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Abstract—Maximum likelihood estimation is an essential tool
in the procedure to impute missing data in climate/weather
applications. By defining a particular statistical model, the
maximum likelihood estimation can be used to understand the
underlying structure of given geospatial data. The Gaussian
random field has been widely used to describe geospatial data,
as one of the most popular models under the hood of maximum
likelihood estimation. Computation of Gaussian log-likelihood
demands operations on a dense symmetric positive definite
matrix, often parameterized by the Matérn correlation function.
This computation of the log-likelihood requires O(n2) storage
and O(n3) operations, which can be a huge task considering that
the number of geographical locations, n, now commonly reaches
into the millions. However, despite its appealing theoretical
properties, the assumptions of Gaussianity may be unrealistic
since real data often show signs of skewness or have some
extreme values. Herein, we consider the Tukey g-and-h (TGH)
random field as an example of a non-Gaussian random field
that shows more robustness in modeling geospatial data by
including two more parameters to incorporate skewness and
heavy tail features in the model. This work provides the first HPC
implementation of the TGH random field’s inference on parallel
hardware architectures. Using task-based programming models
associated with dynamic runtime systems, our implementation
leverages the high concurrency of current parallel systems. This
permits to run the exact log-likelihood evaluation of the Tukey
g-and-h (TGH) random fields for a decent number of geospatial
locations. To tackle large-scale problems, we provide additionally
an implementation of the given model using two different low-
rank approximations. We compress the aforementioned positive-
definite symmetric matrix for computing the log-likelihood and
rely on the Tile Low-Rank (TLR) and the Hierarchical Off-
Diagonal Low-Rank (HODLR) matrix approximations. We assess
the performance and accuracy of the proposed implementations
using synthetic datasets up to 800K and a 300K precipitation
data of Germany to demonstrate the advantage of using non-
Gaussian over Gaussian random fields. Moreover, by relying on
TLR/HODLR matrix computations, we can now solve for larger
matrix sizes while preserving the required accuracy for predic-
tion. We show the performance superiority of TLR over HODLR
matrix computations when calculating the TGH likelihoods and
predictions. Our TLR-based approximation shows a speedup up
to 7.29X and 2.96X on shared-memory and distributed-memory
systems, respectively, compared to the exact implementation.

I. INTRODUCTION

Techniques relying on latent Gaussian models are widely

used to make spatial predictions beyond the observed ge-

ographical locations. The target modeling process involves

obtaining a set of statistical parameters with the aid of the

likelihood function through the Maximum Likelihood Estima-

tion (MLE) method in order to impute missing spatial data.

MLE operates on a dense covariance matrix with dimension

n× n where n represents the number of geospatial locations.

The challenge for high-dimensional problems lies in the com-

putation requirements of the log-likelihood function, which

necessitates O(n3) computation and O(n2) memory space,

making its computation prohibitive for large n. Techniques

exist to tailor the modeling process to reduce the computing

cost by order of magnitude. The low-rank approximation has

been shown to be necessary for the closely related problem

of the spatial statistics framework [1]–[4]. However, most of

the existing studies evaluate the effectiveness of the low-rank

approximation with the Gaussian process, which is limited in

real-life datasets.

In typical applications, the spatial variables are non-

Gaussian, where skewness and heavy tails can be captured.

A common approach to deal with this non-Gaussian behavior

is to apply a non-linear transformation to the non-Gaussian

data such as square-root transform [5]–[7], Box–Cox transform

[8] and the log-normal transform [9] which is known as the

trans-Gaussian approach. Ideally, transforming non-Gaussian

data using one of these techniques should be enough to

apply Gaussian modeling directly to the data. However, it is

impossible to find a suitable transformation technique that can

give the best modeling performance for arbitrary datasets.

In [10], a highly flexible trans-Gaussian model has been

proposed under the name Tukey g-and-h (TGH) random fields.

This work presents a parallel implementation of the TGH

random fields in the context of climate and environmental

applications. We rely on a task-based programming model

to provide the TGH modeling and prediction operations in

the exact form where the dense linear algebra operations
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have been drawn from the Chameleon library [11] and the

underlying tasks schedule managed by the StarPU runtime

system [12]. We also provide two low-rank implementations

of the TGH model: TLR-based, where the compression and

linear algebra operations run through the HiCMA library [13],

and Hierarchical Off-Diagonal Low-Rank (HODLR)-based

approximations [14], where the compression and linear algebra

operations run through HODLRLIB [15]. The TLR-based

implementation shows a speedup up to 7.29X and 2.96X on

shared-memory and distributed-memory systems, respectively,

compared to exact implementation.

Our main contributions are as follows: 1) We propose a

parallel implementation of the TGH likelihoods and predic-

tions to model a wide range of real spatial datasets on shared-

memory and distributed-memory systems; 2) We provide

parallel TLR-based and HODLR-based approximations to the

exact predictive model to reduce the prohibitive complexity

of the underlying algebra operations of the associated dense

covariance matrix; 3) We show the effectiveness of the non-

Gaussian scheme provided by our implementation compared

with the traditional Gaussian modeling with both synthetic and

real datasets; 4) We provide a comparison in the parameters’

estimation accuracy to produce the required accuracy for

both TLR-based and HODLR-based approximation; 5) We

assess the performance of exact/TLR/HODLR non-Gaussian

modeling and prediction on shared-memory and distributed-

memory systems; and 6) We demonstrate the quality of our

implementation in a 300K precipitation dataset of Germany

to show that we are able to provide a robust predictive model

to work in such a non-Gaussian dataset.

