp−q)⊤Ωqq(λq + Ω

−1
qq Ωq,p−qλp−q)

1 + λ⊤

p−qΩp−q,p−q:qλp−q
.

Therefore, we have β1,q,i = γ
2(q)
1 and β2,q,i = γ

(q)
2 + q(q + 2), where for k = 1, 2, γ (q)

k = γk for q = p, and for q < p it

must be computed as γk but with λ∗ replaced by λ
(q)
∗ . In particular, if Ω = Ip, then λ

(q)
∗ =

√
(λ⊤

q λq)/(1 + λ⊤

p−qλp−q) with
(q)
∗ = λ∗ if q = p, and λ

(q)
∗ = λi/

√
1 +

∑
j̸=i λ

2
j for the ith marginal component if q = 1.

Next, we consider the multivariate skew-t distribution as described in [2, section 6.2]. Let X ∼ ST p(ξ,Ω, α, ν),
here ST p denotes a p-dimensional skew-t distribution with degrees of freedom ν, location vector ξ, scale matrix Ω

nd skewness vector α. Define

δ∗ =

(
α⊤Ωα

1 + α⊤Ωα

)1/2

, bν =

√
νΓ {(ν − 1)/2}
√

πΓ (ν/2)
.

Based on δ∗ and bν , we set µ∗ = bνδ∗ and σ 2
∗

= {ν/(ν − 2)} − µ2
∗
. The Mardia measures of multivariate skewness and

kurtosis [2] for X are

β1,p = β∗

1 + 3(p − 1)
µ2

∗

(ν − 3)σ 2
∗

if ν > 3, (7)

β2,p = β∗

2 + (p2 − 1)
ν − 2
ν − 4

+
2(p − 1)

σ 2
∗

{
ν

ν − 4
−

(ν − 1)µ2
∗

ν − 3

}
− p(p + 2) if ν > 4, (8)

where

β∗

1 =
µ2

∗

σ 3
∗

{
ν(3 − δ2

∗
)

ν − 3
−

3ν
ν − 2

+ 2µ2
∗

}2

, β∗

2 =
1
σ 4

∗

{
3ν2

(ν − 2)(ν − 4)
−

4µ2
∗
ν(3 − δ2

∗
)

ν − 3
+

6µ2
∗
ν

ν − 2
− 3µ4

∗

}
.

Next, denote the subvector corresponding to β1,q,i and β2,q,i as Xq, and consider the partition X = (X⊤
q ,X⊤

p−q)
⊤ with

the corresponding partitions for the location vector ξ = (ξ⊤

q , ξ⊤

p−q)
⊤, scale matrix Ω = (Ωrs)r,s=q,p−q and the skewness

vector α = (α⊤
q , α⊤

p−q)
⊤ as in the earlier part of this section. Then

Xq ∼ ST q
(
ξq,Ωqq, α

(q), ν
)
, α(q)

=
αq + Ω−1

qq Ωq,p−qαp−q√
1 + α⊤

p−qΩp−q,p−q:qαp−q

,

where Ωp−q,p−q:q = Ωp−q,p−q − Ωp−q,qΩ
−1
qq Ωq,p−q. Now, β1,q,i and β2,q,i are obtained by replacing α and Ω with α(q) and

Ω , respectively, in the formulae given in (7) and (8).
qq

5
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4. Invariance under location-scale transformations

It is well known that the Mardia measures of multivariate skewness and kurtosis (1) are invariant under affine
ransformations. We show next that the sub-dimensional Mardia measures of multivariate skewness and kurtosis (2)
re only invariant under location and scale transformation, unless the multivariate distribution is spherically invariant.
Let MD2(X) = (X−µ)⊤Σ−1(X−µ) be the squared Mahalanobis distance. Consider the affine transformation Y = AX+b,

A ∈ Rp×p with |A| ̸= 0 and b ∈ Rp. Then, it is immediate that MD2(Y) = MD2(AX + b) = MD2(X) = MD2(Z), where
= Σ−1/2(X − µ).
Next, partition X = (X⊤

q ,X⊤
p−q)

⊤ and similarly for Y and Z. Then, Xq = BqX, where Bq = (Iq, O) ∈ Rq×p with
rank(Bq) = q and O being the null matrix. Similarly, Yq = BqY and Zq = BqZ. Therefore,

MD2(Xq) = (BqX − Bqµ)⊤(BqΣB⊤

q )
−1(BqX − Bqµ) = (X − µ)⊤B⊤

q (BqΣB⊤

q )
−1Bq(X − µ)

= Z⊤Σ1/2B⊤

q (BqΣB⊤

q )
−1BqΣ

1/2Z = Z⊤PZ,

where P ≥ 0 is a p × p orthogonal projection matrix, that is, symmetric with P2
= P and rank(P) = q. Similarly,

D2(Yq) = Z⊤PAZ with PA = Σ1/2A⊤B⊤
q (BqAΣA⊤B⊤

q )
−1BqAΣ1/2, where PA ≥ 0 is a p × p orthogonal projection matrix,

hat is, symmetric with P2
A = PA and rank(PA) = q. Therefore, if PA = P then MD2(Xq) = MD2(Yq) = MD2(Zq) = Z⊤

q Zq. In
articular, this holds when the matrix A is diagonal, which proves invariance under location and scale transformations.
More generally, simple calculations show that PA = P if and only if

A12Σ21A⊤

11 + A11Σ12A⊤

12 + A12Σ22A⊤

12 = O. (9)

n addition to the trivial case A12 = O, Eq. (9) holds, for instance, when A12 ⊥ (Σ21,Σ22), where ⊥ means orthogonal.
Moreover, if Z is spherically distributed, that is, ΓX d

= X for any orthogonal matrix Γ, then the invariance holds for
ny affine transformation with |A| ̸= 0. Indeed, in this case PA = Γ⊤

ADAΓA with DA = B⊤
q Bq for some orthogonal matrix

A and therefore

Z⊤PAZ = Z⊤Γ⊤

A B
⊤

q BqΓAZ = (ΓAZ)⊤B⊤

q Bq(ΓAZ)
d
= Z⊤B⊤

q BqZ = Z⊤

q Zq,

nd similarly when A = Ip.
In summary, although the Mardia measures of multivariate skewness and kurtosis are invariant under affine trans-

ormations, this is generally not the case for the sub-dimensional measures as shown in this section and illustrated in
he simple case of a bivariate skew-normal distribution in Fig. 1. Therefore, the sub-dimensional Mardia measures of
ultivariate skewness and kurtosis are informative for testing normality in the sub-dimensions as proposed in the next
ection.

. Sub-dimensional estimation and testing of hypotheses

Let X1, . . . ,Xn be a random sample from a probability distribution F in Rp. Let Xqij denote a sub-vector of dimension
obtained from Xj for j ∈ {1, . . . , n}. The dimension of Xqij corresponds to that of Xqi defined in Section 1, where the

andom vector X has distribution F . More precisely, suppose Xqi = PqiX, where Pqi is a diagonal matrix whose ith diagonal
lement is either 1 or 0 (depending on whether the ith coordinate of X is included in Xqi or not). Then, Xqij = PqiXj for
ll j. We assume that the covariance matrix Σ of the distribution F is positive definite. This implies that the covariance
atrices of all sub-vectors Xqi are positive definite, and hence all of the quantities β1,q,i and β2,q,i defined in (2) are well
efined for the underlying distribution F . Further, we assume that n > p so that the sample covariances corresponding
o all of the sub-vectors Xqi are invertible almost surely. This is necessary for defining the sample estimators of β1,q,i and
β2,q,i. The dimension p is fixed in this setup. Let X̄qi and Sqi be the sample mean and the sample covariance matrix of the
observations Xqi1, . . . ,Xqin, respectively. The sample estimators of β1,q,i and β2,q,i defined in (2) are

b1,q,i =
1
n2

n∑
j=1

n∑
k=1

{(Xqij − X̄qi)⊤S−1
qi (Xqik − X̄qi)}3, b2,q,i =

1
n

n∑
j=1

{(Xqij − X̄qi)⊤S−1
qi (Xqij − X̄qi)}2,

espectively. Consequently, the estimates of M1,q and M2,q defined in (3) are m1,q = (b1,q,1, . . . , b1,q,Qq )
⊤ and m2,q =

b2,q,1, . . . , b2,q,Qq )
⊤, respectively. Similarly, the estimates ofM∗

1 andM∗

2 defined in (5) and (6) arem∗

1 = (b1,1,1, . . . , b1,p,1)⊤

and m∗

2 = (b2,1,1, . . . , b2,p,1)⊤, respectively.
The quantities m1,q and m2,q provide information about the skewness and kurtosis present in all the q-dimensional

ub-vectors constructed from the sample. On the other hand, m∗

1 and m∗

2 reflect the skewness and kurtosis present in all
ossible sub-dimensions of the sample. Based on these quantities, tests of skewness and kurtosis can be constructed.

