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ABSTRACT
Predictive models for binary data are fundamental in various !elds, and the growing complexity of mod-
ern applications has motivated several "exible speci!cations for modeling the relationship between the
observed predictors and the binary responses. A widely-implemented solution is to express the probability
parameter via a probit mapping of a Gaussian process indexed by predictors. However, unlike for continuous
settings, there is a lack of closed-form results for predictive distributions in binary models with Gaussian
process priors. Markov chain Monte Carlo methods and approximation strategies provide common solu-
tions to this problem, but state-of-the-art algorithms are either computationally intractable or inaccurate
in moderate-to-high dimensions. In this article, we aim to cover this gap by deriving closed-form expressions
for the predictive probabilities in probit Gaussian processes that rely either on cumulative distribution
functions of multivariate Gaussians or on functionals of multivariate truncated normals. To evaluate these
quantities we develop novel scalable solutions based on tile-low-rank Monte Carlo methods for computing
multivariate Gaussian probabilities, and on mean-!eld variational approximations of multivariate truncated
normals. Closed-form expressions for the marginal likelihood and for the posterior distribution of the
Gaussian process are also discussed. As shown in simulated and real-world empirical studies, the proposed
methods scale to dimensions where state-of-the-art solutions are impractical.
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1. Introduction

There is an increasing demand in various !elds of application for
"exible models that can accurately characterize complex rela-
tions among a vector of binary response data y = (y1, . . . , yn)ᵀ
and a set of predictors X = (x1, . . . , xn)ᵀ, where yi ∈ {0; 1},
whereas xi = (xi1, . . . , xiq)ᵀ ∈ Rq, for every unit i = 1, . . . , n.
Common solutions address this goal by replacing the linear
predictor Xβ = (xᵀ1 β , . . . , xᵀn β)ᵀ ∈ Rn within the generalized
linear model for y (Nelder and Wedderburn 1972) with a more
"exible vector

f(X) =
[
f (x1), . . . , f (xn)

]ᵀ ∈ Rn,

which accounts for complex nonlinear relationships between
the response and the predictors, thus, enhancing predictive
power. Notable examples of this approach within the Bayesian
setting de!ne f(X) via additive trees (Chipman, George, and
McCulloch 2010), Bayesian P–splines (Brezger and Lang 2006)
and Gaussian processes (GP) (Rasmussen and Williams 2006),
among others.

Motivated by the success of GP for classi!cation (Neal 1999;
Opper and Winther 2000; De Oliveira 2005; Chu and Ghahra-
mani 2005; Kuss and Rasmussen 2005; Girolami and Rogers
2006; Rasmussen and Williams 2006; Choudhuri, Ghosal, and
Roy 2007; Riihimäki, Jylänki, and Vehtari 2013), we aim at
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deriving improved methods to evaluate predictive probabilities
within this class of models under the probit link. Following
the standard practice, we assume that yi, for i = 1, . . . , n, are
conditionally independent realizations from Bernoulli variables
with probabilities !(f (xi)) = pr(yi = 1 | f (xi)), i = 1, . . . , n,
where !(f (x)) is the cumulative distribution function of a
standard Gaussian evaluated at f (x), whereas f (x) is assigned
a GP prior with mean function m(x) = E(f (x)) and covariance
kernel K(x, x′) = E[(f (x) − m(x))(f (x′) − m(x′))]. In routine
implementations (e.g., Kuss and Rasmussen 2005; Rasmussen
and Williams 2006), K(x, x′) denotes a prespeci!ed function
indexed by a low-dimensional vector of hyperparameters α ∈
Rd, where d ∈ {1; 2; 3} in commonly implemented covariance
functions (Rasmussen and Williams 2006, chap. 4.2). These
quantities can be either !xed to default values by inheriting
guidelines from Bayesian regression for binary data (Gelman
2008; Chopin and Ridgway 2017), or can be estimated lever-
aging information from observed data via direct maximization
of the marginal likelihood (e.g., Kuss and Rasmussen 2005;
Rasmussen and Williams 2006); see Section 5 for a discussion
on estimation of α in large d settings. The mean function m(x)

is, instead, commonly set equal to 0, or is assigned a further layer
of hierarchy which typically speci!es m(x) via a linear combina-
tion xᵀβ of the predictors x, where β denotes a q-dimensional
vector of coe#cients generally assumed to have independent
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Gaussian priors N(0, δ2) (e.g., Rasmussen and Williams 2006,
chap. 2.7). Although estimation and uncertainty quanti!cation
for β can be of interest, the key aim of this article is to improve
predictive inference in probit GPs. Such a goal is in line with the
general focus of GP literature that o$en employs Gaussian pro-
cess representations to improve predictive performance relative
to classical linear regression models (e.g., Kuss and Rasmussen
2005; Rasmussen and Williams 2006; Girolami and Rogers 2006;
Nickisch and Rasmussen 2008; Riihimäki, Jylänki, and Vehtari
2013). Consistent with this goal, when xᵀβ enters the GP mean
function, we follow Rasmussen and Williams (2006, chap. 2.7)
by marginalizing out β and evaluating predictive probabilities
under the induced GP prior for f (x), with mean function equal
to 0 and covariance kernel given by K(x, x′) + δ2xᵀx′. As
discussed in Rasmussen and Williams (2006, chap. 2.7), this
updated kernel formally allows to fully exploit possible linear
relationships among the response and covariates in predictive
inference.

Leveraging basic GP properties (Rasmussen and Williams
2006) and assuming, without any loss of generality, no overlap in
x1, . . . , xn, the aforementioned probit Gaussian process models
can be generally expressed as

p(y | f(X)) =
∏n

i=1
!(f (xi))

yi [1 − !(f (xi))]1−yi ,

p(f(X)) = φn(f(X) − ξ ; $),
(1)

where φn(f(X) − ξ ; $) denotes the density function of a mul-
tivariate Gaussian distribution Nn(ξ , $) for f(X), with mean
vector ξ = [m(x1), . . . , m(xn)]ᵀ, and n × n covariance matrix
$ having entries $i,i′ = K(xi, xi′), for every i = 1, . . . , n and
i′ = 1, . . . , n. Model (1) has attracted a considerable interest due
to its "exibility and its direct connection with binary discrete
choice models based on Gaussian latent utilities zi = f (xi) + εi,
with εi ∼ N(0, 1), independently for i = 1, . . . , n (Albert and
Chib 1993). In fact, pr(yi = 1 | f (xi)) = !(f (xi)) = pr(zi > 0 |
f (xi)). In such settings, a main goal of inference is to evaluate the
predictive probabilities of new responses yn+1 at a given point
xn+1. Recalling Rasmussen and Williams (2006, chap. 3.3), such
quantities can be de!ned as

pr(yn+1 = 1 | y) = 1 − pr(yn+1 = 0 | y) (2)

=
∫

!(f (xn+1))

[∫
p(f (xn+1), f(X) | y)df(X)

]
df (xn+1),

where p(f (xn+1), f(X) | y) is the joint posterior density of
(f (xn+1), f(X)) induced by model (1), which does not seem to
have an obvious closed form due to the apparent absence of
conjugacy between the probit likelihood and the multivariate
Gaussian prior for (f (xn+1), f(X)) under (1). This has moti-
vated extensive research to compute the predictive probabilities
in probit models with multivariate Gaussian priors either via
Monte Carlo methods relying on samples from p(f (xn+1), f(X) |
y) (Albert and Chib 1993; Neal 1999; De Oliveira 2005; Holmes
and Held 2006; Choudhuri, Ghosal, and Roy 2007; Pakman and
Paninski 2014; Durante 2019) or by deriving tractable approxi-
mations of p(f (xn+1), f(X) | y) (Kuss and Rasmussen 2005; Chu
and Ghahramani 2005; Girolami and Rogers 2006; Rasmussen

and Williams 2006; Consonni and Marin 2007; Nickisch and
Rasmussen 2008; Riihimäki, Jylänki, and Vehtari 2013) that
allow simple evaluation of (2). Such methods provide state-
of-the-art solutions in small-to-moderate dimensional settings,
but tend to become inaccurate or computationally impractical
in higher dimensions (Chopin and Ridgway 2017; Johndrow
et al. 2019; Durante 2019; Fasano, Durante, and Zanella in
press). This issue is inherent to probit GPs where, by de!ni-
tion, the dimension of f(X) is n, or slightly lower when there
is overlap in locations, with n being relatively large in most
studies.