The remainder of the paper is organized as follows. Section

II covers related work. Section III gives an overview and

background of our problem. Section IV describes in detail the

algorithm and our parallel implementation. Section V analyzes

accuracy and performance using synthetic and real datasets in

the context of climate/weather applications. We conclude in

Section VI.

II. RELATED WORK

In this section, we discuss some of the popular approaches

for constructing non-Gaussian random fields. Use of various

non-Gaussian distributions such as skew-Gaussian distribution

(Kim and Mallick [16]; Zhang and El-Shaarawi [17]; Gen-

ton and Zhang [18], Rimstad and Omre [19]), t-distribution

(Røislien and Omre [20]), skew-t distribution (Bevilacqua

et al. [21]), log-skew-elliptical distribution (Marchenko and

Genton [22]) can create different non-Gaussian random fields.

Palacios and Steel [23] and Fonseca and Steel [24] provided

non-Gaussian models for spatial data by scale mixing the

Gaussian random field. Gräler [25] and Krupskii et al. [26]

made non-Gaussian random fields using copula. Wallin and

Bolin [27] provided a class of non-Gaussian spatial Matérn

fields using stochastic partial differential equations. Another

popular technique to model non-Gaussian spatial data, known

as trans-Gaussian random field, is applying a non-linear trans-

formation of the original data such that the transformed data

become Gaussian. A few well-used non-linear conversions are

log-normal (De Oliveira [28]), square-root (Johns et al. [29]),

Box-Cox (De Oliveira et al. [30]), and power transformations

(Allcroft and Glasbey [31]). However, it may be challenging to

find this transformation in some situations, if not impossible.

Xu and Genton [10] proposed Tukey g-and-h (TGH) random

fields based on the Tukey’s g-and-h transformation. It is a

more flexible trans-Gaussian random field than the existing

trans-Gaussian models. Due to its many appealing statistical

properties and its easily interpretable parameterization, we

select the TGH model for the large-scale implementation.

The computational challenges for fitting the Gaussian and

TGH models are similar. The exact evaluation of the log-

likelihood for both models requires dense matrix inversion.

The task of this matrix inversion can be very challenging

when the size of the matrix is large, i.e., when the number

of geographical locations of the problem is high. A parallel

computing framework can help us fasten the computation time

for these models. The task of spatial prediction (or kriging)

has already been implemented for the Gaussian model in a

parallel computing framework. For example, the authors in

[32], [33], [34] have implemented kriging for Gaussian model

in parallel computing frameworks using Message Passing

Interface (MPI), OpenMP, Parallel Virtual Machines (PVMs),

and/or Graphics Processing Units (GPUs). Abdulah et al.

[35] first provided a framework in parallel computing for the

exact computation of the log-likelihood of the Gaussian model

using dense linear algebra task-based algorithms and dynamic

runtime systems.

Another approach to tackle the computation and storage

complexity is to use some approximation techniques for the

dense matrix. The authors in [36], [37] used a method named

covariance tapering for approximation of the large covariance

matrix. Other approximation techniques include low-rank ap-

proximations. For instance, the authors in [3] and [38] used

Tile Low-Rank (TLR) and Hierarchically Off-Diagonal Low-

Rank (HODLR) approximations of the covariance matrix for

computation of the log-likelihood of the Gaussian model.

III. BACKGROUND AND OVERVIEW OF THE PROBLEM

In this section, we formally define the Tukey g-and-h
random field and its log-likelihood function. Subsequently, we

provide the kriging equation and an assessment tool for the

TGH modeling.

A. Definition of Tukey g-and-h Random Fields

Tukey’s g-and-h transformation

τg,h(z) = g−1{exp(gz)− 1} exp(hz2/2), (1)

is a monotonic function of z for g ∈ R and h ≥ 0. Here and

from now on, the values of any quantities involving g at g = 0
are defined as their limit when g → 0.

The Tukey g-and-h (TGH) random field with location

parameter ξ ∈ R and scale parameter ω > 0 is defined as

T (s) = ξ + ωτg,h{Z(s)}, (2)
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where, Z(s), s ∈ R
d, d ≥ 1 is a standard Gaussian random

field, i.e. E{Z(s)} = 0 and Var{Z(s)} = 1, with some cor-

relation function corr{Z(s1), Z(s2)} = ρZ(s1, s2). The two

parameters g and h dictate the extent of skewness and kurtosis

in the marginal distribution and the sign of g directs the sign of

the skewness of the marginal distribution producing a family

of random fields with very flexible marginal distribution. The

TGH random field includes a large family of trans-Gaussian

random fields. For example, when g = h = 0, T (s) becomes

a Gaussian random field, for g > 0 and h = 0, T (s) becomes

a shifted log-Gaussian random field and for g = 0 and h > 0,

T (s) is a random field with a Pareto-like marginal distribution.

B. Log-likelihood of Tukey g-and-h Random Fields
Let θ1 = (ξ, ω, g, h)� and θ2 be the parameter vec-

tor corresponding to ρZ(s1, s2), the correlation function of

Z(s) in (2), and let θ = (θ�1 ,θ
�
2 )
�. Consider a dataset

D = {t(s1), . . . , t(sn)} collected from the TGH random field,

T (s), at locations s1, . . . , sn. The log-likelihood function of

θ given the dataset D is

L(θ1,θ2|D) ∝− 1

2
{Z�θ1

(R−1
θ2

+ hIn)Zθ1
+ log |Rθ2

|}

−
n∑

i=1

log[exp(gzθ1,si
) + g−1{exp(gzθ1,si

)

− 1}hzθ1,si
]− n logω,

(3)

where zθ1,si= τ−1
g,h

{
t(si)− ξ

ω

}
, Zθ1= (zθ1,s1 , . . . , zθ1,sn)

�

and (Rθ2
)i,j = ρZ(si, sj), i, j=1, . . . , n. We estimate θ by

maximizing the log-likelihood in (3).