.1. Testing skewness

From (2.4) in [27], it follows that β1,q,i ≥ 0 for all q, i. However, for symmetric distributions, β1,q,i = 0 for all q, i
as discussed in Section 2. So, if any of the sub-dimensions bears skewness, we shall have β > 0 for the (q, i)-pair
1,q,i

6
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corresponding to that sub-dimension, which implies that max{β1,q,i|q ∈ {1, . . . , p}, i ∈ {1, . . . ,Qq}} > 0. Therefore, a
hypothesis for testing skewness in all sub-dimensions of the distribution can be formulated as follows:

H(s)
0 : max

q,i
β1,q,i = 0, H(s)

A : max
q,i

β1,q,i > 0. (10)

The above hypothesis is equivalent to

H̃
(s)
0 : β1,q,i = 0 for all q, i, H̃

(s)
A : β1,q,i > 0 for some q, i.

The usual Mardia skewness test [27] only tests for

H̄
(s)
0 : β1,p = 0, H̄

(s)
A : β1,p > 0,

and thus it may be less efficient in providing information about skewness supported on a smaller sub-dimension. In this
aspect, testing for (10) can be expected to be more efficient than the usual Mardia skewness test.

The null hypothesis H(s)
0 in (10) should be rejected when the maximum of b1,q,i is large. However, directly comparing

the b1,q,is is not proper, because they have different means and standard deviations under the null hypothesis. When
the underlying distribution F is Gaussian, it follows from Equation (2.26) in [27] that the asymptotic expectation and
asymptotic standard deviation of nb1,q,i are q(q + 1)(q + 2) and

√
12q(q + 1)(q + 2), respectively. So, while comparing

he quantities b1,q,i, it is appropriate to center and scale them first. Because our aim is to detect non-Gaussian features
n the sample, we center and scale b1,q,i using its asymptotic expectation and standard deviation under Gaussianity, and
consider

b̃1,q,i =
nb1,q,i − q(q + 1)(q + 2)

√
12q(q + 1)(q + 2)

, q ∈ {1, . . . , p}, i ∈ {1, . . . ,Qq}.

We reject H(s)
0 in (10) when maxq,i b̃1,q,i is large, and we shall denote this test as the MaxS test. Let m̃1,q and m̃∗

1 be the
centered and scaled analogues of m1,q and m∗

1, formed by replacing b1,q,i by b̃1,q,i. Note that maxq,i b̃1,q,i is the maximum
of the coordinates of m̃∗

1. To find the p-value of the MaxS test or to construct the cutoff for a given level, we need the
asymptotic null distribution of maxq,i b̃1,q,i, which is derived in Section 6.

Sometimes, it may be the case that there is information about the possible presence of skewness in the sub-vectors of
a fixed dimension, say, q0, where q0 < p, but it is not known exactly which subvector has a skewed distribution. Then, it
would be judicious to construct the test based on maxi b̃1,q0,i only. In such a situation, the hypothesis is

Hq0,(s)
0 : max

i
β1,q0,i = 0, Hq0,(s)

A : max
i

β1,q0,i > 0. (11)

Here, the null hypothesis Hq0,(s)
0 in (11) is rejected for large values of maxi b̃1,q0,i. We denote this test as the MaxSq0 test.

To find the p-value (or, the cutoff) for rejection at a given level, we derive the asymptotic distribution of maxi b̃1,q0,i in
Section 6.

5.2. Testing kurtosis

Similar to tests of skewness, tests of kurtosis can be also constructed based on the b2,q,i quantities. For a p-dimensional
Gaussian distribution, the value of the Mardia measure of multivariate kurtosis β2,p is p(p+2) (see [27]). The quantity β2,p
measures how heavy-tailed the distribution is. For distributions with tails heavier than the Gaussian distribution, e.g., the
multivariate Student’s t distributions, we have β2,p > p(p + 2). Similarly, for distributions with lighter tails than the
Gaussian distribution, we have β2,p < p(p+2). However, the Mardia test of kurtosis [27] again checks the overall kurtosis
of all the dimensions, and would not be efficient in checking whether the distribution in a particular sub-dimension
deviates from Gaussianity in terms of kurtosis.

Suppose one wants to test whether the kurtosis of the distribution of any sub-dimension deviates from the Gaus-
sian distribution. If this is the case, then we have

⏐⏐β2,q,i − q(q + 2)
⏐⏐ > 0, where the pair (q, i) corresponds to that

sub-dimension. For this scenario, the suitable hypothesis is

H(k)
0 : max

q,i

⏐⏐β2,q,i − q(q + 2)
⏐⏐ = 0, H(k)

A : max
q,i

⏐⏐β2,q,i − q(q + 2)
⏐⏐ > 0. (12)

Like in the case of b1,q,i, b2,q,i has different expectation and standard deviation for different q. When the underlying
distribution F is Gaussian, from the derivations in subsection 3.2 in [27], the asymptotic expectation and the asymptotic
standard deviation of b2,q,i are q(q + 2) and

√
{8q(q + 2)}/n. So, we center and scale b2,q,i, and consider

b̃2,q,i =
b2,q,i − q(q + 2)
√

{8q(q + 2)}/n
, q ∈ {1, . . . , p}, i ∈ {1, . . . ,Qq}.

The null hypothesis H(k)
0 in (12) is rejected if maxq,i |b̃2,q,i| is large. We denote this test as the MaxK test. To find the p-value

or the cutoff) of the test at a given level, we use the asymptotic null distribution of max |b̃ | derived in Section 6.
q,i 2,q,i

7
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Now, suppose one knows that there is possible deviation from the Gaussian distribution in terms of kurtosis in
ome sub-dimension with dimension q0 < p, but the exact sub-dimension is unknown. In such a case, the appropriate
hypothesis is

Hq0,(k)
0 : max

i

⏐⏐β2,q0,i − q0(q0 + 2)
⏐⏐ = 0, Hq0,(k)

A : max
i

⏐⏐β2,q0,i − q0(q0 + 2)
⏐⏐ > 0. (13)

Here, the null hypothesis Hq0,(k)
0 in (13) is rejected if maxi |b̃2,q0,i| is large. This test is denoted as the MaxKq0 test. We

employ the asymptotic distribution of maxi |b̃2,q0,i| derived in Section 6 to find the p-value (or the cutoff) of the test at a
given level.

6. Asymptotic distributions and implementation of tests

In this section, the asymptotic distributions of the quantities maxq,i b̃1,q,i, maxi b̃1,q0,i, maxq,i |b̃2,q,i| and maxi |b̃2,q0,i|

introduced in Section 5 are derived. Based on the respective asymptotic distributions, the implementations of the MaxS,
MaxSq0 , MaxK and MaxKq0 tests corresponding to (10), (11), (12) and (13), respectively, are described. To derive the
aforementioned asymptotic distributions, we shall use certain linearizations corresponding to the terms b1,q,i and b2,q,i.

6.1. Skewness

Given any q, i, define

hqi(x, y) =
{
(x − µqi)

⊤Σ
−1
qi (y − µqi)

}3
− 3(x − µqi)

⊤Σ
−1
qi (x − µqi)(x − µqi)

⊤Σ
−1
qi (y − µqi)

− 3(y − µqi)
⊤Σ

−1
qi (y − µqi)(x − µqi)

⊤Σ
−1
qi (y − µqi) + 3(q + 2)(x − µqi)

⊤Σ
−1
qi (y − µqi).