In this article we aim to cover the above gap by providing
novel closed-form expressions for the predictive probabilities
in probit GPs along with improved methods to evaluate the
involved quantities in high dimensions. More speci!cally, in
Section 2.1 we !rst derive a closed-form expression for the
marginal likelihood p(y) under model (1), and then exploit this
result to show that pr(yn+1 = 1 | y) can be expressed as the
ratio between cumulative distribution functions of multivari-
ate Gaussians with dimensions n + 1 and n, respectively. To
overcome the known issues associated with the evaluation of
these two quantities in high dimensions (Chopin 2011; Botev
2017; Cao et al. 2019, 2021) we introduce an error-reduction
technique for computing ratios of Gaussian cumulative distri-
bution functions that builds on the tile-low-rank method in Cao
et al. (2021), and substantially reduces the computational time
of state-of-the-art strategies such as minimax tilting methods
(Botev 2017) and Hamiltonian Monte Carlo samplers (STAN)
(Ho%man and Gelman 2014), without a%ecting accuracy. In
Section 2.2, we further derive an alternative representation of
pr(yn+1 = 1 | y), which relies on functionals of multi-
variate truncated normals, and we address the intractability of
such variables in high dimensions by proposing a variational
approximation based on univariate truncated normals which
allows accurate and computationally tractable evaluation of pre-
dictive probabilities in high-dimensional contexts. As clari!ed
in Section 2.2, this solution is computationally more scalable
than currently implemented expectation-propagation approx-
imations (e.g., Kuss and Rasmussen 2005; Chu and Ghahra-
mani 2005; Riihimäki, Jylänki, and Vehtari 2013), and improves
the accuracy of routinely used variational solutions (e.g., Giro-
lami and Rogers 2006), that commonly rely on more restric-
tive mean-!eld assumptions, than those required under the
proposed approximation. These results are also related to the
conditional distribution of the GP given the binary responses,
which we show to coincide with a uni!ed skew-normal (SUN)
(Arellano-Valle and Azzalini 2006) by adapting recent results in
Durante (2019) on Bayesian probit regression. The magnitude
of the improvements provided by the new methods presented
in Sections 2.1–2.2 relative to state-of-the-art competitors is
illustrated in simulations in Section 3, and in an environmental
application to Saudi Arabia windspeed in Section 4. Section 5
contains concluding remarks, whereas all the proofs can be
found in the Appendix. Complete R code to implement the
proposed methods and quantify the improvements relative to
state-of-the-art competitors in simulation studies is available at
https://github.com/danieledurante/PredProbitGP.

https://github.com/danieledurante/PredProbitGP
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2. Improved Evaluation of Predictive Probabilities in
Probit Gaussian Processes

Sections 2.1 and 2.2 present novel expressions for the predictive
probabilities in probit GPs along with improved methods to
evaluate the involved quantities e#ciently in high dimensions.
Feasible grid strategies to estimate the GP hyperparameters α
are also proposed; see Section 5 for a discussion on the compu-
tational tractability of these routines in relation to the dimension
of α.

2.1. Evaluation via Gaussian Probability Ratios

To introduce the closed-form expression for pr(yn+1 = 1 | y)

based on ratios of multivariate Gaussian cumulative distribution
functions, !rst note that by leveraging known properties of
Gaussian variables, the probit likelihood in (1) can be written
as

p(y | f(X)) =
∏n

i=1
!(f (xi))

yi[1 − !(f (xi))]1−yi

=
∏n

i=1
![(2yi − 1)f (xi)] = !n(Df(X); In),

where !n(Df(X); In) is the cumulative distribution function of
a zero-mean n-variate Gaussian with identity covariance matrix
In, evaluated at Df(X), with D = diag[(2y1 − 1), . . . , (2yn −
1)]. Leveraging this form and adapting results in Lemma 7.1
of Azzalini and Capitanio (2014) to our setting, we can easily
express the marginal likelihood under model (1) as

p(y) =
∫

!n(Df(X); In)φn(f(X) − ξ ; $)df(X)

= !n(Dξ ; In + D$Dᵀ).
(3)

As it will be discussed later on in this article, Equation (3)
provides a closed-form expression that can be useful to estimate
the GP hyperparameters α via direct maximization of p(y). In
addition, as shown in Proposition 1, Equation (3) also allows to
derive closed-form expressions for pr(yn+1 = 1 | y).

Proposition 1. Under model (1), the predictive probability for a
new binary response yn+1 ∈ {0; 1} with predictor xn+1 ∈ Rq is

pr(yn+1 = 1 | y) = 1 − pr(yn+1 = 0 | y)

= !n+1(D∗ξ∗; In+1 + D∗$∗D∗ᵀ)

!n(Dξ ; In + D$Dᵀ)
,

(4)

with ξ∗ = [ξᵀ, m(xn+1)]ᵀ, D∗ = diag[(2y1 − 1), . . . , (2yn −
1), 1], whereas $∗ is obtained by including one additional row
and column to $, which are de!ned as $

∗ᵀ
[n+1,·] = $∗

[·,n+1] =
[K(xn+1, x1), . . . , K(xn+1, xn), K(xn+1, xn+1)]ᵀ.

In order to prove Proposition 1, it is su#cient to notice that,
by the Bayes’ rule, pr(yn+1 = 1 | y) = p(yn+1 = 1, y)/p(y)

where p(yn+1 = 1, y) and p(y) are the marginal likelihoods of
(yn+1 = 1, y) and y, respectively, under model (1). Replacing
such quantities with their closed-form expression as in (3),
leads to (4). See Appendix for a more detailed proof which also
includes additional clari!cations on Equation (3).

The evaluation of (4) requires the calculation of cumula-
tive distribution functions of multivariate Gaussians, which is
known to be a challenging task in high dimensions (Genz 1992;

Chopin 2011; Botev 2017; Genton, Keyes, and Turkiyyah 2018;
Cao et al. 2019, 2021). Recent advances via minimax tilting
(Botev 2017) allow accurate evaluation of such quantities, but
face an increased computational cost which makes these strate-
gies rapidly impractical as n grows. A possible solution to such
an issue can be found in the separation-of-variable (SOV) algo-
rithm originally introduced by Genz (1992), and subsequently
improved in terms of scalability by Cao et al. (2021). Such a rou-
tine decomposes the generic multivariate Gaussian probability
!n(a, b; %) =

∫ b
a φn(u; %)du as

!n(a, b; %) = (e1 − d1)

∫ 1

0
(e2 − d2)· · ·

∫ 1

0
(en − dn)

∫ 1

0
dw−n

= Ew−n[(e1 − d1) · · · (en − dn)]
= Ew−n

[∏n
i=1

(ei − di)
]

, (5)

with w−n = (w1, . . . , wn−1)ᵀ denoting a vector of uniform
entries wj ∼ U(0, 1), for j = 1, . . . , n − 1, whereas

di = !

([
ai −

∑i−1

j=1
lij!−1[dj + wj(ej − dj)]

]
l−1
ii

)
,

ei = !