C. Kriging with Tukey g-and-h Random Fields
One of the most widely used geostatistical techniques is

kriging. In kriging, the objective is to find an optimal point

estimator of the process under consideration at a new location

by minimizing some loss function. For TGH random fields,

the best kriging predictor of T (s0) under squared error loss

function is

T̂ (s0) =ξ̂ +
ω̂

ĝ
√
1− ĥσ̃2

exp

{
ĥμ̃2

2(1− ĥσ̃2)

}

×
[
exp

{
ĝ2σ̃2 + 2ĝμ̃

2(1− ĥσ̃2)

}
− 1

]
,

(4)

where μ̃ = r�
̂θ2
R−1

̂θ2
Z

̂θ1
, σ̃2 = 1 − r�

̂θ2
R−1

̂θ2
r
̂θ2

and r
̂θ2
=

{ρZ(s0, s1), . . . , ρZ(s0, sn)}� and θ̂ = (θ̂�1 , θ̂
�
2 )
� is the

MLE of θ.

D. Matérn Correlation Function
For constructing the correlation matrix of Z(s) in (2), we

need some valid correlation function to ensure the symmetric

positive-definite structure of the correlation matrix. We use the

Matérn correlation function here because of its high flexibility.

The Matérn correlation function is defined as

ρZ(h) =
1

Γ(ν)2ν−1

(
4
√
2ν

h

φ

)ν

Kν

(
4
√
2ν

h

φ

)
, (5)

where h = ‖s1 − s2‖ is the distance between locations s1
and s2, ν > 0 is the smoothness parameter, φ > 0 is the

range parameter, Γ(·) is the gamma function, and Kν(·) is

the modified Bessel function of the second kind of order ν.

The smoothness parameter ν, as the name suggests, dictates

the smoothness of the random field and the range parameter

φ controls how quickly the correlation of the random field

decreases with distance. Many popular correlation functions

come under the Matérn correlation family. For example, when

ν = 0.5, the Matérn correlation function becomes the expo-

nential correlation function ρ(h) = exp(−4√2νh/φ), when

ν = 1, it becomes the Whittle correlation function ρ(h) =(
4
√
2νh/φ

)K1

(
4
√
2νh/φ

)
, when ν = ∞ it becomes the

Gaussian correlation function ρ(h) = exp{−(4√2νh/φ)2}.
E. Assessment of Fitted TGH Model Using PIT

The probability integral transformation (PIT) can be a useful

tool to assess whether the data are originally emulating a TGH

random field or not. Suppose we fit a TGH model to a dataset

D = {t(s1), . . . , t(sn)}, assuming it is collected from a TGH

random field T (s), defined in (2), at locations s1, . . . , sn.

Then, thanks to Theorem 4 in [10], the estimated conditional

distribution function of T (s0) given D is

F̂s0
(t|D) = Φ

(
z − μ̃

σ̃

)
, (6)

where z = τ−1

ĝ,̂h
{(t − ξ̂)/ω̂}, Φ(·) is the distribution function

of a standard Gaussian distribution, and μ̃ and σ̃2 are defined

in (4). If the dataset is derived from a TGH random field,

the probability integral transform of T (s0), i.e., Fs0{T (s0)}
will be an observation from a uniform distribution over (0, 1).
The validation procedure can be done by dividing the data

into training and testing. If the data are really coming from a

TGH random field, the probability integral transforms of the

testing data, transformed by the estimated distribution function

with the training data, should have an approximate uniform

distribution over (0, 1).

F. Task-based parallelism and Runtime systems

Matrix operations are the core of the log-likelihood function,

where matrix inversion is the most time-consuming operation

with cubic complexity. The literature reveals two types of

matrix algorithms, i.e., block-based and tile-based, to perform

the inversion operation in parallel. The block-based algorithms

decompose the target matrix into a successive panel and

update computational phases. Updating the matrix has two

steps: panel factorization step and update step. LAPACK

is an example of a block-based linear algebra library. The

matrix is split into a set of tiles with a predetermined tile

size in the tile-based algorithms. These algorithms weaken

the synchronization points that existed before with block-

based algorithms between the panel and update computational

phases and allow translating the numerical algorithm into a

Directed Acyclic Graph (DAG), where the nodes represent

tasks, and the edges define data dependencies. PLASMA [39]
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and Chameleon [40] are two examples of tile-based linear

algebra libraries.

Representing the numerical operation as a set of tasks allows

exploiting the task-based parallelism technique to execute

the numeric function in parallel and over a heterogeneous

group of distributed resources. In this case, a dynamic runtime

system such as OmpSs [41], OpenMP [42], and PaRSEC [43],

StarPU [12] can be employed to run the tasks across different

hardware resources while ensuring the integrity of data depen-

dencies. In this work, we rely on StarPU, which is preferred for

its wide hardware architecture support. StarPU also supports

many scheduling techniques that can help in porting it with

adequate performance [44].