Define the integral operator hqi by

{hqi(g)}(x) = E
{
hqi(x,Xqi)g(Xqi)

}
. (14)

If E(∥X∥
3) < ∞, then the integral operator hqi is well defined on L2[Xqi], the space of measurable functions g which are

square integrable with respect to the distribution of Xqi. Under appropriate assumptions, it can be established that hqi has
only finitely many nonzero eigenvalues, where the number K (q) of nonzero eigenvalues depends on q (see [4]). Let λqik
be the eigenvalues and fqik(·) be the corresponding eigenfunctions of hqi for k ∈ {1, . . . , K (q)}. Then, we have for all x, y,

hqi(x, y) =

K (q)∑
k=1

λqikfqik(x)fqik(y). (15)

The function hqi(x, y) is closely related to the quantity b1,q,i. The eigenvalues and eigenfunctions of hqi(x, y) are used to
establish a relationship between b1,q,i and the average of independent random vectors in the following theorem. This
linearization will be used to derive the asymptotic distributions of the quantities maxq,i b̃1,q,i and maxi b̃1,q0,i. Define

m4,qi = E
[{

(Xqi − µqi)
⊤Σ

−1
qi (Xqi − µqi)

}2]
, m6,qi = E

[{
(Xqi − µqi)

⊤Σ
−1
qi (Xqi − µqi)

}3]
.

We have the following theorem on b1,q,i. Note that when q = 1, Xqi = Xi, the ith component of X for i ∈ {1, . . . , p}. Let µi
be the ith component of µ and Xij be the ith component of the observation vector Xj for i ∈ {1, . . . , p} and j ∈ {1, . . . , n}.

Theorem 1. Suppose that E(∥X∥
6) < ∞ and the distribution of X is elliptical. Let σ 2

i = E{(Xi − µi)2} for i ∈ {1, . . . , p}. For
j ∈ {1, . . . , n}, define uqij as

uqij =

{
σ−3
i (Xij − µi){(Xij − µi)2 − 3σ 2

i } if q = 1,(√
λqi1fqi1(Xqij), . . . ,

√
λqiK (q)fqiK (q)(Xqij)

)⊤
otherwise.

et ūqi = n−1∑n
j=1 uqij. Then

nb1,q,i =
√nūqi

2
2 + oP (1)

s n → ∞. Further, for q > 1, K (q) = q + q(q − 1)(q + 4)/6,

λqik =

{
(3/q)

{
m6,qi/(q + 2) − 2m4,qi + (q + 2)q

}
, k ∈ {1, . . . , q},

6m6,qi/ {q(q + 2)(q + 4)} , k ∈ {(q + 1), . . . , K (q)},

nd E{f (X )} = 0 for all q, i, j and k.
qik qij

8
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Proof. When q = 1, from the arguments in the proof of Theorem 1 in [15], it follows that, as n → ∞,

nb1,q,i =

⎡⎣n−1/2
n∑

j=1

σ−3
i (Xij − µi){(Xij − µi)2 − 3σ 2

i }

⎤⎦2

+ oP (1) =
(√

nūqi
)2

+ oP (1).

For q > 1, let Yqij = Σ
−1/2
qi

(
Xqij − µqi

)
for all i, j. Then Yqij has an elliptical distribution, which is identical over j for

fixed i, with E(Yqij) = 0 and E(YqijY⊤

qij) = Iq. Also, E(∥Yqij∥
6) < ∞ for all i, j, and hence Yqijs satisfy the conditions of Lemma

2.1 in [4]. From an application of this lemma, we have

nb1,q,i = n−1
n∑

j=1

n∑
k=1

hqi(Xqij,Xqik) + oP (1) (16)

as n → ∞. Next, from the arguments in the proof of Theorem 2.2 in [4], it follows that the integral operator hqi defined
in (14) has only two non-zero distinct eigenvalues, which are

γqi1 = (3/q)
{
m6,qi/(q + 2) − 2m4,qi + (q + 2)q

}
, γqi2 = 6m6,qi/ {q(q + 2)(q + 4)} ,

with associated multiplicities νqi1 = q and νqi2 = q(q − 1)(q + 4)/6, respectively. So, we can take λqik = γqi1 for
∈ {1, . . . , νqi1} and λqik = γqi2 for k ∈ {(νqi1 + 1), . . . , (νqi1 + νqi2)}. Consequently, K (q) = q + q(q − 1)(q + 4)/6.

rom (15) and (16), we get

nb1,q,i = n−1
n∑

j=1

n∑
l=1

K (q)∑
k=1

λqikfqik(Xqij)fqik(Xqil) + oP (1) =

K (q)∑
k=1

⎧⎨⎩n−1/2
n∑

j=1

√
λqikfqik(Xqij)

⎫⎬⎭
2

+ oP (1)

=
√nūqi

2
2 + oP (1)

s n → ∞. Finally, from the arguments in the proof of Theorem 2.1 in [18], it follows that E{fqik(Xqij)} = 0 for all q, i, j
nd k. □

Define Uj =
(
u⊤

11j, . . . ,u
⊤

qij, . . . ,u
⊤

p1j

)⊤ and Uqj =

(
u⊤

q1j, . . . ,u
⊤

qQqj

)⊤

. Let G(·) and Gq(·) be such that

G(Uj) = max

{u11j
2
2 − 6

√
72

, . . . ,

uqij
2
2 − q(q + 1)(q + 2)

√
12q(q + 1)(q + 2)

, . . . ,

up1j
2
2 − p(p + 1)(p + 2)

√
12p(p + 1)(p + 2)

}
,

nd

Gq(Uqj) = max

{uq1j
2
2 − q(q + 1)(q + 2)

√
12q(q + 1)(q + 2)

, . . . ,

uqQqj
2
2 − q(q + 1)(q + 2)

√
12q(q + 1)(q + 2)

}
.

learly, G(·) and Gq(·) are continuous functions. From these observations, we derive the asymptotic null distributions of
he test statistics maxq,i b̃1,q,i for the MaxS test and maxi b̃1,q0,i for the MaxSq0 test in the next theorem.

heorem 2. Let Ω and Ωq be the dispersion matrices of U1 and Uq1, respectively. Let W and Wq0 be zero-mean Gaussian
andom vectors with dispersion matrices Ω and Ωq0 , respectively. Assume E(∥X∥

6) < ∞ and the distribution of X is elliptical.
hen, maxq,i nb̃1,q,i

d
→ G(W) and maxi nb̃1,q0,i

d
→ Gq0 (Wq0 ) as n → ∞.

roof. Since we have E{fqik(Xqij)} = 0 for all q, i, j and k from Theorem 1, it follows that E(Uqj) = 0 and E(Uj) = 0 for all
. Further, the distributions of Uqj are independent and identical for all j, and the same is true for the distributions of Uj.
efine Ū = n−1∑n

j=1 Uj and Ūq = n−1∑n
j=1 Uqj. It follows from the multivariate central limit theorem that

√
nŪ d

→ W

and
√
nŪq0

d
→ Wq0 as n → ∞. Now, note that maxq,i nb̃1,q,i = G(

√
nŪ) and maxi nb̃1,q0,i =

√
nŪq0 . Since G(·) and Gq(·)

re continuous, the proof of the theorem is completed from an application of the continuous mapping theorem. □

We implement the tests of skewness under Gaussianity of the null hypotheses. To derive the p-values of the tests
f the hypotheses described in (10) and (11), we need to first estimate Ω and Ωq0 , the dispersion matrices of Uj and
q0j, respectively. However, the random vectors Uj and Uq0j are constituted of uqij, whose definition involve unknown
opulation quantities σi, µi, λqik and fqik(Xqij). So, we substitute uqij in Uj and Uq0j by ûqij for all q, i and j to form Ûj
nd Ûq0j, respectively, where ûqij is constructed based on the sample observations. The construction procedure of ûqij is

described below.
Let X̄i and s2i denote the sample mean and sample variance, respectively, of the ith components Xij of the observation

vectors Xj, where j ∈ {1, . . . , n} and i ∈ {1, . . . , p}. When q = 1, uqij is a univariate random variable, and it can be verified
that under Gaussianity, Var(u ) = 6 for all i and j. For q = 1, we construct û ensuring that its sample variance is also
qij qij