([
bi −

∑i−1

j=1
lij!−1[dj + wj(ej − dj)]

]
l−1
ii

)
,

for i = 1, . . . , n, where lij is the (ij)-th coe#cient in the
lower Cholesky factor of %. This decomposition transforms the
integration region into the unit hypercube, thus, allowing the
evaluation of !n(a, b; %) via functionals of uniform densities.
To further improve the quality of the above estimator, more
recent implementations (Trinh and Genz 2015) combine (5)
with a univariate reordering preconditioner that rearranges the
integration variables and produces the corresponding Cholesky
factor simultaneously at the same O(n3) cost of the Cholesky
factorization. This prioritization strategy accounts for the width
of the integration limits by reordering the variables to ensure
that those having smallest expected values appear as outermost
integration variables. Such approach is shown in Trinh and
Genz (2015) and Cao et al. (2021) to improve the Monte Carlo
convergence rate of (5), whose integrand is evaluated R times—
corresponding to the Monte Carlo sample size—each of which
has a cost of O(n2). Such costs allow the implementation of
this strategy in settings with n ≤ 1000, thus, motivating more
scalable options in high dimensions. Cao et al. (2021) address
this issue via a tile-low-rank representation for % that reduces
the cost of the SOV algorithm by substituting the dense matrix-
vector multiplication with the low-rank matrix-vector multi-
plication. A compatible block-reordering is also introduced in
place of the univariate reordering to improve the convergence
rate at the same cost of the low-rank Cholesky factorization.
Speci!cally, the block-reordering orders the integration vari-
ables on the block level based on crude estimates of the block-
wise marginal probabilities as shown in Figure 1. Both the
block-reordering and the tile-low-rank version of the SOV algo-
rithm reach their optimal complexities of O(n5/2) and O(n3/2),
respectively, when the block size in the tile-low-rank representa-
tion is n1/2, thus, reducing the computational complexity of the
classical SOV algorithm by n1/2, and allowing implementation
in tens of thousands of dimensions.
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Figure 1. Illustration of the block-reordering strategy (Cao et al. 2021). [Step 1]: Compute min{!n1 (a1, b1; %1,1); !n2 (a2, b2; %2,2); !n3 (a3, b3; %3,3)}, and suppose that
the solution is !n3 (a3, b3; %3,3). Then, switch !rst and third block rows and columns, and perform univariate reordering for %3,1, %3,2 and %3,3. [Step 2]: Compute
min{!n1 (a1, b1; %1,1); !n2 (a2, b2; %2,2)}, and suppose that the solution is !n1 (a1, b1; %1,1). Then, switch second and third block rows and columns, and perform
univariate reordering for %3,1, %2,1 and %1,1. [Step 3]: Perform univariate reordering for %2,1, %3,2 and %2,2.

Algorithm 1: Compute (4) via the estimator (7)
[a] Set a = −∞, b = D∗ξ∗, % = In+1 + D∗$∗D∗ᵀ, and draw w(1), . . . , w(R) uniform samples from the unit hypercurbe in (0, 1)n.
[b] Apply block-reordering (Cao et al. 2021) to (a−(n+1), b−(n+1), %−(n+1)), which produces the tile-low-rank Cholesky factor L−(n+1), and the
reordered a−(n+1) and b−(n+1).
[c] Compute L[n+1,1:n+1] using % and L−(n+1).
[d] Obtain the quantities required to evaluate Equation (7).
for r = 1, . . . , R do

[d.1] Compute ei(w(r)
−n) − di(w(r)

−n), for every statistical unit i = 1, . . . , n, by applying the tile-low-rank variant of (5) (Cao et al. 2021) to
(a−(n+1), b−(n+1), %−(n+1)).
Store also the vector v(r) = [!−1(d1(w(r)

−n) + w(r)
1 [e1(w(r)

−n) − d1(w(r)
−n)]), . . . , !−1(dn(w(r)

−n) + w(r)
n [en(w(r)

−n) − dn(w(r)
−n)])]ᵀ.

[d.2] Set en+1(w(r)) − dn+1(w(r)) = !(
bn+1−L[n+1,1:n]v(r)

ln+1,n+1
) − !(

an+1−L[n+1,1:n]v(r)

ln+1,n+1
).

[e] Estimate (4) via Monte Carlo as in equation (7) using the quantities computed in step [d].

Although these techniques can be e%ectively implemented
to evaluate multivariate Gaussian probabilities as in (3), the
calculation of ratios among such quantities as in (4) typically
requires higher accuracy. Unfortunately, as discussed in Botev
(2017) and Cao et al. (2021), the estimation errors of tail multi-
variate Gaussian probabilities, that also include the cumulative
distribution function, can be as large as the probability estimates
themselves when n is in hundreds to thousands of dimensions,
thus, producing unreliable ratio estimates. To address this issue,
we propose an error-reduction technique that avoids computing
the numerator and the denominator in (4) separately, but com-
bines their evaluation under the tile-low-rank representation.
Indeed, as is clear from Proposition 1, the denominator in (4)
coincides with the numerator without the last integration vari-
able. Hence, keeping the general notation of the SOV algorithm
and leveraging (5), expression (4) can be rewritten in the generic
form

!n+1(a, b; %)

!n(a−(n+1), b−(n+1); %−(n+1))

= Ew([∏n
i=1(ei − di)] · (en+1 − dn+1))

Ew−n [
∏n

i=1(ei − di)]
,

(6)

where ei and di are de!ned as in Equation (5) for i = 1, . . . , n+1,
whereas a−(n+1), b−(n+1) and w−n are obtained by removing
the (n + 1)-th element in both a and b, and the n-th entry
in w, respectively. Similarly, %−(n+1) coincides with % without
the (n + 1)-th row and column. As is clear from (6), the
quantities (e1 − d1), . . . , (en − dn) are the same deterministic
functions of w both in the numerator and in the denominator,
and hence, using the same set of Monte Carlo samples w in the
n-dimensional hypercube for estimating the two expectations

could signi!cantly reduce the estimation error of their ratio. In
particular, our proposed ratio estimator is

p̂r(yn+1 = 1 | y)

=
1
R

∑R
r=1([

∏n
i=1(e(r)

i − d(r)
i )] · (e(r)

n+1 − d(r)
n+1))

1
R

∑R
r=1[

∏n
i=1(e(r)

i − d(r)
i )]

,
(7)

where the generic quantities e(r)
i = ei(w(r)) and d(r)

i = di(w(r))
denote the values of ei and di in (5) evaluated at the Monte Carlo
sample w(r) of w. Hence, e(r)

i = ei(w(r)
−n) and d(r)

i = di(w(r)
−n)

for every i = 1, . . . , n, whereas for unit n + 1 these quantities
are de!ned as e(r)

n+1 = en+1(w(r)) and d(r)
n+1 = dn+1(w(r)).

Estimator (7) is asymptotically unbiased because the numerator
and the denominator converge to Ew[(e1 − d1) . . . (en − dn) ·
(en+1−dn+1)] and Ew−n[(e1−d1) . . . (en−dn)], respectively, and
hence, Equation (7) converges to (6) in probability. Moreover,
Equation (7) is guaranteed to be in (0, 1), thus, producing an
estimator whose variance is always smaller than 0.25. This is not
the case when the numerator and the denominator in (4) are
estimated separately. Indeed, as discussed in Botev (2017) and
Cao et al. (2021), when n is high the estimation errors of the two
cumulative distribution functions in (4) are o$en as large as the
estimates themselves, thus, producing estimated ratios possibly
outside of the range (0, 1), and with high variance.

The pseudo-code to evaluate (4) via the estimator presented
in (7) is provided in Algorithm 1. In step [b] of Algorithm 1,
the block-reordering produces a new variable order which is
used to reorder the integration limits, whereas in step [c] the
inverse matrices of the diagonal blocks of the tile-low-rank
Cholesky factor computed in step [b] are recycled to maxi-
mize e#ciency. Also the quantities in [d.1] do not need to
be re-evaluated every time a new prediction is required since
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they only depend on the observed training data, and hence,
such quantities can be precomputed and stored separately. This
yields an overall computational complexity of O(n5/2 + Rn3/2)
for Algorithm 1, which comprises the O(n5/2) precomputation
cost of the block-reordering strategy to produce the tile-low-
rank Cholesky factor, and the O(n3/2) operations per sample
to compute the quantities in step [d]. This allows to reduce
the overall complexity of other state-of-the-art accurate alterna-
tives for evaluating (4), such as the strategy proposed by Botev
(2017), that has an O(n3) precomputation cost for obtaining the
minimax exponentially-tilted estimate, and then requires O(n2)
matrix-vector multiplication operations per sample, for a total of
O(n3 + Rn2).