G. Hierarchical Matrices

Hierarchical matrices have been widely studied in the lit-

erature to tackle the challenges related to a large class of

applications (e.g., Gaussian processes, electromagnetic integral

equations [45], and Bayesian inversion). These applications

are related to generating dense matrices with a data sparsity

structure. In this paper, we focus on HODLR and TLR for

computing MLE. A detailed overview of these methods are

given in the following subsections.

1) Hierarchically Off-Diagonal Low-Rank Approximations:
Hierarchically Off-Diagonal Low-Rank (HODLR) matrices

provide a hierarchical representation of low-rank off-diagonal

blocks with recursive definition 2×2 blocks of a given matrix

C,

A =

[
C11 C12

C21 C22

]
, (7)

where C12 and C21 are in low-rank representation, and C11

and C22 recursively represent the HODLR matrix. Once the

diagonal blocks reach a given leaf size, the recursion stops

after t steps, where t is the level of the HODLR matrix.

HODLR matrices require representing all off-diagonal blocks

in low-rank. Fig. 1 illustrates how to construct a HODLR

matrix of level 3. Dense blocks are represented in red, and the

low-rank blocks are represented in green. The final structure

of the matrix is shown on the right side of the figure.

In this work, we employ HODLRLIB, a parallel HODLR-

based library, to perform the required matrix operations in the

MLE algorithm. HODLRLIB relies on OpenMP multithreaded

BLAS for parallel performance.

2) Tile Low-Rank Approximations: Tile Low-Rank (TLR)

approximation [46], [47] is a flat approach that consists in

splitting the dense matrix into tiles of similar sizes. Fig. 2

shows an example of compressing an off-diagonal tile T12

to two matrices U12 and V12, where the Singular Value

Decomposition (SVD) is used to compress the dense matrix.

The most significant k singular values are captured with

their associated vectors, which correspond to the rank of the

tile. Once each tile is compressed, the tile-based algorithm

is expressed in terms of tasks interconnected by their data

dependencies. The original algorithm can then be translated

Fig. 1: Recursive construction of HODLR matrix of level 3.

The red blocks are represented in dense format at all levels,

while the green blocks are represented in low-rank format.

into a Directed Acyclic Graph (DAG), where nodes are fine-

grained computational tasks, and edges express their data

dependencies. As implemented in the HiCMA library [13], the

StarPU [12] dynamic runtime system is used to orchestrate

the scheduling of tasks with their data dependencies onto

processing units. The task-based programming model creates

opportunities for look-ahead, which enables to maintain high

hardware occupancy.

Fig. 2: An example of TLR approximation tile: diagonal tiles

(in red) are dense. Off-diagonal tiles (in green) are represented

as low-rank approximation.

IV. PARALLEL TGH MODELING AND PREDICTION

This section explains our proposed parallel implementation

of the TGH likelihoods and predictions in exact, tile low-rank

(TLR) approximation and hierarchical off-diagonal low-rank

(HODLR) approximation format. We show the distribution of

the ranks in both TLR and HOLDR matrices associated with

TGH random fields compared to the dense matrix.

A. Non-Gaussian Log-Likelihood Estimation

Recalling the TGH random field log-likelihood function

in (3), the log-likelihood estimation process involves gener-

ating a covariance matrix Rθ2 where θ2 is the parameters of

a given correlation function. Given a set of n geospatial loca-

tions, a selected covariance function can be used to build an

n×n covariance matrix. In this work, we use the parametriz-

able Matérn correlation function with two parameters: φ, the

spatial range parameter, and ν, the random field smoothness

parameter. The other input parameter vector θ1 = (ξ, ω, g, h)�
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Fig. 3: Rank distributions of a 8, 100 × 8, 100 covariance

TLR matrix using nb = 810 with Matérn parameters θ2 =
(0.96, 0.5)� under different accuracy levels.

is used to transform the non-Gaussian measurement vector Z
to a Gaussian vector Zθ1

.

Algorithm 1 TGH Log-Likelihood Estimation

1: Input: a set of locations S = {s1, . . . , sn}, associated mea-
surements t(s1), . . . , t(sn), and current parameter vector θ1 =
(ξ, ω, g, h)�.

2: Output: the log-likelihood estimation for the current parameter
vector θ1

3: TGH transformation for zθ1,si ← τ−1
g,h

{
t(si)− ξ

ω

}
→ eq(1),

and Zθ1 = (zθ1,s1 , . . . , zθ1,sn)
�.

4: Generate covariance matrix Rθ2 → eq(5)
5: POTRF(Rθ2 ) → Cholesky factorization
6: determinant = Det(Rθ2 )
7: S =

∑n
i=1(log[exp(gzθ1,si)+g−1{exp(gzθ1,si)−1}hzθ1,si ]+

hz2θ1,si
) + n logω,

8: TRSM (Rθ2 , Zθ1 ) → Triangular solve
9: dotproduct = (Zθ1 ×Zθ1 )

10: llh = − 1
2
{dotproduct+ log(determinant)} - S.

Algorithm 1 presents the TGH log-likelihood estimation

algorithm. The Zθ1
vector transformation step is performed

first (line 1) with a given θ1 parameter vector. Since the τ−1
g,h(·)

has no closed form, we use the Newton-Raphson method to

approximate the function for Zθ1
as follows:

τ−1
g,h(zθ1,si

) =
t(si)− ξ

ω
. (8)

The most time-consuming step in Algorithm 1 is the

Cholesky factorization of the covariance matrix Rθ2
in line

3. Therefore, we rely on the state-of-the-art dense task-based

library, i.e., Chameleon [40], to perform the linear algebra

operations that appear in Algorithm 1, including the Cholesky

factorization of the covariance matrix. Furthermore, we exploit

the data sparsity structure of the covariance matrix and apply

low-rank approximation methods to reduce the overall com-

plexity of the underlying linear algebra operations. In particu-

lar, we use TLR and HODLR matrix approximations to speed

up the computation of the Cholesky factorization heavyweight

operation while preserving the accuracy requirement of the

application.