9
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equal to 6. We first compute ũij = s−3
i (Xij − X̄i){(Xij − X̄i)2 −3s2i } for all j, and then set ûqij =

{√
6/s̃i

}
ũij, where s̃2i denotes

the sample variance of ũij. In this way, it is ensured that the sample variance of ûqij is equal to Var(uqij) under Gaussianity
for all i and j when q = 1. Next, for q > 1, λqik is derived under Gaussianity, and it can be verified that λqik = 6 for all q, i, k
in this case. Recall that the function fqik(·) is the eigenfunction of the integral operator hqi corresponding to the eigenvalue
λqik. From the arguments in Theorem 2.2 in [4], it follows that fqik(·) are spherical harmonic functions (see [11]). Explicit
xpressions of these spherical harmonic functions can be derived (see [5,21]). However, their numerical approximation
ay be unstable due to the involvement of hypergeometric functions (see [21, p. 1554]). For this reason and ease of
omputation, the random variables fqik(Xqij) in the definition of uqij are substituted in the following way. First, we form
he n × n matrix Ĥqi = (̂hqi(Xqij,Xqil)), where

ĥqi(Xqij,Xqil) =
{
(Xqij − X̄qi)⊤S−1

qi (Xqil − X̄qi)
}3

+ 3(q + 2)
{
(Xqij − X̄qi)⊤S−1

qi (Xqil − X̄qi)
}

− 3(Xqij − X̄qi)⊤S−1
qi (Xqij − X̄qi)(Xqij − X̄qi)⊤S−1

qi (Xqil − X̄qi)

− 3(Xqil − X̄qi)⊤S−1
qi (Xqil − X̄qi)(Xqij − X̄qi)⊤S−1

qi (Xqil − X̄qi).

e then compute the K (q) eigenvectors of the matrix Ĥqi corresponding to the K (q) eigenvalues with the largest
agnitudes, and arrange them by the descending order of the magnitudes of their corresponding eigenvalues. Each
omputed eigenvector is multiplied by

√
n to maintain its correspondence with the eigenfunctions of the integral operator

hqi. Each such vector obtained, denoted as f̂qik, substitutes the vector (fqik(Xqi1), . . . , fqik(Xqin))⊤. From the components of the
vectors f̂qik, we compute ûqij analogous to how uqij is defined using the components of the vectors (fqik(Xqi1), . . . , fqik(Xqin))⊤

and take λqik = 6. Then, we construct the vectors Ûj and Ûq0j using ûqij in place of uqij in Uj and Uq0j, respectively. Finally,
he dispersion matrices Ω and Ωq0 are estimated by

Ω̂ = (n − 1)−1
n∑

j=1

(
Ûj − n−1

n∑
l=1

Ûl

)(
Ûj − n−1

n∑
l=1

Ûl

)⊤

,

Ω̂q0 = (n − 1)−1
n∑

j=1

(
Ûq0j − n−1

n∑
l=1

Ûq0 l

)(
Ûq0j − n−1

n∑
l=1

Ûq0 l

)⊤

.

To compute the p-values of the MaxS test for (10), we generate 1000 independent zero-mean Gaussian random vectors
W̃1, . . . , W̃1000 with the dispersion matrix Ω̂. The proportion of the values G(W̃1), . . . ,G(W̃1000) larger than maxq,i nb̃1,q,i
is taken as the p-value of the null hypothesis in (10). The p-value of the test MaxSq0 in (11) is derived similarly.

6.2. Kurtosis

Next, we derive the asymptotic null distributions of maxq,i |b̃2,q,i| and of maxi |b̃2,q0,i|. Here also, we first derive a
linearization of b2,q,i.

Theorem 3. Let X1, . . . ,Xn be independent and identically distributed random vectors in Rp with E(∥X∥
8) < ∞. Let

Aqi = Σ
−1
qi E{(Xqi − µqi)(Xqi − µqi)⊤Σ

−1
qi (Xqi − µqi)(Xqi − µqi)⊤}. Define

Zqij =

⎡⎢⎢⎢⎣
{(

Xqij − µqi
)⊤

Σ
−1
qi

(
Xqij − µqi

)}2
− E

[{(
Xqi − µqi

)⊤
Σ

−1
qi

(
Xqi − µqi

)}2]
(
Xqij − µqi

)⊤ AqiΣ
−1
qi

(
Xqij − µqi

)
− E

{(
Xqij − µqi

)⊤ AqiΣ
−1
qi

(
Xqij − µqi

)}
Xqij − µqi

⎤⎥⎥⎥⎦ ,

and

aqi =

(
1, −2, −4E

[{(
Xqi − µqi

)⊤
Σ

−1
qi

(
Xqi − µqi

)}
Σ

−1
qi

(
Xqi − µqi

)])⊤

.

Then, n1/2(b2,q,i − β2,q,i) = n−1/2∑n
j=1 a

⊤

qiZqij + oP (1) as n → ∞.

Proof. Recall that β2,q,i and b2,q,i are invariant under location transformations. So, without loss of generality, we can
assume µ = E(X) = 0, which means µqi = 0 and Var(X) = E(XX⊤) = Σ.

The arguments are similar to those in the proof of Theorem 2.1 in [19]. In this proof, Yn = OP (bn) means that the
sequence Yn/bn is bounded in Euclidean/matrix norm, while Yn = oP (bn) means that b−1

n Yn
P

→ 0. Let

Bqi = n1/2

⎧⎨⎩n−1
n∑(

Xqij − µqi
) (

Xqij − µqi
)⊤

− Σqi

⎫⎬⎭ .
j=1

10
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From the weak law of large numbers, we get Bqi = OP (1) for all q, i. Also,

n1/2 (Sqi − Σqi
)

= Bqi − n1/2 (X̄qi − µqi
) (

X̄qi − µqi
)⊤

. (17)

From the multivariate central limit theorem, we have that n1/2
(
X̄qi − µqi

) (
X̄qi − µqi

)⊤
= OP (n−1/2), which, applied to

17), yields

Sqi = Σqi + n−1/2Bqi + OP (n−1), or, Σ−1
qi Sqi = Iq + n−1/2Σ

−1
qi Bqi + OP (n−1).

Note that n1/2(Sqi − Σqi) = Bqi − n1/2X̄qiX̄⊤

qi and n1/2X̄qiX̄⊤

qi = OP (n−1/2) by the multivariate central limit theorem. It
ollows that

Sqi = Σqi + n−1/2Bqi + OP (n−1),

and thus

Σ
−1
qi Sqi = Iqi + n−1/2Σ

−1
qi Bqi + OP (n−1).

This means Σ
−1
qi Sqi is invertible for all sufficiently large n with probability approaching 1, and we have

(Σ−1
qi Sqi)

−1
= Iqi − n−1/2Σ

−1
qi Bqi + OP (n−1),

hich implies that

S−1
qi = Σ

−1
qi − n−1/2Σ

−1
qi BqiΣ

−1
qi + OP (n−1). (18)

ow,

{(Xqij − X̄qi)⊤S−1
qi (Xqij − X̄qi)}2 = (X⊤

qijS
−1
qi Xqij)2 + 4(X̄⊤

qiS
−1
qi Xqij)2 + (X̄⊤

qiS
−1
qi X̄qi)2

− 4(X⊤

qijS
−1
qi XqijX̄⊤

qiS
−1
qi Xqij) + 2(X⊤

qijS
−1
qi XqijX̄⊤

qiS
−1
qi X̄qi)

− 4(X̄⊤

qiS
−1
qi XqijX̄⊤

qiS
−1
qi X̄qi). (19)

Using this and the expression for the inverse in (18) above, we get for the first term in (19) to be

X⊤

qijS
−1
qi Xqij = X⊤

qijΣ
−1
qi Xqij − n−1/2X⊤

qijΣ
−1
qi BqiΣ

−1
qi Xqij + OP (n−1).

quaring both sides, we get

(X⊤

qijS
−1
qi Xqij)2 = (X⊤

qijΣ
−1
qi Xqij)2 − 2n−1/2X⊤

qijΣ
−1
qi XqijX⊤

qijΣ
−1
qi BqiΣ

−1
qi Xqij + OP (n−1).

sing the fact that the trace of a matrix is invariant under cyclic permutations, we have

tr(X⊤

qijΣ
−1
qi XqijX⊤

qijΣ
−1
qi BqiΣ

−1
qi Xqij) = tr{Σ−1

qi Bqi(Σ−1
qi XqijX⊤

qij)(Σ
−1
qi XqijX⊤

qij)}.

ince n−1∑n
j=1(Σ

−1
qi XqijX⊤

qij)(Σ
−1
qi XqijX⊤

qij) = Aqi + oP (1) with Aqi = E{(Σ−1
qi XqiX⊤

qi)(Σ
−1
qi XqiX⊤

qi)}, we now get

1
n

n∑
j=1

(X⊤

qijS
−1
qi Xqij)2 =

1
n

n∑
j=1

(X⊤

qijΣ
−1
qi Xqij)2 − 2n−1/2tr(Σ−1

qi BqiAqi) + oP (n−1).