The computational gains achieved under Algorithm 1 are
also inherited when adapting the method in Cao et al. (2021)
to evaluate the marginal likelihood in Equation (3), thereby
facilitating the development of feasible estimation strategies
for the GP hyperparameters α via the maximization of p(y).
Although this task is amenable to a variety of gradient-based
optimization algorithms, in practice, the implementation of
these routines, might be subject to computational bottlenecks
and tedious calculations which involve derivatives of multivari-
ate Gaussian cumulative distribution functions. To circumvent
these issues, we propose to rely on a heuristic grid search strat-
egy which evaluates p(y) at several reasonable combinations of
α values, and then selects as estimate the con!guration yielding
the highest marginal likelihood. As highlighted in Section 1, α
comprises few hyperparameters in routine GP implementations,
and prediction is typically robust to minor variations in α,
thereby making these grid strategies practically feasible and
still reliable in common applications (e.g., Kuss and Rasmussen
2005; Rasmussen and Williams 2006; Nickisch and Rasmussen
2008; Riihimäki, Jylänki, and Vehtari 2013); see also the !nal
discussion in Section 5 for additional details and possible solu-
tions regarding the computational bottlenecks of the proposed
grid search in situations when the number of hyperparameters
in α is moderate-to-large.

2.2. Evaluation via Functionals of Truncated Normals

The methodologies in Section 2.1 allow substantial improve-
ments in terms of accuracy and scalability in the evaluation of
predictive probabilities, but still require to deal with multivari-
ate Gaussian cumulative distribution functions, a challenging
task, especially in high dimensions. To overcome this issue,
we derive an alternative expression for pr(yn+1 = 1 | y)

relying on functionals of multivariate truncated normals which
are then approximated via mean-!eld variational Bayes (e.g.,
Blei, Kucukelbir, and McAuli%e 2017) to facilitate simple Monte
Carlo evaluation of pr(yn+1 = 1 | y) using samples from
univariate truncated normals.

To derive this alternative expression, we shall !rst notice that
the joint posterior p(f (xn+1), f(X) | y) in (2) can be factorized
as p(f (xn+1) | f(X))p(f(X) | y), provided that f (xn+1) does not
appear in the likelihood for y, which is true because there is no
overlap among predictors. Exploiting the well-known properties
of GPs (Rasmussen and Williams 2006), the !rst factor in the
above expression can be easily derived by applying the closure

under conditioning property of multivariate Gaussians, thus,
obtaining the univariate normal density

p(f (xn+1) | f(X))

= φ(f (xn+1) − (µxn+1 + Hxn+1 f(X)); σ 2
xn+1),

(8)

with µxn+1= m(xn+1)−Hxn+1ξ , Hxn+1= $∗
[n+1,1:n]$

−1 and
σ 2

xn+1 = K(xn+1, xn+1) − $∗
[n+1,1:n]$

−1$∗
[1:n,n+1], where the

di%erent quantities entering these expressions are de!ned as
in (1) and (4). By adapting the recent conjugacy results for
probit models with Gaussian priors in Durante (2019) to this GP
setting, it is also possible to show that p(f(X) | y) is the density
of the uni!ed skew-normal (SUN) (Arellano-Valle and Azzalini
2006) SUNn,n(ξ , $, $̄ωDᵀs−1, s−1Dξ , s−1(D$Dᵀ+In)s−1),
with s = [(D$Dᵀ+In) ) In]1/2, $̄ = ω−1$ω−1 and
ω = ($ ) In)1/2. Indeed, recalling the results in Sections 1–
2.1 and applying the Bayes’ rule, we have that p(f(X) | y) ∝
p(f(X))p(y | f(X)) = φn(f(X) − ξ ; $)!n(Df(X); In), which is
the kernel of a SUN density—as shown in the proof of Theorem
1 by Durante (2019). This class of random variables introduces
asymmetric shapes within Gaussian densities via a skewness-
inducing mechanism driven by the cumulative distribution
function of an n-variate Gaussian with a full-rank covariance
matrix. Hence, the evaluation of p(f(X) | y) still requires
calculation of multivariate Gaussian probabilities, leading to
the same issues discussed in Section 2.1; see Arellano-Valle and
Azzalini (2006), Azzalini and Capitanio (2014) and Durante
(2019) for an in-depth discussion on the properties of SUN
variables for posterior inference.

A possible option to address the above issue is to consider
the discrete-choice interpretation of the probit GP introduced
in Section 1. Under this representation, model (1) can be
re-expressed as yi = 1(zi > 0), where (zi | f (xi)) ∼
N(f (xi), 1), independently for i = 1, . . . , n, and f(X) =
[f (x1), . . . , f (xn)]ᵀ ∼ Nn(ξ , $). Adapting the results in Holmes
and Held (2006) to our GP setting, the joint posterior p(f(X), z |
y) of f(X) and the augmented data z = (z1, . . . , zn)ᵀ, factorizes
as p(f(X) | z)p(z | y), with

p(f(X) | z)
= φn(f(X) − ($−1 + In)

−1($−1ξ + z); ($−1 + In)
−1)

= φn(f(X) − (µX + %Xz); %X),
p(z | y)

∝ φn(z − ξ ; In + $)
∏n

i=11[(2yi − 1)zi > 0]
= φn(z − ξ ; %z)

∏n
i=11[(2yi − 1)zi > 0],

(9)

where %X = ($−1 + In)−1, µX = %X$−1ξ and %z = In + $.
Therefore, the joint posterior density p(f(X) | z)p(z | y)

factorizes as the product of a Gaussian for p(f(X) | z) and a mul-
tivariate truncated normal for p(z | y) obtained via component-
wise truncation of Nn(ξ , %z) below or above 0, depending on
whether yi = 1 or yi = 0, respectively, for i = 1, . . . , n. As
shown in Proposition 2, by combining Equations (8)–(9) with
Lemma 7.1 in Azzalini and Capitanio (2014), it is possible to
obtain an alternative expression for pr(yn+1 = 1 | y) based on
functionals of multivariate truncated normals. See the Appendix
for a detailed proof.
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Proposition 2. Under model (1), the predictive probability for a
new response yn+1 ∈ {0; 1} with predictor xn+1 ∈ Rq is

pr(yn+1 = 1 | y) = 1 − pr(yn+1 = 0 | y)

= Ez|y[Ef(X)|z(Ef (xn+1)|f(X)[!(f (xn+1))])]
= Ez|y(Ef(X)|z[!(µxn+1 + Hxn+1 f(X); 1 + σ 2

xn+1)])
= Ez|y[!(µxn+1 + Hxn+1(µX + %Xz);

1 + σ 2
xn+1 + Hxn+1%XHᵀ

xn+1)],

(10)

where the quantities in (10) are de!ned as in Equations (8) and
(9), whereas Ez|y(·) denotes the expectation with respect to the
multivariate truncated normal density p(z | y) in (9).

Leveraging Proposition 2 it is possible to evaluate pr(yn+1 =
1 | y) via Monte Carlo strategies based on independent
samples from the multivariate truncated normal with density
as in (9), thereby, producing the estimate p̂r(yn+1 = 1 |
y) = ∑R

r=1 !(µxn+1 + Hxn+1(µX + %Xz(r)); 1 + σ 2
xn+1 +

Hxn+1%XHᵀ
xn+1)/R, where z(1), . . . , z(R) are independent and

identically distributed samples from p(z | y) in (9). Unfor-
tunately, sampling from multivariate truncated normals in
settings where n is larger than a few hundreds raises the same
computational issues discussed in Section 2.1, that is, the
evaluation of multivariate Gaussian cumulative distribution
functions (Holmes and Held 2006; Botev 2017; Pakman and
Paninski 2014; Durante 2019; Fasano, Durante, and Zanella in
press).