1) TLR Approximation of Rθ2
: The TLR approximation

in the HiCMA library compresses the individual tile using

the SVD algorithm, where the ranks of the tiles represent

(a) N = 8, 100 / ts = 810. (b) N = 32, 400 / ts = 3240.

Fig. 4: Decay of the ranks of different blocks with TLR

approximation when using Matérn kernel with range φ = 0.96
and smoothness ν = 0.5 (Exponential kernel), and ν = 1
(Whittle kernel) and two matrix sizes.

the most significant singular values and vectors in each off-

diagonal tile [46]. Therefore, the effectiveness of the TLR

mechanism depends on the ranks of the off-diagonal tiles after

compression, which in turn depends on the application’s accu-

racy requirements. Thus, we initially validate the potency of

the TLR approximation with the TGH modeling by estimating

the ranks corresponding to different accuracy levels, namely,

TLR-5 (10−5), TLR-7 (10−7), and TLR-9 (10−9). The re-

quired accuracy level of our application and the corresponding

performance assessment is shown in detail in the performance

section. Herein, we just validate the effectiveness of using TLR

with our model.

Fig. 3 depicts the rank distribution of a 8, 100 × 8, 100
covariance matrix generated by the Matérn covariance function

shown in (5). As can be seen, the ranks of the off-diagonal tiles

grow as the tiles get closer to the diagonal with different TLR

accuracy levels with a monotonic increase of the ranks with

tighter tolerance. However, even with TLR-9, the ranks are

still smaller than the full dense tiles in the diagonal. The given

example is drawn from a synthetic set of Matérn parameters

θ2 = (0.96, 0.5)�, representing a medium correlation depen-

dence between the given spatial locations. We also examine

other spatial correlation strengths, and all of them show almost

the same ranks with different accuracy levels. We only observe

a change in the ranks with different smoothness values. For

instance, in Fig. 4, we report the decay of the ranks when using

TLR approximation with different datasets with two data sizes,

i.e., 8, 100 and 32, 400 using different TLR accuracy levels

and a synthetic set of parameters θ2 = (0.96, ν)�, where ν
represents a rough field (ν = 0.5) and a smooth field (ν = 1).

As shown, the ranks associated with rough fields have higher

ranks than smooth fields across all accuracy levels and the

two data sizes. The decaying figure also shows an increase in

ranks when tile size is larger but preserving the same decaying

rate. Furthermore, we examined the ranks with different data

sizes and the same tile sizes. We did not observe any dramatic

changes in ranks or ranks decaying. All the above observations

show the advantage of using the TLR approximation in TGH

modeling from the performance perspective.

2) HODLR Approximation of Rθ2
: Herein, we used also

three accuracy levels, namely, HODLR-5 (10−5), HODLR-

7 (10−7), and HODLR-9 (10−9). Fig. 5 depicts the rank
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(a) 10−5. (b) 10−7. (c) 10−9.

Fig. 5: Rank distributions of a 8, 100 × 8, 100 covariance

HODLR matrix using leaf = 100 with Matérn parameters

θ2 = (0.96, 0.5)� under different accuracy levels.

(a) N = 8, 100 / leaf = 100. (b) N = 32, 400 / leaf = 400.

Fig. 6: Decay of the ranks of different blocks with HODLR

approximation when using Matérn kernel with range φ = 0.96
and smoothness ν = 0.5 (Exponential kernel), and ν = 1
(Whittle kernel) and two matrix sizes.

distribution of a 8, 100 × 8, 100 covariance matrix. Herein,

we also use the medium correlation case to show the rank

distribution. As shown by the figure, the matrix is divided into

blocks in a hierarchical structure where the leaf represents

the size of matrices at leaf level. It is clearly shown that the

smaller blocks have lower ranks, and at the higher structure

levels of the matrix, the ranks increase. In red, the diagonal

leaf blocks are kept dense. Furthermore, we do not observe

any noticeable growth in ranks with larger N when using the

HODLR structure. Fig. 6 shows the decay of the ranks in the

case of HODLR matrices. The ranks drop faster than the TLR

approximation because HODLR has smaller blocks at lower

levels. We choose the size of leaf blocks: 100 and 400 with two

matrix sizes. With larger leaf block sizes, the ranks increase.

As the TLR approximation, increasing the matrix size does

not affect the ranks but compresses more blocks. The figure

also shows the impact of the smoothness parameter ν, which

produces higher ranks in the rough field.

B. TGH Prediction

The optimization process of the likelihood function aims

at tuning the TGH parameter vectors, i.e., θ̂1 and θ̂2. These

parameters are used to predict missing measurements at a

set of locations using Equation (4). Algorithm 2 shows in

detail the numerical steps to predict missing values using

the two tuned parameter vectors. Line 4 accounts for most

of the algorithmic complexity as it involves the Cholesky-

based solver of the covariance matrix. This algorithm performs

prediction of the missing data on the location sk.

Algorithm 2 TGH Prediction

1: Input: a set of locations S = {s1, . . . , sn} and associated
measurements t(s1), . . . , t(sn), and estimated parameter vector

θ̂.
2: Output: the predicted values T̂ (s01), . . . , T̂ (s0nnew ) at new

locations s01, . . . , s0nnew .