For the second term in (19), again using Eq. (18) and the fact that n−1∑n
j=1 XqijX⊤

qij = OP (1) (using the weak law of
large numbers) we obtain

1
n

n∑
j=1

(X̄⊤

qiS
−1
qi Xqij)2 = OP (n−1/2).

Furthermore, for the third term in (19), (X̄⊤

qiS
−1
qi X̄qi)2 = OP (n−2). Since, n−1∑n

j=1 Σ
−1
qi Xqij(X⊤

qijΣ
−1
qi Xqij) = ãqi + oP (1) with

˜qi = E{Σ−1
qi Xqi(X⊤

qiΣ
−1
qi Xqi)}, it is easy to see that for the fourth term,

1
n

n∑
j=1

(X⊤

qijS
−1
qi Xqij)(X̄⊤

qiS
−1
qi Xqij) = ã⊤

qiX̄qi + OP (n−1).

Finally, for the last two terms,

1
n

n∑
(X⊤

qijS
−1
qi Xqij)(X̄⊤

qiS
−1
qi X̄qi) = OP (n−1),

1
n

n∑
(X̄⊤

qiS
−1
qi Xqij)(X̄⊤

qiS
−1
qi X̄qi) = OP (n−1).
j=1 j=1

11
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Summarizing, we obtain

b2,q,i =
1
n

n∑
j=1

(X⊤

qijΣ
−1
qi Xqij)2 − 2n−1/2tr(Σ−1

qi BqiAqi) − 4ã⊤

qiX̄qi + OP (n−1).

ote that

tr(Σ−1
qi BqiAqi) = tr(BqiAqiΣ

−1
qi ) = n1/2

⎧⎨⎩1
n

n∑
j=1

X⊤

qijAqiΣ
−1
qi Xqij − E(X⊤

qiAqiΣ
−1
qi Xqi)

⎫⎬⎭ ,

and using this we obtain

n1/2(b2,q,i − β2,q,i) = n−1/2
n∑

j=1

a⊤

qiZqij + oP (1),

where

Zqij =

⎡⎣(X⊤

qijΣ
−1
qi Xqij

)2
− E{(X⊤

qiΣ
−1
qi Xqi)2}

X⊤

qijAqiΣ
−1
qi Xqij − E(X⊤

qiAqiΣ
−1
qi Xqi)

Xqij

⎤⎦
is a (2 + q)-dimensional vector and aqi = (1, −2, −4ã⊤

qi)
⊤. □

Tests of kurtosis are usually conducted for testing normality (see [19]). When the underlying distribution is Gaussian,
we can simplify the quantities Aqi and aqi described in Theorem 3, and consequently, the linearization becomes simpler.

Corollary 1. Let X1, . . . ,Xn be independent and identically distributed Gaussian random vectors in Rp. Define Yqij ={
(Xqij − µqi)⊤Σ

−1
qi (Xqij − µqi)

}2
−2(q+2)(Xqij −µqi)⊤Σ

−1
qi (Xqij −µqi). Then, n1/2(b2,q,i −β2,q,i) = n−1/2∑n

j=1{Yqij −E(Yqij)}+
oP (1) as n → ∞.

Proof. Define X̃qij = Σ
−1/2
qi (Xqij − µqi). Under the assumption of the corollary, the X̃qijs are independent zero-mean

Gaussian random vectors with the identity matrix as their dispersion matrix. It follows that

E
[{(

Xqi − µqi
)⊤

Σ
−1
qi

(
Xqi − µqi

)}
Σ

−1
qi

(
Xqi − µqi

)]
= Σ

−1/2
qi E

{(
X̃⊤

qi1X̃qi1

)
X̃qi1

}
= Σ

−1/2
qi × 0 = 0. (20)

Next, we have(
Xqij − µqi

)⊤ AqiΣ
−1
qi

(
Xqij − µqi

)
= X̃⊤

qijE
[
X̃qij

(
X̃⊤

qijX̃qij

)
X̃⊤

qij

]
X̃qij = (q + 2)X̃⊤

qijX̃qij. (21)

The proof follows from (20), (21) and the linearization in Theorem 3. □

The asymptotic null distributions of maxq,i |b̃2,q,i| and maxi |b̃2,q0,i| are derived from the linearization in Corollary 1.

Theorem 4. Let X1, . . . ,Xn be independent and identically distributed Gaussian random vectors in Rp. Define

Ỹj =

(
Y11j
√
24

, . . . ,
Yqij

√
8q(q + 2)

, . . . ,
Yp1j

√
8p(p + 2)

)⊤

, Ỹqj =

(
Yq1j

√
8q(q + 2)

, . . . ,
YqQqj

√
8q(q + 2)

)⊤

,

here Yqij is as defined in Corollary 1. Let Γ and Γq be the dispersion matrices of Ỹ1 and Ỹq1, respectively. Let W and Wq be
ero-mean Gaussian random vectors with dispersion matrices Γ and Γq, respectively. Then,

√
nmaxq,i |b̃2,q,i|

d
→ ∥W∥∞ and

√
nmaxi |b̃2,q0,i|

d
→ ∥Wq∥∞ as n → ∞, respectively, where ∥·∥∞ is the l∞ norm in the Euclidean space, i.e., ∥v∥∞ = maxi |vi|

ith vi being the ith component of the vector v.

roof. Under the assumption of Gaussianity in the theorem, β2,q,i = q(q+2) for all q. Since the l∞ norm in the Euclidean
pace is continuous, the proof follows from an application of the multivariate central limit theorem in Corollary 1 and
hen applying the continuous mapping theorem. □

The tests of kurtosis are implemented under Gaussianity of the null hypotheses. To compute the p-values for the MaxK
est in (12) and the MaxKq0 test in (13), we need to estimate the dispersion matrices Γ and Γq of the random vectors Ỹj

nd Ỹqj. But, Ỹj and Ỹqj are constituted of Yqij, whose definition involves unknown population quantities µqi and Σqi. So,
e substitute Yqij in Ỹj and Ỹqj by

Ŷ = {(X − X̄ )⊤S−1(X − X̄ )}2 − 2(q + 2)(X − X̄ )⊤S−1(X − X̄ ),
qij qij qi qi qij qi qij qi qi qij qi

12
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Table 2
Estimated sizes of the tests defined in Sections 5.1, 5.2 and 6.3 based on 1000 replicates at 5%
nominal level for the underlying distribution being 5-variate Gaussian N5(0,Σ), where Σ = (σij) with
σij = 0.5 + 0.5I(i = j).