To avoid these issues, we adapt ideas in Fasano, Durante, and
Zanella (in press) and propose to replace the intractable sam-
pling density p(z | y) with a mean-!eld approximation q∗(z) =∏n

i=1 q∗(zi) factorizing over marginals q∗(z1), . . . , q∗(zn). In
this way, the Monte Carlo estimate for pr(yn+1 = 1 | y) can
be obtained by sampling R times from n independent univariate
approximate densities q∗(z1), . . . , q∗(zn) instead of the exact but
intractable joint density p(z | y). Recalling the classical mean-
!eld variational Bayes (VB) framework (e.g., Blei, Kucukelbir,
and McAuli%e 2017), the optimal approximating density q∗(z)
is the one that minimizes the Kullback–Leibler (KL) divergence
kl[q(z)‖p(z | y)] = Eq(z)(log[q(z)/p(z | y)]) (Kullback
and Leibler 1951) to p(z | y) among all the densities within
the mean-!eld family Q = {q(z) : q(z) = ∏n

i=1 q(zi)}.

The solution of such a minimization problem is, typically, not
available in closed form but can be obtained via coordinate
ascent variational inference (CAVI) algorithms (Bishop 2006;
Blei, Kucukelbir, and McAuli%e 2017) that iteratively minimize
the KL with respect to each component q(zi) at a time, keeping
!xed the others at their most recent estimate q(t−1)(z−i), where
z−i denotes vector z without the i-th entry. Recalling Bishop
(2006), this is accomplished via the updates

q(t)(zi) ∝ exp[Eq(t−1)(z−i)(log[p(zi | z−i, y)])], (11)

for each i = 1, . . . , n, at iteration t, until convergence. In (11),
the quantity p(zi | z−i, y) denotes the full conditional density
of zi. Due to the closure under conditioning property of the
multivariate truncated normal (Horrace 2005), such a quantity
can be derived explicitly from p(z | y) in (9) and coincides with
the density of a univariate truncated normal. In particular, we
can express each p(zi | z−i, y) as

p(zi | z−i, y) (12)
∝ φ(zi − [ξi + Hzi(z−i − ξ−i)]; σ 2

zi)1[(2yi − 1)zi > 0],
where ξ−i denotes the prior mean vector ξ without the i-th
element, whereas Hzi = %z[i,−i](%z[−i,−i])−1 and σ 2

zi = %z[i,i]−
%z[i,−i](%z[−i,−i])−1%z[−i,i]. Density in (12) has a log-kernel
which is linear in z−i and, therefore, replacing the expression
for p(zi | z−i, y) within the CAVI updates in Equation (11),
it follows that also q(t)(zi) has a univariate truncated normal
density as in (12) with z−i replaced by

z(t−1)
−i = [Eq(t)(z1)(z1), . . . , Eq(t)(zi−1)(zi−1),

Eq(t−1)(zi+1)(zi+1), . . . , Eq(t−1)(zn)(zn)]ᵀ.

Each term in z(t−1)
−i is the expectation of a univariate truncated

normal, that is explicitly available, thus, producing a simple
CAVI relying on closed-form updates; see Algorithm 2.

Once the optimal univariate truncated normal approximat-
ing densities q∗(z1), . . . , q∗(zn) are available, Equation (10) can
be easily evaluated via Monte Carlo by letting

p̂r(yn+1 = 1 | y)

= 1
R

∑R
r=1

!(µxn+1+ Hxn+1(µX + %Xz∗(r));

1 + σ 2
xn+1+ Hxn+1%XHᵀ

xn+1),

(13)

Algorithm 2: Compute (10) via Monte Carlo as in (13) based on the mean-!eld approximation of p(z | y)

CAVI algorithm
[a] Precompute $−1 and %−1

z = (In + $)−1, and leverage the standard properties for the inverse of block matrices to obtain Hzi and σ 2
zi , for each

i = 1, . . . , n as suitable sub-blocks of %−1
z .

[b] Initialize z(0) ∈ Rn, and apply CAVI to obtain the optimal mean-!eld approximation q∗(z) = ∏n
i=1 q∗(zi) for p(z | y).

for t = 1 until convergence do
for i = 1, . . . , n do

Set the approximating density for zi at step t equal to q(t)(zi) ∝ φ(zi − [ξi + Hzi (z(t−1)
−i − ξ−i)]; σ 2

zi )1[(2yi − 1)zi > 0] with
z(t−1)
−i = [Eq(t)(z1)(z1), . . . , Eq(t)(zi−1)(zi−1), Eq(t−1)(zi+1)(zi+1), . . . , Eq(t−1)(zn)(zn)]ᵀ.

Output: q∗(z) = ∏n
i=1 q∗(zi), where each q∗(zi) is a univariate truncated normal.

Evaluation of predictive probabilities
[c] Compute $−1%X which enters the de!nition of the key quantities in (13), namely Hxn+1 µX and Hxn+1 %X. Note that, by standard properties of
matrix inverse $−1%X = $−1($−1 + In)−1 = (In + $)−1, which coincides with %−1

z already precomputed in [a].
[d] Estimate (10) via Monte Carlo as in (13), based on R independent samples from the optimal univariate truncated normal approximating
densities provided by step [b].
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with z∗(r) = (z∗(r)
1 , . . . , z∗(r)

n )ᵀ, where each z∗(r)
i can be e#-

ciently sampled from the corresponding univariate truncated
normal approximating density q∗(zi), independently for i =
1, . . . , n and r = 1, . . . , R. Unlike for the multivariate case,
sampling from univariate truncated normals can be e%ectively
done in standard statistical so$wares, thus, avoiding issues in
large n settings.

Algorithm 2 provides the pseudo-code to implement the
proposed VB approximation for the predictive probabilities in
(10). As is clear from Algorithm 2, the quantities Hzi and σ 2

zi , i =
1, . . . , n, involved in step [b], coincide with suitable sub-blocks
of %−1

z . Due to this, the operations required to update each
q(t)(zi) in [b] are linear in n, and, therefore, the overall cost of
CAVI is O(n3), which coincides with the cost for precomputing
matrix %−1

z in [a]. Leveraging these results, the evaluation of
the predictive probabilities in step [d] implies an O(n) cost
per Monte Carlo sample, since, according to step [c], the main
quantities in (13) can be derived from those precomputed in [a].
This yields a total cost for Algorithm 2 of O(n3 + Rn) which
reduces by n1/2 the Monte Carlo complexity of Algorithm 1,
but increases by the same amount the precomputation cost. As
for Algorithm 1, also in Algorithm 2 the most computationally
intensive steps in [a]–[c] do not need to be re-executed each
time a new prediction is required, thereby making computation
of predictive probabilities at multiple data points almost as
expensive as implementing this task for a single location.

As discussed, for example, in Kuss and Rasmussen (2005),
Riihimäki, Jylänki, and Vehtari (2013), the cubic cost is com-
monly unavoidable in standard GP settings with generic covari-
ance matrix. However, unlike for alternative approximations
relying, for instance, on expectation-propagation (EP) methods
(e.g., Kuss and Rasmussen 2005; Riihimäki, Jylänki, and Vehtari
2013), this O(n3) cost is only paid once in the precomputation
step, and not for each iteration of the optimization routine. This
yields substantial improvements in terms of scalability to high
dimensions relative to EP. As outlined in the simulation studies
in Section 3, these gains are obtained without sacri!cing esti-
mation accuracy, when compared to nonapproximate methods.
This is due to the fact that the proposed strategy integrates
out f(X) analytically in (10) with respect to its exact density
p(f(X) | z), and only approximates p(z | y). This departs
from classical VB solutions (Girolami and Rogers 2006) which
consider a mean-!eld approximation q∗(f(X))

∏n
i=1 q∗(zi) of

the joint density p(f(X), z | y), and then compute predictive
probabilities based on Monte Carlo samples from q∗(f(X)). This
yields less accurate estimates of the predictive probabilities that,
unlike for the solution we propose, do not fully incorporate
the exact dependence between f(X) and z (e.g., Nickisch and
Rasmussen 2008, Figure 6; Fasano, Durante, and Zanella in
press).