3: TGH transformation for z
̂θ1,si

← τ−1
g,h

{
t(si)− ξ̂

ω̂

}
and Z

̂θ1
=

(z
̂θ1,s1

, . . . , z
̂θ1,sn

)�

4: Generate covariance matrix R
̂θ2

→ eq(5)
5: Generate covariance vector r

̂θ2
→ eq(4)

6: POSV (R
̂θ2
,Z

̂θ1
) → System of linear equations solver.

7: CPY (r
̂θ2

, rcpy
̂θ2

)
8: TRSM (R

̂θ2
, r

̂θ2
) → Triangular solve

9: TRSM (R�
̂θ2
, r

̂θ2
) → Triangular solve

10: tmp1 = GEMV(rcpy
̂θ2
,Z

̂θ1
) → Matrix-vector multiplication

11: tmp2 = GEMM(rcpy
̂θ2
, r

̂θ2
) → Matrix-matrix multiplication

12: for k = 1 to nnew do
13: μ̃ = tmp1[k]
14: σ̃2 = 1− tmp2[k]

15: T̂ (s0k) = ξ̂ + ω̂

ĝ
√

1−̂hσ̃2
exp{ ̂hμ̃2

2(1−̂hσ̃2)
} ×

[exp{ ĝ2σ̃2+2ĝμ̃

2(1−̂hσ̃2)
} − 1]

16: end for

Using low-rank approximation in the form of TLR or

HODLR for both R
̂θ2

and r
̂θ2

in Algorithm 2 can help in

reducing the complexity of the TGH prediction algorithm

similar to the likelihood estimation operation. In the following

section, we give a detailed performance assessment of different

proposed TGH implementations.

V. PERFORMANCE RESULTS

This section assesses the accuracy and performance of dif-

ferent proposed TGH implementations using synthetic and real

precipitation datasets with different sizes and characteristics.

A. Testbed and Methodology

The assessment of the exact and approximate implemen-

tations of TGH modeling and prediction has been conducted

on Intel and AMD chips to highlight our software portability:

a 28-core dual-socket Intel Xeon IceLake Gold 6330 CPU

running at 2.00 GHz, and a 64-core dual-socket AMD EPYC

Milan 7713 CPU running at 2.00 GHz. For the distributed-

memory experiments, we use KAUST Shaheen-II, a Cray

XC40 system with 6, 174 dual-socket compute nodes based

on 16-core Intel Haswell processors running at 2.3 GHz. Each

node has 128 GB of DDR4 memory. The system has a total

of 197, 568 processor cores and 790 TB of aggregate memory.

Our implementation enables performance portability as long

as an optimized BLAS/LAPACK library is available on the

target system. We rely on Intel MKL v2020.0.166 as the

optimized BLAS/LAPACK library to link against the neces-

sary optimized numerical routines for our implementations

on our testbed systems. We compile our exact and TLR

code using Chameleon and HiCMA linear algebra libraries

with GCC V11.1, HWLOC v2.5.0, StarPU v1.3.8, GSL v2.7,

and NLopt v2.6.2 optimization libraries. For HODLR-based

implementation, we use HODLRLIB, compiled it with GCC
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V11.1, and linked it with GSL v2.7 and NLopt v2.6.2. All

computations are carried out in double-precision arithmetic.

The accuracy and qualitative analyses are performed using

synthetic and real datasets, i.e., the precipitation dataset of

Germany. We use the daily average precipitation of Germany

in January of the year 2021. The data is collected by Kaspar

et al. [48] and covers the whole of Germany with a spatial

resolution of 1 km × 1 km. The daily average precipitation

is given in mm. Because of this high spatial resolution, the

total number of locations is n = 358, 303. To make the

data stationary, we remove the mean of the daily average

precipitation of January over the year 2000 to 2020 from the

data. So, the data can be interpreted as the excess daily average

precipitation for January of 2021. The spatial image of the data

is given in Fig. 7.
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Fig. 7: Spatial image of the excess daily average precipitation

(in mm) of January, 2021 on 358, 303 locations over Germany.

B. TLR/HODLR Accuracy Estimation Assessment

In this section, we demonstrate the accuracy of the MLE

obtained using synthetic datasets. We generate 20, 164 random

observations from a TGH random field defined in (2) on the

[0, 1] × [0, 1] square in the following four setups, with latent

correlation function as in (5):

(a) ξ = 0, ω = 2, g = 0.2, h = 0.2, ν = 0.5, and φ = 0.42,

with effective range 0.3;

(b) ξ = 0, ω = 2, g = 0.2, h = 0.2, ν = 0.5, and φ = 0.7,

with effective range 0.5;

(c) ξ = 0, ω = 2, g = 0.5, h = 0.3, ν = 0.5, and φ = 0.96,

with effective range 0.5;

(d) ξ = 0, ω = 2, g = 0.2, h = 0.2, ν = 0.5, and φ = 0.98,

with effective range 0.7.

The effective range is the distance at which the correlation

between two points becomes less than 0.05. Given the other

parameters, we find φ for different setups by changing the

effective range. We use the correlation function of the TGH

random field, given in [10], for evaluating φ in different setups.