Test n = 50 n = 100 n = 200 n = 500 n = 1000

MaxS 0.048 0.056 0.048 0.047 0.044
MaxK 0.043 0.049 0.058 0.060 0.049
MaxSK 0.044 0.053 0.057 0.055 0.045
MaxS1 0.041 0.053 0.043 0.051 0.046
MaxS2 0.050 0.062 0.051 0.055 0.040
MaxS3 0.034 0.059 0.055 0.055 0.035
MaxS4 0.030 0.050 0.043 0.055 0.038
MaxS5 0.015 0.041 0.043 0.045 0.048
MaxK1 0.047 0.062 0.053 0.058 0.048
MaxK2 0.021 0.034 0.045 0.057 0.050
MaxK3 0.014 0.018 0.030 0.049 0.051
MaxK4 0.031 0.038 0.036 0.059 0.045
MaxK5 0.151 0.088 0.060 0.069 0.050
MaxSK1 0.048 0.065 0.053 0.049 0.048
MaxSK2 0.033 0.049 0.049 0.049 0.050
MaxSK3 0.025 0.039 0.039 0.052 0.044
MaxSK4 0.022 0.035 0.035 0.055 0.039
MaxSK5 0.070 0.058 0.046 0.057 0.041

which is obtained by replacing µqi and Σqi in the expression of Yqij by their estimates X̄qi and Sqi, respectively. Now, it
can be derived that under Gaussianity, Var(Yqi1) = 8q(q + 2) for all q, i. So, the diagonal entries of the estimates of Γ

and Γq, denoted as Γ̂ and Γ̂q, respectively, are fixed to be 1. The off-diagonal entries of Γ̂ and Γ̂q are obtained from the
sample correlations of Ŷq1i1j and Ŷq2 i2j for the corresponding indices q1, i1 and q2, i2. Next, we generate 1000 independent
zero mean Gaussian random vectors W̃1, . . . , W̃1000 with dispersion matrix Γ̂. The p-value of the MaxK test in (12) is
the proportion of the values ∥W̃1∥∞, . . . , ∥W̃1000∥∞ larger than maxq,i |b̃2,q,i|. The p-value of the MaxKq0 test in (13) is
omputed similarly.

.3. Testing Gaussianity based on both skewness and kurtosis

Based on the tests of skewness and kurtosis, a test of Gaussianity can be constructed. Analogous to (10) and (12), the
ull hypothesis here is

H(g)
0 : The underlying distribution is Gaussian. (22)

imilarly, analogous to (11) and (13), the null hypothesis is

Hq0,(g)
0 : All q0-dimensional subsets of the data follow some Gaussian distribution. (23)

ere, if at least one of the null hypotheses of the corresponding skewness test or kurtosis test is rejected, then we reject
he null hypothesis of Gaussianity (after Bonferroni correction). For example, if any of the MaxS test and the MaxK test
ejects their null hypotheses, then (22) is also rejected. The test for (22) is denoted as MaxSK test. Similarly, if any of the
axSq0 test or the MaxKq0 test rejects their null hypothesis for a fixed q0, then (23) is rejected, and we denote this test
y MaxSKq0 test.

. Simulation study

In this section, the performance of our proposed tests are investigated in terms of the estimated sizes and powers
sing some simulated models. The estimated powers of our tests are compared with the corresponding Mardia tests. We
lso compare the estimated powers of ours tests with several tests of Gaussianity.

.1. Estimated sizes

For estimating the sizes of our tests, we consider X1, . . . ,Xn being a random sample from the p-variate Gaussian
istribution Np(0,Σ), where Σ = (σij) with σij = 0.5 + 0.5I(i = j). We take p = 5. The number of replicates to estimate
he sizes of our tests is taken as 1000. The sample size n is varied.

From Table 2, it can be seen that the tests MaxS, MaxK and MaxSK have estimated sizes close to the 5% nominal level
or n = 50 and up. The estimated sizes of MaxS5 and MaxK2, MaxK3, MaxK5 and MaxSK3, MaxSK4 deviate slightly from
he 5% nominal level for n = 50 and 100, and require higher sample sizes to converge to the nominal level.

In section 1 of the supplementary material, estimated sizes for some other values of the dimension p are presented,
amely p = 3, 4 which correspond to the dimensions of the two datasets analyzed in Section 8. There also, it is found that
13
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the estimated sizes of the majority of the tests, including the tests MaxS, MaxK and MaxSK, are close to the 5% nominal
level for n = 50 and up. A few tests, like MaxK2, MaxK3, MaxSK2, MaxSK3, require higher sample sizes for their estimated
sizes to reach close to the nominal level. In section 3 of the supplementary material, the estimated sizes of the tests are
presented in an equicorrelation model, where the pairwise-correlation between the components of the vector X is high.
There, it is found that the estimated sizes of nearly all of the tests, including the tests MaxS, MaxK and MaxSK, are close
to the nominal level for n = 100 and up. When the sample size is lower, i.e., n = 50, some deviations of the estimated
sizes from the nominal level are observed.

7.2. Estimated powers

We now compare the powers of the tests with the usual Mardia skewness (MS) and kurtosis (MK) tests along with
several tests of normality; see [8] for a recent review.

The following tests of Gaussianity are considered for the comparison of performances. The test by Henze and
Zirkler [20] is denoted as the HZ test. The test of normality developed by Royston [34–37] is denoted as the R test. The
testing procedure described by Doornik and Hansen [9] is denoted as the DH test. The skewness-based test of normality
described by Kankainen, Taskinen and Oja [22] is denoted as the KTOS test, and the kurtosis-based test of normality
described in the same paper is denoted as the KTOK test. The test developed by Bowman and Shenton [6] is denoted
as the BS test. The testing procedure studied by Villasenor Alva and Estrada [39] is denoted as the VE test. The test of
normality developed by Zhou and Shao [42] is denoted as the ZS test. The testing procedure based on the measure of
skewness proposed in [30] is denoted as the MRS test. The test for multivariate skewness described in [26] is denoted as
the MAS test, while the test for multivariate kurtosis described by the same authors is denoted as the MAK test. The test
of kurtosis based on the measure of multivariate kurtosis proposed in [24] is denoted as the KK test.

The HZ test, the R test and the DH test are implemented using the corresponding functions in the R (R version 4.1.3
2022-03-10), [33]) package MVN [23]. The KTOS and KTOK tests are implemented using the functions in the R package
ICS [31]. The BS test and the ZS test are implemented using their functions in the R package mvnormalTest [41]. The
E test is implemented using its function in the R package mvShapiroTest [17]. The MRS test is implemented using
ts function in the R package MultiSkew [13]. The MAS test, the MAK test and the KK test are implemented using their
espective functions in the R package mnt [7]. The Mardia skewness and kurtosis tests are implemented based on the
symptotic distributions of the test statistics derived in [27] using the unbiased estimate of the population covariance
atrix.
For the comparison of performances of the tests, we consider three simulation models. In each of the models, the

on-Gaussian feature is supported on a small number of components of the random vector. Let Σ = (σij) with σij =

0.5 + 0.5I(i = j). The dimension of the matrix Σ is to be determined based on the context. Let X = (X⊤
q ,X⊤

p−q)
⊤, where

Xq and Xp−q are independent and Xp−q follows Np−q(0,Σ). Then,

• Model 1 (skewed): Xq ∼ SN q(0,Σ, α), where α = α1q;
• Model 2 (heavy-tailed): Xq ∼ tq(0,Σ, ν), where the degrees of freedom are ν;
• Model 3 (skewed and heavy-tailed): Xq ∼ ST q(0,Σ, α, ν), where α = (1/ν)1q.

It can be seen that the class of distributions in Model 1 is skewed-Gaussian distributions, while in Model 2, the class
of distributions is symmetric heavy-tailed. In Model 3, the non-Gaussian distributions are both skewed and heavy-tailed.

We fix the sample size n = 200, p = 5 and q = 2. Then, we vary the values of α or ν to investigate the changes in
power of the tests in the distributions. The plots of the estimated power curves of the tests are presented in Fig. 2. In the
panel of Model 1, the kurtosis-based tests, namely MaxK test, the Mardia kurtosis (MK) test, the KTOK test, the MAK test
and the KK test are not included, as Model 1 is concerned with skewness only. Similarly, in the panel for Model 2, the
skewness-based tests, namely the MaxS test, the Mardia skewness (MS) test, the KTOS test, the MRS test and the MAS test
are not included, as Model 2 is concerned with kurtosis only. However, in the plot for Model 3, all the tests are included.