3. Simulation Studies

In this section, we study the gains in accuracy and computa-
tional scalability of the methods developed in Sections 2.1 and
2.2 relative to state-of-the-art alternatives. More speci!cally, to
quantify the magnitude of the improvements provided by the
tile-low-rank (TLR) strategy developed in Section 2.1, we con-

sider as a competitor the recent minimax tilting method (TN)
by Botev (2017) (see R packageTruncatedNormal), which is
used here to evaluate the Gaussian cumulative distribution func-
tions involved in the predictive probability (4). This strategy
has been shown to substantially improve the accuracy and com-
putational tractability of other state-of-the-art solutions and,
hence, provides a challenging benchmark to assess the gains of
the TLR procedure. The performance improvements of the VB
developed in Section 2.2 are, instead, compared against Monte
Carlo inference under the widely-used STAN implementation
of the Hamiltonian no-u-turn sampler (Ho%man and Gelman
2014) available in the state-of-the-art R package rstan. Both
VB and STAN provide Monte Carlo estimates of predictive
probabilities but, unlike for our proposed VB solution, STAN
relies on samples from the exact posterior, thus, providing a rel-
evant and routinely used competitor for evaluating the accuracy
of the proposed VB approximation and its gains in runtime.
As discussed in Section 2.2, classical mean-!eld variational
methods (e.g., Girolami and Rogers 2006) and EP solutions (e.g.,
Kuss and Rasmussen 2005; Riihimäki, Jylänki, and Vehtari 2013)
would yield reduced accuracy or higher computational costs
than the proposed VB, and, hence, are not implemented.

To evaluate the performance in high-dimensional settings,
we generate the binary response data on the 100 × 100 unit grid
G = {x = (x1, x2) : x1 = (1/100, 2/100, . . . , 100/100), x2 =
(1/100, 2/100, . . . , 100/100)} with equally-spaced predictors,
thereby obtaining n = 10,000 nonoverlapping con!gurations.
At these locations, we simulate y1, . . . , y10,000 from indepen-
dent Bernoullis with probabilities !(f0(x1)), . . . , !(f0(x10,000))
displayed in Figure 2, where f0(X) = [f0(x1), . . . , f0(x10,000)]ᵀ
is a sample from a GP having mean m(x) = 0 and squared
exponential covariance kernel

K(x, x′) = exp(−[α2
1(x1 − x′

1)
2 + α2

2(x2 − x′
2)

2]),

with α = (α1, α2) = (
√

30,
√

30) to illustrate also performance
in estimating more than one GP hyperparameter; see also
Section 5 for a discussion on hyperparameter estimation in
higher dimensional settings. The proportion of ‘1’s and ‘0’s in
the 10,000 simulated binary responses is 49.5% and 50.5%,
respectively, thus, providing a balanced dataset. To assess
performance in estimating the predictive probabilities, we adopt
a validation-set approach by simulating probability parameters
and the associated binary responses for 100 out-of-sample units
under two scenarios. As outlined in Figure 2, the !rst one relies
on randomly distributed locations, whereas the second focuses
on a grid structure, and both comprise relatively balanced
binary responses, as for the training sample. To provide a more
comprehensive assessment, we also compare performance in
lower-dimensional training problems with n ∈ {152; 252; 502}
obtained by selecting a n1/2 × n1/2 sub-grid of G with equally-
spaced con!gurations between 0 and 1, along with their
associated probability parameters and simulated responses.

Table 1 summarizes the accuracy and computational scala-
bility of the methods analyzed, at varying n and under the two
di%erent scenarios considered for prediction. In reporting the
results, we set conservative computational budget of one day
and compute the out-of-sample validation MSEs instead of the
cross-validated ones to limit the overall computational e%ort
within our capacity, especially for the two competitors TN and



716 J. CAO, D. DURANTE, AND M. G. GENTON

Figure 2. Simulated probabilities on the 100 × 100 grid G = {x = (x1,x2) : x1 = (1/100, 2/100, . . . , 100/100), x2 = (1/100, 2/100, . . . , 100/100)} in the unit square,
where f (x) is a zero mean GP with squared exponential covariance kernel. White circles denote the 100 test locations distributed randomly (left) and on a grid (right), used
for prediction.

Table 1. Runtimes and accuracy in estimating out-of-sample predictive probabil-
ities, at varying training sample size n, of STAN (Ho"man and Gelman 2014), TN
(Botev 2017), TLR (Section 2.1) and VB (Section 2.2), when the 100 test locations are
distributed either randomly [random] or on a grid [grid].

Method Performance n = 225 n = 625 n = 2500 n = 10,000
measures

STAN TIME [seconds] 1382 18,066 — —
MSE [random] 0.015 0.014 — —
MSE [grid] 0.023 0.015 — —

TN TIME [seconds] 7 41 — —
MSE [random] 0.017 0.014 — —
MSE [grid] 0.027 0.017 — —

TLR TIME [seconds] 1 5 37 250
MSE [random] 0.017 0.014 0.005 0.002
MSE [grid] 0.025 0.019 0.007 0.003

VB TIME [seconds] 1 3 23 898
MSE [random] 0.016 0.014 0.005 0.001
MSE [grid] 0.025 0.017 0.004 0.001

NOTE: TIME: runtime in seconds for predicting at one location. MSE: mean squared
error between the 100 estimated predictive probabilities and the true ones.
Empty cells refer to situations in which the overall runtime of the whole prediction
task exceeded the conservative budget of one day.

STAN. To provide a reliable comparison between the di%erent
implementations, we consider the runtime for predicting one
test unit. Such a measure complements the formal computa-
tional complexities derived in detail in Sections 2.1–2.2, and
comprises also the precomputation costs, which, however, do
not need to be paid once again when predicting at multiple loca-
tions. For instance, in our implementation of the VB strategy
in https://github.com/danieledurante/PredProbitGP, the overall
runtime in seconds for predicting at 100 locations almost coin-
cides with the one reported in Table 1 for a single prediction.

As illustrated in the tutorial implementations of all the
methods analyzed—which are available at https://github.com/
danieledurante/PredProbitGP/blob/main/Tutorial.md—Monte
Carlo inference under STAN (Ho%man and Gelman 2014) relies
on the highly-optimized state-of-the-art R package rstan
applied to model (1) for obtaining posterior samples from f(X),
which are then used to compute the predictive probabilities at
the test locations via ordinary kriging. Such evaluations rely
on 10,000 MCMC samples a$er a burnin of 10,000, setting
the true α = (

√
30,

√
30). In evaluating the performance of

minimax tilting (TN) (Botev 2017), we compute the numerator

and the denominator in (4) separately via the R package
TruncatedNormal, using the default settings. Equation (4)
is also evaluated under the TLR method presented in Section 2.1
and summarized in Algorithm 1, which can be implemented via
simple adaptations of the R package tlrmvnmvt (Cao et al.
2021). In implementing this routine, we set the block size to
n1/2, the truncation level to 10−4 and R = 20,000. To evaluate
the predictive probabilities under TN and TLR, we avoid setting
α at the true values (

√
30,

√
30), but instead estimate these two

GP hyperparameters via the grid search discussed in Section 2.1,
that evaluates the marginal likelihood in (3) on a 10×10 grid in
[
√

15,
√

45] × [
√

15,
√

45] ∈ R2 leveraging the R packages
TruncatedNormal and tlrmvnmvt, for TN and TLR,
respectively. The results are comparable, although TLR requires
substantially lower runtimes. The estimate of α provided by
tlrmvnmvt is also used in the implementation of the VB
presented in Section 2.2 and summarized in Algorithm 2.
Also in this context we consider R = 20,000 Monte Carlo
samples to evaluate (10) via (13). Such values are generated
from the optimal univariate truncated normal approximating
densities produced by the CAVI in Algorithm 2, which can be
implemented via minor adaptations of the code in the GitHub
repository Probit-PFMVB (Fasano, Durante, and Zanella in
press).