For each of these four setups, we estimate the parameters by

maximizing the likelihood function given in (3). We compute

the log-likelihood with TLR and HODLR with different ac-

curacies and maximize them to obtain the MLE. We repeat

the procedure 100 times for both TLR and HODLR and

their different accuracies. Moreover, we do the same with the

exact log-likelihood. We present the boxplots of the estimated

parameter values for different setups and different computation

techniques in Fig. 8. We used three accuracy levels for

both HODLR (i.e., HODLR-5, HODLR-7, and HODLR-9)

and TLR (i.e., TLR-5, TLR-7, and TLR-9) compared to the

exact estimation (i.e., Exact). The boxplots suggest that the

estimation accuracy does not vary much with the different

parameter setups. It is also worth noting that the estimation

accuracy increases if we increase the accuracy of TLR or

HODLR. Our result also shows that TLR works better for TGH

model estimation than HODLR over different accuracies. The

difference between TLR, HODLR, and exact is negligible for

higher accuracy.

C. Evaluation of Prediction with TGH Random Fields

We check the validity of our PIT assessment tool of the

TGH model. In this simulation study, we generate observations

with a parameter of setup (a) from the previous section and fit

both Gaussian and TGH models. We create the PIT histogram

using the method discussed in Section V-C. Fig. 9 suggests

that the PIT histogram obtained by fitting the Gaussian model

is not at all a representation of a uniform distribution. To

create a single measure of model adequacy, we introduce the

mean divergence distance (MDD) from the PIT histograms.

The MDD is defined as the average squared divergence of

the length of the histogram bars from the value 1 (uniform

density): the smaller the MDD, the better fitted the model.

The MDD of both models is reported in Fig. 9. As expected,

the TGH model performs better than the Gaussian model for

this synthetic data.

D. Precipitation Data Assessment

We fit both Gaussian and TGH models to a subsample

of size 300K locations. The estimated parameter values are

given in Table I. The estimates of the parameters g and h
from the TGH model indicate that the data is far from a

Gaussian random field. This claim has been justified by our

PIT assessment tool. We predict the values for 30K locations

based on these estimates, separate from the training subsample.

We produce the PIT histogram for both the fitted model based

on the testing data. The PIT histograms are given in Fig. 10.

We can see from Fig. 10 that the PIT histogram obtained

from the Gaussian model does not correspond to a uniform

distribution. The PIT from the TGH model shows a uniform

distribution where the Gaussian model MDD is 0.5434 while

TGH model MDD is 0.0290. This observation leads us to

conclude that the fitted TGH model is appropriate to explain

the variability of the data.

E. TLR/HODLR Matrices Performance Assessment

We provide the TGH modeling and prediction operations in

low-rank structures using TLR and HODLR approximations.

385

Authorized licensed use limited to: KAUST. Downloaded on August 09,2022 at 05:58:31 UTC from IEEE Xplore.  Restrictions apply. 



ξ = 0

−4

−2

0

2

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ω = 2

1

2

3

4

5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

g = 0.2

−1.5
−1.0
−0.5

0.0
0.5
1.0

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

h = 0.2

0.0

0.2

0.4

0.6

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

φ = 0.42

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ν = 0.5

0.30
0.35
0.40
0.45
0.50
0.55

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

(a) (0, 2, 0.2, 0.2, 0.5, 0.42)

ξ = 0

−4

−2

0

2

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ω = 2

1

2

3

4

5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

g = 0.2

−1.5
−1.0
−0.5

0.0
0.5
1.0

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

h = 0.2

0.0

0.2

0.4

0.6

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

φ = 0.7

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ν = 0.5

0.30
0.35
0.40
0.45
0.50
0.55

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

(b) (0, 2, 0.2, 0.2, 0.5, 0.7)

ξ = 0

−4

−2

0

2

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ω = 2

1

2

3

4

5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

g = 0.5

−1.5
−1.0
−0.5

0.0
0.5
1.0

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

h = 0.3

0.0

0.2

0.4

0.6

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

φ = 0.96

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ν = 0.5

0.30
0.35
0.40
0.45
0.50
0.55

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

(c) (0, 2, 0.5, 0.3, 0.5, 0.96)

ξ = 0

−4

−2

0

2

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ω = 2

1

2

3

4

5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

g = 0.2

−1.5
−1.0
−0.5

0.0
0.5
1.0

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

h = 0.2

0.0

0.2

0.4

0.6

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

φ = 0.98

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

ν = 0.5

0.30
0.35
0.40
0.45
0.50
0.55

HODLR−
5

TLR−
5

HODLR−
7

TLR−
7

HODLR−
9

TLR−
9

Exact

(d) (0, 2, 0.2, 0.2, 0.5, 0.98)

Fig. 8: Boxplots of parameter estimates (ξ, ω, g, h, φ, ν) under the HODLR (H), TLR (T), and exact (E) log-likelihood

computation. The true parameters are indicated by the red lines.

TABLE I: Parameter estimates for Gaussian and TGH models

with the real dataset.

Model ξ ω g h φ ν
Gaussian 0.26 1.04 - - 10.36 0.57

TGH −0.37 0.85 −1.69 0.65 10.78 0.64

The baseline TLR software is the HiCMA library, which runs

on both shared-memory and distributed memory architectures,

while the HODLR underlying software is HODLRLIB, which

only has a shared-memory implementation through OpenMP

multithreaded BLAS. We compare the TGH model using

TLR against HODLR approximations on two different shared-

memory architectures from two vendors, i.e., Intel and AMD.

We assess the performance of both implementations of the

TGH likelihood function.