From Fig. 2, it can be seen that in Model 1, the performances of MaxS and MaxSK tests are significantly better than
all other tests. The power of the MaxSK test is slightly lower than the MaxS test. This is because MaxSK combines the
MaxS and the MaxK tests using Bonferroni correction. If one of the tests does not exhibit a high power, then the power of
MaxSK would be lower than the best performing test. Similar observations can be made in the panel for Model 2, where
the estimated powers of the MaxK test and the MaxSK test are found to be better than all other tests, and the power curve
of the MaxSK test is slightly below the power curve of the MaxK test. In Model 3, the estimated powers of the MaxSK
test and the MaxK test are higher than other testing procedures, while the power exhibited by the MaxS test is lower in
this model (this is because the skewness in Model 3 is rather weak). In all the cases, it can be clearly seen that our tests
significantly outperform the other tests most of the time. The test for Gaussianity, i.e., the MaxSK test, always performs
quite well and exhibits better performance than all the other tests.

Among the other testing procedures, the MAS test and the MAK test involve finding the projections which maximize
the univariate skewness and kurtosis, respectively. Skewness-based projection pursuit has also been studied in [25]. The
projection pursuit methods yield directions to project the data which would maximize the skewness or kurtosis. However,
if the skewness or kurtosis is supported on only a sub-dimension of the data, the obtained direction vector may not directly
help in identifying the particular sub-dimension. It is also notable that the two tests MAS and MAK are found to be less
14
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Fig. 2. Estimated powers of MaxS, MaxK, MaxSK, MS, MK, HZ, R, DH, KTOS , KTOK , BS, VE, ZS, MRS, MAS, MAK and KK tests for 5% nominal level
(horizontal dashed line) in Model 1 (top left), Model 2 (top right) and Model 3 (bottom) for n = 200, p = 5, q = 2 based on 1000 replicates. The
horizontal dotted lines near the bottom of the plots correspond to the nominal level of 5%.

powerful compared to our proposed tests in the above simulation study of estimated powers. The KTOK test proposed
in [22] and implemented using the R package ICS [31] involves the ratio of the regular covariance matrix and the matrix of
fourth moments, which is closely related to independent component analysis (see, e.g., section 2.4 in [32]). In independent
component analysis, one tries to find a linear transform of the original multivariate data vectors so that the components
of the transformed vectors are independent. However, the methodology of independent component analysis would not
help in detecting the sub-dimension supporting the skewness or kurtosis present in the data due to the effect of taking
linear transforms of the original data. The KTOK test is also found to be less powerful compared to our proposed tests in
the above simulation study.

In [14], the authors conjectured that the normality test based on Mardia skewness is less powerful when skewness
is present in a lower-dimensional space than the space of the underlying distribution, where the lower-dimensional
space may be a few components of the random vector following the underlying distribution, or a projection to a lower-
dimensional space. In the plots of the estimated powers, this phenomenon is clearly observed with the Mardia tests
exhibiting significantly less power compared to our proposed tests and other tests in models where the non-Gaussian
features are supported on only a small sub-dimension of the overall distribution. In [14], graphical methods to investigate
skewness in such scenarios are described using skewness-based projection pursuit.

In section 2 of the supplementary material, estimated powers of the tests are presented for the smaller sample size
n = 50. For this smaller sample size, it is found that in Model 1, which is the skewed model, the powers of all the tests
decrease considerably, and a few tests exhibit higher powers compared to the MaxSK test. However, the power of the
MaxS test is found to be higher than all these tests, except the R test. The R test sometimes exhibits higher estimated
power compared to the MaxS test. In Model 2, which is the heavy-tailed model, again it is found that the estimated power
of the R test is slightly higher than the MaxK and the MaxSK tests, although they are very close to each other. The other
tests exhibit lower powers, but some of them are very close to the powers of the MaxK and MaxSK tests. In Model 3,
which is the skewed and heavy-tailed model, it is found that the powers of the MaxS and MaxSK tests are considerably
higher than all other tests. The power of the MaxK test is very close to that of the R test, which is significantly lower than
the powers of the MaxS test and the MaxSK test.
15
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Table 3
Assigned indices of all sub-dimensions of a 5-dimensional vector, where the numbers 1, 2, 3, 4 and 5 correspond to
the five components of the vector.
Sub-dimension Index Sub-dimension Index Sub-dimension Index

(1) 1 (2) 2 (3) 3
(4) 4 (5) 5 (1, 2) 6
(1, 3) 7 (1, 4) 8 (1, 5) 9
(2, 3) 10 (2, 4) 11 (2, 5) 12
(3, 4) 13 (3, 5) 14 (4, 5) 15
(1, 2, 3) 16 (1, 2, 4) 17 (1, 2, 5) 18
(1, 3, 4) 19 (1, 3, 5) 20 (1, 4, 5) 21
(2, 3, 4) 22 (2, 3, 5) 23 (2, 4, 5) 24
(3, 4, 5) 25 (1, 2, 3, 4) 26 (1, 2, 3, 5) 27
(1, 2, 4, 5) 28 (1, 3, 4, 5) 29 (2, 3, 4, 5) 30
(1, 2, 3, 4, 5) 31

In section 3 of the supplementary material, the estimated powers of the tests are also presented in an equicorrelation
model with high pairwise correlation between the components of the vector Xi, for sample size n = 200 and 50. This
experiment is carried out to evaluate the effect of the high pairwise correlation on the powers of the tests, and how this
effect varies with sample size. It is found that for n = 200, the estimated powers of the MaxS, MaxSK and R tests increase
sharply in Model 1, which is the skewed model, under high pairwise correlation. There is almost no difference among
the powers of the MaxS, MaxSK and R tests in Model 1. However, in Model 2 and Model 3, the estimated powers of the
R test is significantly lower than several other tests, and the estimated powers of the MaxK test and the MaxSK test are
significantly higher than all other tests. On the other hand, when n = 50, it is found that in Model 1 under high pairwise
correlation, the power of the R test is significantly higher than all of tests, and the powers of the MaxS and MaxSK tests
are lower than that of the R test but significantly higher than the powers of all of the other tests. This strong dominance of
the power of the R test is not maintained in case of Model 2 and Model 3 under high pairwise correlation, where several
other tests exhibit higher powers compared to the R test. There, the MaxK and MaxSK tests exhibit the highest powers,
but the powers of several other tests are close to them.

7.3. Detection of sub-dimensions supporting skewness and excess kurtosis

The testing procedures described earlier can be used to detect the sub-dimensions supporting non-Gaussian features
in the data. Suppose the data are skewed, but skewness is supported only on a small sub-dimension of the data. Then,
to detect the sub-dimension supporting skewness, we can first conduct the MaxS test. If the p-value of the MaxS test is
small (say, lower than 5%), then there is statistical evidence of presence of skewness in the sample. Next, we find the
sub-dimension corresponding to the maximum b̃1,q,i, which is the detected sub-dimension supporting skewness in the
data. Similarly, if a heavy-tailed component is present in a small sub-dimension of the data, and we wish to detect that
sub-dimension, we can conduct the MaxK test and if it rejects Gaussianity, we find the sub-dimension which corresponds
to the maximum |b̃2,q,i|. If we want to detect the sub-dimension supporting a non-Gaussian distribution, we can use the
MaxSK test in the following way. We first conduct the MaxSK test. If it rejects Gaussianity, then we find which p-value,
whether for MaxS or MaxK, caused the rejection. If it is only one of the tests, say MaxS, then we detect the sub-dimension
corresponding to the maximum b̃1,q,i. Otherwise, if the p-values of both the MaxS test and the MaxK test are below 2.5%
(due to Bonferroni correction on the 5% nominal level), then we find the sub-dimensions corresponding to the maximum
b̃1,q,i and the maximum |b̃2,q,i|. The union of these two sub-dimensions is the detected sub-dimension supporting the
non-Gaussian distribution.

To investigate the performance of the detection procedure described above, we consider the three models described
in Section 7.2. In Model 1, we fix α = 5 and conduct the detection procedure 1000 times on independent replicates. The
proportion of times each of the sub-dimensions is detected as the one supporting the skewed distribution is computed.
Also, the size of the sub-dimensions (denoted as q) thus detected to support the skewed distribution is also recorded,
and the proportions for the q values are computed. All the possible sub-dimensions from p = 5 variables are assigned
indices, which are presented in Table 3, and the proportions thus computed are plotted against the indices in the first
row of Fig. 3. The estimated power of the MaxS test there is 0.922. It can be clearly seen that the highest proportions in
the respective histograms are attained for the true sub-dimension and the true q.