As clari!ed in Table 1, the methods proposed in Sections 2.1
and 2.2 notably reduce the runtimes relative to state-of-the-art
competitors, thus, making prediction under probit GP compu-
tationally feasible in those high-dimensional settings that o$en
arise in various applications. According to the MSEs reported in
Table 1, such a notable reduction in runtimes under TLR and VB
is crucially obtained at almost no costs in terms of accuracy in
the estimation of the predictive probabilities, when compared
to relevant competitors relying on MCMC samples from the
exact posterior (STAN) or on accurate evaluation of multivariate
Gaussian cumulative distribution functions (TN). The runtimes
of TLR and VB are also coherent with the associated O(n5/2 +
Rn3/2) and O(n3 + Rn) computational costs discussed in Sec-
tions 2.1–2.2, which make VB more competitive in small-to-
moderate dimensions, and TLR more suitable in much higher
dimensions due to the reduction of the cubic precomputation
cost. All computations were run on a 3.4 GHz Intel Core i5 CPU
workstation, without multithreading.

https://github.com/danieledurante/PredProbitGP
https://github.com/danieledurante/PredProbitGP/blob/main/Tutorial.md
https://github.com/danieledurante/PredProbitGP/blob/main/Tutorial.md
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Figure 3. Heatmaps representing the windspeed at 140 m high (left) and a binary version y of this measure de!ning whether the local windspeed is su#ciently high for
energy production (dark gray: YES; light gray: NO) based on the 4 m/s threshold (right) on January 21, 2014. The dashed area denotes the spatial region that is used for
modeling and prediction.

4. Saudi Arabia Windspeed Application

We conclude by applying the methods developed in Sections 2.1
and 2.2 to a real-world environmental application aimed at
modeling whether the local windspeed exceeds a prespeci!ed
working threshold for energy production in a given region of
interest in Saudi Arabia. Wind turbines for generating electricity
typically have two windspeed thresholds, of which the lower
controls when the blades of the turbine start to be in motion
and the higher indicates if the turbine should be switched o% to
avoid strong-wind damage. Here, the binary response yi ∈ {0; 1}
measures whether the windspeed at the i-th location exceeds
the lower threshold, thus, allowing production of wind power,
which is referred to as the working threshold of wind turbines.
This important application is motivated by the growing domes-
tic energy consumption in Saudi Arabia and by the attempt
to reduce the reliance on fossil fuels, thereby leading to an
increasing interest on renewable energy sources, including wind
(Shaahid, Al-Hadhrami, and Rahman 2014; Chen et al. 2018;
Tagle et al. 2019; Giani et al. 2020). The e%ective exploitation
of such resources and the careful management of the energy
stations require careful modeling and prediction at a !ne spatial
resolution of whether the local windspeed exceeds or not a given
threshold for energy production. As discussed in the following,
this !ne grid of observations commonly produces a sample
size around tens of thousands units. This makes state-of-the-
art algorithms for probit GP computationally unfeasible, thus,
motivating the use of our scalable solutions in Sections 2.1–2.2.

The windspeed dataset considered in this article is produced
by the Weather Research and Forecasting (WRF) model (Yip
2018), which constructs the weather system through partial
di%erential equations on the mesoscale and demands strong
computation capacity to serve meteorological applications (Ska-
marock et al. 2008). The time resolution of our data is daily
and we use windspeed over the region of north-west Saudi
Arabia on January 21, 2014 for modeling and out-of-sample
prediction. Such a region covers the wind farm at Dumat Al
Jandal, which is the !rst wind farm in Saudi Arabia and currently
under construction, as well as the future smart city of NEOM,

a strategic component of the Saudi 2030 Vision, where wind
power is expected to be a key energy resource. Moreover, the
windspeed on January 21, 2014 has high variability across this
region, which makes the out-of-sample prediction task much
more challenging. As shown in Figures 3 and 4 the region under
analysis is obtained by intersecting the Saudi Arabia territorial
map with the rectangle ranging from e34◦ 30′ to e43◦ and
from n25◦ to n32◦. Within this region we consider a !ne grid
of n = 9036 equally-spaced locations xi = (xi1, xi2)ᵀ =
(longi,lati)ᵀ at which we monitor whether the windspeed
is either above (yi = 1) or below (yi = 0) the working threshold
of wind turbines for each i = 1, . . . , 9036. Following Chen et al.
(2018), such a threshold is set at 4 m/s, leading to a balanced
dataset with 51% ‘1’ responses, and 49% observed ‘0’s. Similar
to Section 3, we monitor predictive performance at 100 out-of-
sample locations displayed in Figure 4, which are distributed
randomly, and on a grid centered at the Dumat Al Jandal wind
farm.

Motivated by the results in the simulation study in Section 3,
we consider a probit GP with zero mean and squared exponen-
tial covariance kernel

K(x, x′) = exp(−[α2
1(x1−x′

1)
2 + α2

2(x2−x′
2)

2]),
where α = (α1, α2) is estimated via a grid maximization of
the marginal likelihood in (3) evaluated via the tlrmvnmvt
package on a 20 × 20 grid of values in [1,

√
30] × [1,

√
30].

The estimated α is (3.59, 4.77), which interestingly implies a
similarly rapid decay in correlation across the two spatial direc-
tions. This result is consistent with the abrupt changes of the
binary responses. Recalling the results in Table 1, calculation of
the predictive probabilities is only performed under the meth-
ods presented in Sections 2.1 (TLR) and 2.2 (VB) since STAN
and TN would be computationally impractical in such a high-
dimensional setting with n = 9036. Although this issue could be
circumvented via subsampling, such a procedure is suboptimal
since it reduces the sample size n and, as a consequence, it
yields less accurate estimates of the predictive probabilities with
higher MSE; see also Table 1. In implementing both methods,
we set α = (3.59, 4.77) and consider the same settings as in the
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Figure 4. For the spatial region used in modeling and prediction, heatmaps de!ning whether the local windspeed is su#ciently high for energy production (dark gray:
YES; light gray: NO) based on the 4 m/s threshold on January 21, 2014. Black circles denote the 100 test locations distributed randomly (left) and on a grid (right), used for
prediction.

simulation study in Section 3, thus, obtaining runtimes that are
comparable to those discussed in Section 3 for the scenario with
n = 10,000. Out-of-sample predictive performance measured
via the area under the ROC curve (AUC) is similarly accurate
for both methods. In particular, the AUCs for the random
and grid test scenarios are above 0.9 under both TLR and VB.
This con!rms the accuracy gains that can be obtained by the
development of increasingly scalable strategies which can be
e%ectively applied to larger samples sizes.

5. Discussion

This article provides novel expressions for the predictive prob-
abilities under probit models with GP priors, relying either on
multivariate Gaussian cumulative distribution functions or on
functionals of multivariate truncated normals, and proposes
scalable computational strategies to evaluate such quantities in
common high-dimensional settings, thus, covering an impor-
tant gap in the literature. As highlighted in the simulations
studies in Section 3, such computational gains are notable and
do not sacri!ce accuracy. This allows e%ective exploitation of
the full information in the observed data to improve predic-
tive accuracy, even in computationally challenging applications,
such as the windspeed study in Section 4, where the high sample
size a%ects the practical feasibility of available state-of-the-art
solutions.