Fig. 11 shows the breakdown of execution times to calculate

a single TGH likelihood function using both TLR and HODLR

matrices. We report the result of three accuracy levels for each

approximation method using five dataset sizes. The execution

time is broken down into matrix assembly time (i.e., the time

taken to compute the covariance matrix in low-rank structure),

matrix factorization time (POTRF), and others (i.e., matrix

determinant computing, measurements vector transformation,

matrix-vector triangular solve (TRSV)). The figure highlights

that the HiCMA-based implementation of the TLR approxi-

mation is faster than the HODLRLIB implementation of the

HODLR approximation. Moreover, it can be seen that with

different accuracy levels, the total execution time difference
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(b) Gaussian.

Fig. 9: PIT histograms for predictive distribution with the same

TGH synthetic dataset.
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Fig. 10: PIT histograms for both TGH and Gaussian model

with the real dataset.

increases between TLR and HODLR. For instance, on Intel

IceLake, TLR outperforms HODLR by 2.29X , 4.66X , and

6.46X with accuracy levels 10−5, 10−7, and 10−9, respec-

tively. We also observed that the number of cores strongly

influences the speedup; for instance, on AMD Milan, TLR

outperforms HODLR by 6.82X with an accuracy level of

10−9 since HODLRLIB cannot as efficiently utilize the system

resources. This performance difference between HiCMA and

HODLRLIB comes mostly from the programming models:

task-based with asynchronous executions (i.e., HiCMA) versus

bulk-synchronous fork-join paradigm (i.e., HODLRLIB). The

figure also shows that assembling the covariance matrix with

TLR format accounts for most of the likelihood function

estimation. The matrix assembly takes up to 70% and 85%
of the time on Intel IceLake and AMD Milan, respectively.

In contrast, due to a slower HODLRLIB, the matrix assembly

takes about 65% of the total execution time on both machines.

F. TLR Matrices Performance Assessment

In this section, we compare the performance of TLR against

exact when computing the non-Gaussian modeling and the

prediction operations on shared and distributed-memory ar-

chitectures.

Performance on Shared-Memory Systems. Fig. 12 shows

the performance of the TLR approximation compared to the

(a) 56-core Intel IceLake.

(b) 128-core AMD Milan.

Fig. 11: Time breakdown of a single TGH likelihood func-

tion estimation on shared-memory architectures using TLR /

HODLR matrices.

(a) 56-core Intel IceLake. (b) 128-core AMD Milan.

Fig. 12: Performance of a single non-Gaussian MLE iteration

on shared-memory architectures using exact / TLR matrices.

exact implementation of the TGH likelihood function on our

target two shared-memory systems and using different data

sizes. With different accuracy, TLR outperforms the exact

version of the likelihood estimation with a different number

of locations. TLR shows better performance than the exact

implementation, reaching up to 7.29X and 5.74X on Intel

IceLake and AMD Milan, respectively. Furthermore, Figure 13

shows the performance of the prediction operation using

exact and TLR. The figure shows the TLR approximation of

accuracy 10−9 outperforms the exact computation with up to

4.29X and 4.88X on the given machines.

Performance on Distributed-Memory Systems. We assess

the exact and TLR-based approximation performance on the
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(a) 56-core Intel IceLake. (b) 128-core AMD Milan.

Fig. 13: Performance of a single TGH prediction operation on

shared-memory architectures using exact / TLR matrices.

Shaheen-II Cray XC40 system. Fig. 14 shows the scalability of

the exact non-Gaussian MLE on 64, 128, 256, and 512 nodes.

The figure shows that the exact MLE implementation scales

very well with the same matrix size and a different number of

nodes. For instance, with 562, 500 spatial locations, the total

execution time for single MLE iteration is 629.44, 380.78,

255.97 seconds using 128, 256, and 512 nodes. We also assess

the performance of the TLR-based implementation using 512
nodes on Shaheen-II compared to the exact computation.

Fig. 15 shows the execution time of the exact and TLR approx-

imation for MLE with different accuracy levels. As shown,

the TLR approximation shows better performance compared

to exact computation with a different number of locations up

to 800K locations using 512 nodes. The figure shows that the

TLR-approximation outperforms the exact computation with

up to 2.96X . We believe the performance of TLR MLE can be

further improved by using a runtime system that provides rank-

aware data distribution to mitigate the load imbalance [49].

Fig. 14: Scalability of a single non-Gaussian MLE iteration

on Shaheen-II with up to 512 nodes using exact matrices.

VI. CONCLUSION

This paper introduces parallel non-Gaussian modeling and

prediction implementation based on the Tukey g-and-h (TGH)

random fields in the context of climate/weather applications.

We propose a task-based exact computation for both operations

with the aid of existing dense linear algebra libraries to tackle

the underlying matrix operation with large problem sizes. We

also assess low-rank approximations using tile low-rank (TLR)

and hierarchically off-diagonal low-rank (HODLR). We rely

on HiCMA and HODLRLIB to perform the required matrix

Fig. 15: Performance of a single non-Gaussian MLE iteration

on Shaheen-II nodes using exact / TLR matrices.

operations for MLE. The TLR approximation was performed

for modeling, and the prediction operations outperformed its

HODLR counterpart. Using up to 800K geospatial locations, it

also shows a speedup up to 7.29X and 2.96X compared to the

exact implementation on shared and distributed-memory sys-

tems, respectively. For future work, we would like to consider

mixed-precision arithmetics with GPU hardware accelerators

to boost the performance of dense linear algebra kernels.

We would also like to investigate randomized algorithms to

directly generate the compressed matrix and improve the

matrix assembly phase.
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