Similarly, the procedure to detect the sub-dimension supporting the heavy-tailed distribution using the MaxK test is
also carried out based on 1000 replicates in Model 2 with ν = 5. The estimated power of the MaxK test there is 0.985.
The histograms are presented in the second row of Fig. 3, and we again see that the highest proportions are attained for
the true sub-dimension and true q.

Finally, the procedure to detect the sub-dimension supporting a non-Gaussian distribution using the MaxSK test is
carried out in Model 3 taking ν = 1/α = 5 and based on 1000 independent replicates. The estimated power of the
MaxSK test is 0.974 there. The histograms are presented in the third row of Fig. 3, where we again see that the highest
proportions are attained for the true sub-dimension and true value of q.
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Fig. 3. Histograms of the detection rate of sub-dimensions in Model 1 using the centered and scaled skewness measure (first row), in Model 2 using
the centered and scaled kurtosis measure (second row), in Model 3 using the procedure for detecting non-Gaussianity (third row). In all the cases,
n = 200, p = 5 and the true sub-dimension supporting skewness or excess kurtosis is q = 2. Results based on 1000 replicates.

. Sub-dimensional data analysis

.1. Fisher’s iris data

We revisit Fisher’s iris dataset discussed in Section 1, where we considered a part of the data related to the species
iris setosa’ to demonstrate that the Mardia test of skewness fails to detect skewed features in sub-dimensions. In Table 4,
he p-values of all the tests are presented. It can be seen that our test detects skewness in the data, while the Mardia
est fails. Similar observations were made in [23]. The p-values of the MaxS1, MaxS2 and MaxSK1 tests, the R test, the
H test, the VG test and the ZS test are also smaller than the 5% nominal level. Next, we consider the whole Fisher’s iris
ataset and compute the p-values of all the tests. We find that our test of kurtosis can detect the deviation of kurtosis
rom Gaussian kurtosis, while the Mardia test of kurtosis fails. The p-values of the majority of the other tests are also
maller than the 5% nominal level.
17
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Table 4
Estimated p-values of the tests defined in Sections 5.1, 5.2 and 6.3 and
the tests in the literature mentioned in Section 7.2 in the data examples.
Significant p-values at 5% level are in italics.
Test name Iris setosa Iris Wind

p = 4 p = 4 p = 3

MS 0.236 0.000 0.004
MK 0.448 0.611 0.338

MaxS 0.001 0.000 0.032
MaxK 0.360 0.003 0.007
MaxSK 0.002 0.000 0.014

MaxS1 0.002 0.317 0.023
MaxS2 0.047 0.000 0.011
MaxS3 0.132 0.000 0.001
MaxS4 0.235 0.000 –
MaxK1 0.244 0.000 0.004
MaxK2 0.236 0.068 0.124
MaxK3 0.570 0.258 0.367
MaxK4 0.436 0.568 –
MaxSK1 0.004 0.000 0.008
MaxSK2 0.094 0.000 0.022
MaxSK3 0.264 0.000 0.002
MaxSK4 0.470 0.000 –

HZ 0.050 0.000 0.097
R 0.000 0.000 0.011
DH 0.000 0.000 0.022
KTS 0.221 0.040 0.710
KTK 0.875 0.046 0.349
BS 0.060 0.000 0.000
VG 0.012 0.000 0.057
ZS 0.020 0.090 0.090
MRS 0.212 0.038 0.708
MAS 0.342 0.034 0.142
MAK 0.258 0.906 0.064
KK 0.060 0.312 0.080

Fisher’s iris dataset is generally modeled using a Gaussian distribution. However, our findings point to the non-
Gaussianity of the data, and thus it may be judicious to use non-Gaussian and skewed distributions while analyzing this
dataset.

8.2. Wind speed data in Saudi Arabia

We consider a trivariate windspeed dataset produced by Yip [40] with the Weather Research and Forecasting (WRF)
model. The three components correspond to bi-weekly mid-day windspeed during the period 2009–2014 at three
locations near Dumat Al Jandal, the first wind farm currently under construction in Saudi Arabia. It is important to study
the distributional properties of this trivariate windspeed vector because they are crucial for understanding wind patterns
that will influence the production of electricity by the nearby wind farm. In particular, it is of interest to assess whether
a Gaussian distribution is suitable, or a non-Gaussian model needs to be developed.

The dataset consists of n = 156 trivariate windspeed vectors. A Ljung–Box test reveals no indication of serial
dependence, hence, the dataset is treated as a random sample from a three-dimensional distribution. The p-values of the
various tests are listed in Table 4. At the 5% level, the Mardia tests support skewness but do not reject a Gaussian kurtosis.
Our global tests, however, reject both symmetry and Gaussian kurtosis, suggesting that a non-Gaussian distribution would
be more suitable to model these data. Looking at our sub-dimensional tests, we observe that skewness is rejected in all
sub-dimensions, whereas Gaussian kurtosis is rejected only for the q = 1 dimensional marginals. Among the other twelve
tests of Gaussianity, only three reject Gaussianity whereas the remaining nine cannot.

In summary, our new tests suggest to use a non-Gaussian distribution to model these data. They provide additional
information about the non-Gaussian behavior in sub-dimensional components of the trivariate distribution.

9. Discussion

We have developed some new tests of skewness and kurtosis which take into account the skewness and excess kurtosis
present in the sub-dimensions of the data. It was demonstrated through analyses of simulated and real data that our tests
18
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outperform the classical Mardia tests of skewness and kurtosis when the skewness and the excess kurtosis are present in
a small sub-dimension of the variables under consideration. Moreover, our tests can also be used as tests of Gaussianity,
and it was observed that as such, they outperform several popular tests of Gaussianity. We have further developed a
methodology to detect the true sub-dimension when the skewness and the excess kurtosis are supported on a small
sub-dimension of the data.

One limitation of our methodology is that it considers all the possible sub-dimensions, which is 2p
− 1, to detect

skewness or excess kurtosis. The number 2p
− 1 becomes large for even moderate values of p. So, the methodology is

computationally intensive. Future research needs to develop suitable computational methods when the dimension p of
the multivariate data is high to reduce the computation burden. In particular, methodology is required to be developed
when the data are high-dimensional in nature, i.e., p > n. We discuss some possible ways.

In the high-dimensional setup, in case it is known that the skewness or the non-Gaussian kurtosis can only possibly
be supported on a sub-dimension q0 (with q0 relatively small compared to the sample size n), then the testing procedures
MaxSq0 , MaxKq0 and MaxSKq0 can be applied, which are described in Section 5.1, Section 5.2 and Section 6.3, respectively.
However, in a setup where such information is not available, new procedures need to be developed. One way is to
randomly select a fixed number of sub-dimensions from the collection of 2p

− 1 possible sub-dimensions, carry out the
usual Mardia tests of skewness and kurtosis on those sub-dimensions, and then combine the results of those Mardia tests
based on a multiple testing procedure to get the result of the overall test. A second possible way is to consider a fixed
but suitably large number of random projections from the original dimension p to a smaller dimension p′, where our
procedures can be applied. Then, our testing procedures MaxS, MaxK and MaxSK can be applied on the p′-dimensional
projected data for all the random projections, and the results for all the random projections can be combined using a
multiple testing method. A third possible way can be to perform principal component analysis to reduce the dimension
of the data from p to p′, and then apply our procedures on the dimension-reduced data.

The procedures proposed herein are developed based on the Mardia measures and tests, and these tests cannot
detect non-Gaussianity if none of the sub-dimensional Mardia measures are able to detect it. One example of such a
non-Gaussian distribution is given in [10]. There, all the sub-dimensional Mardia measures including the global Mardia
measures coincide with the Gaussian distribution. In such a case, our methodology will not work, and different methods
are required.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105089. The
supplementary material contains some additional simulations: estimated sizes for p = 3 and 4, estimated powers for
n = 50, and investigation of the performance of the tests under high pairwise correlation.
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