The above results open up several avenues for future research.
A relevant direction is to address the possible computational
bottlenecks of the proposed grid search for hyperparameter
tuning in settings when the dimension of α is large. This issue
arises in high-dimensional predictor domains when consid-
ering, for example, automatic relevance determination (ARD)
kernels that assign a di%erent scaling hyperparameter for each
predictor (e.g., Rasmussen and Williams 2006, chap. 4.2 and
5.1). Direct application of the proposed grid search would be
computationally challenging in this high-dimensional hyper-
parameter space as it would require an excessive number of
evaluations of the marginal likelihood, unless some assump-
tions are made on the kernel function to reduce the number of

hyperparameters. Although these simpli!cations are sometimes
made in practice (e.g., Kuss and Rasmussen 2005; Nickisch and
Rasmussen 2008), it would be still desirable to develop scalable
tuning strategies in high-dimensional hyperparameter spaces.
A promising direction to address this goal is to combine our
improved strategy for the evaluation of the marginal likelihood
in Section 2.1 with state-of-the-art machine learning algorithms
for high-dimensional hyperparameter tuning that require a low
number of evaluations of the objective function (e.g., Bergstra
et al. 2011; Snoek, Larochelle, and Adams 2012; Klein et al.
2017).

Another area of interest is direct estimation and uncertainty
quanti!cation on linear relationships among the response and
predictors, when included within the GP mean function via
xᵀβ . Although such a goal departs from the predictive focus
of this article, it shall be noticed that the posterior distribution
p(β|y) of the regression coe#cients can be derived in closed
form when considering Gaussian priors for β . In particular,
note that when f (x) is a GP with mean function m(x) = xᵀβ
and covariance kernel K(x, x′), then, leveraging standard GP
properties, it holds that

f(X) =
[
f (x1), . . . , f (xn)

]ᵀ = Xβ + f̄(X) = X̄η,

where X̄ = (X, In), η = [βᵀ, f̄(X)ᵀ]ᵀ, and f̄(X) ∼ Nn(0, $),
with $ de!ned as in (1). Hence, letting β ∼ Nq(0, δ2Iq), as
in Section 1, it follows that η ∼ Nq+n(0, $η), where $η is a
(q + n)× (q + n) block-diagonal covariance matrix with blocks
$η[1,1] = δ2Iq and $η[2,2] = $. Recalling Sections 1 and 2,
this multivariate Gaussian prior, when combined with the probit
likelihood via the Bayes’ rule, yields the posterior distribution

p(η | y) ∝ p(η)p(y | η) = φq+n(η; $η)!n(Dηη; In),

with Dη = diag(2y1 − 1, . . . , 2yn − 1)X̄, whose kernel can be
shown to coincide with that of the uni!ed skew-normal variable

SUNq+n,n(0, $η, $̄ηωηDᵀ
η s−1

η , 0, s−1
η (Dη$ηDᵀ

η + In)s−1
η ),

with sη = [(Dη$ηDᵀ
η +In) ) In]1/2, $̄η = ω−1

η $ηω
−1
η and

ωη = ($η ) Iq+n)1/2, leveraging the recent conjugacy results
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in Theorem 1 of Durante (2019). Notably, such a class of dis-
tributions is closed under marginalization (Arellano-Valle and
Azzalini 2006; Azzalini and Capitanio 2014), meaning that also
the posterior distribution p(β | y) for β—which corresponds to
the !rst q entries in η—is uni!ed skew-normal with parameters
that can be directly obtained from those of the joint SUN poste-
rior for η via simple linear algebra operations; see Azzalini and
Capitanio (2014, chap. 7.1.2) for details. This result facilitates
estimation and uncertainty quanti!cation for β , when this is of
interest, leveraging the functionals of the associated closed-form
SUN posterior (Durante 2019).

Finally, it is worth emphasizing that the methods developed
in Section 2 can be naturally adapted to any probit model with
a multivariate Gaussian prior for the linear predictor. Relevant
examples include classical Bayesian probit regression, multi-
variate probit models (e.g., Chib and Greenberg 1998; Fasano
et al. 2021) and general additive representations relying on basis
expansions. Extensions to categorical response data under a
multinomial probit GP model or to more general SUN priors
can also be explored by leveraging results in Durante (2019),
Fasano and Durante (in press) and Benavoli, Azzimonti, and
Piga (2020).

Appendix: Proof of Theoretical Results

To prove Propositions 1–2 let us !rst state the following Lemma.

Lemma 1 (Lemma 7.1 in Azzalini and Capitanio (2014)). If U ∼
Np(0, %) then E[!q(HᵀU + k; ()] = !q(k; ( + Hᵀ%H), for any
choice of the vector k ∈ Rq, the p×q matrix H and the q×q symmetric
positive–de!nite matrix ( .

Combining the closure under conditioning property of multivariate
Gaussians with the above result—whose proof can be found in Azzalini
and Capitanio (2014)—the proof of Propositions 1–2 can be obtained
via simple derivations described below.

Proof of Proposition 1. To prove Proposition 1, !rst to notice that by
application of the Bayes’ rule

pr(yn+1 = 1 | y) = p(yn+1 = 1, y)/p(y).

Hence, it su#ces to show that

p(yn+1 = 1, y) = !n+1(D∗ξ∗; In+1 + D∗$∗D∗ᵀ),
p(y) = !n(Dξ ; In + D$Dᵀ).

Recalling our discussion in Section 2.1, p(y) is the marginal likelihood
for the observed data and can be expressed as

p(y) =
∫

!n(Df(X); In)φn(f(X) − ξ ; $)df(X)

= E[!n(D(f(X) − ξ) + Dξ ; In)],

where (f(X) − ξ) ∼ Nn(0, $). Hence, by applying Lemma 1 to this
expectation, we obtain

E[!n(D(f(X) − ξ) + Dξ ; In)] = !n(Dξ ; In + D$Dᵀ).

The above result also clari!es Equation (3). The proof of equation
p(yn+1 = 1, y) = !n+1(D∗ξ∗; In+1 + D∗$∗D∗ᵀ) proceeds in a

similar manner, a$er noticing that

p(yn+1 = 1, y)

=
∫

!(f (xn+1))!n(Df(X); In)φn+1(f∗(X) − ξ∗; $∗)df∗(X)

=
∫

!n+1(D∗f∗(X); In+1)φn+1(f∗(X) − ξ∗; $∗)df∗(X)

= E[!n+1(D∗(f∗(X) − ξ∗) + D∗ξ∗; In+1)],

where f∗(X) − ξ∗ = [(f(X)ᵀ, f (xn+1))ᵀ − ξ∗] ∼ Nn+1(0, $∗), with
ξ∗, $∗ and D∗ de!ned as in Proposition 1.

Proof of Proposition 2. Recalling the results discussed in Section 2.2,
the predictive probability pr(yn+1 = 1 | y) can be de!ned as
Ef (xn+1)|y[!(f (xn+1))], with p(f (xn+1) | y) being the marginal in
the joint conditional density p(f (xn+1), f(X), z | y) which factorizes
as p(f (xn+1) | f(X))p(f(X) | z)p(z | y). Hence, by the law of the total
expectation, we have that

pr(yn+1 = 1 | y)

= Ez|y[Ef(X)|z(Ef (xn+1)|f(X)[!(f (xn+1))])].

Since (f (xn+1) | f(X)) ∼ N(µxn+1 + Hxn+1 f(X), σ 2
xn+1) by (8), we can

leverage Lemma 1 above to obtain

Ef (xn+1)|f(X)[!(f (xn+1))]
= !(µxn+1 + Hxn+1 f(X); 1 + σ 2

xn+1).

To conclude the proof note that, by (9), we have (f(X) | z) ∼ Nn(µX +
%Xz, %X). Therefore, further application of Lemma 1 yields

Ef(X)|z[!(µxn+1 + Hxn+1 f(X); 1 + σ 2
xn+1)]

= !(µxn+1 + Hxn+1(µX + %Xz);
1 + σ 2

xn+1 + Hxn+1%XHᵀ
xn+1)

as in Proposition 2.
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