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Sparse Functional Boxplots for Multivariate Curves
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ABSTRACT
This article introduces the sparse functional boxplot and the intensity sparse functional boxplot as practical
exploratory tools. Besides being available for complete functional data, they can be used in sparse univariate
and multivariate functional data. The sparse functional boxplot, based on the functional boxplot, displays
sparseness proportions within the 50% central region. The intensity sparse functional boxplot indicates the
relative intensity of !tted sparse point patterns in the central region. The two-stage functional boxplot,
which derives from the functional boxplot to detect outliers, is furthermore extended to its sparse form.
We also contribute to sparse data !tting improvement and sparse multivariate functional data depth. In a
simulation study, we evaluate the goodness of data !tting, several depth proposals for sparse multivariate
functional data, and compare the results of outlier detection between the sparse functional boxplot and its
two-stage version. The practical applications of the sparse functional boxplot and intensity sparse functional
boxplot are illustrated with two public health datasets. Supplementary materials and codes are available for
readers to apply our visualization tools and replicate the analysis.
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1. Introduction

Functional data analysis (Ramsay and Dalzell 1991) regards
each observation unit as a function of an index displayed as a
curve or image. Descriptive statistics, such as median (Sun and
Genton 2012b, Qu, Dai, and Genton 2021) and outliers (Dai
and Genton 2019), need to be determined before the functional
data can be displayed for exploratory data analysis. Ordering
the samples of curves and images directly is di!cult. There-
fore, many functional depths have been proposed that estab-
lish the center of the functional data sample and then order
them from the center outwards. Available functional depths in
a marginal perspective are the integrated depth (Ibrahim and
Molenberghs 2009), random projection depth (Cuevas, Febrero,
and Fraiman 2007), random Tukey depth (Cuesta-Albertos and
Nieto-Reyes 2008), band and modi"ed band depth (López-
Pintado and Romo 2009), half-region depth and modi"ed half-
region depth (López-Pintado and Romo 2011), functional spa-
tial depth (Sguera, Galeano, and Lillo 2014), and extremal depth
(Narisetty and Nair 2016). Moreover, multivariate functional
depths have been proposed based on two generalizations: from
functional to multivariate functional scenarios and from mul-
tivariate to multivariate functional scenarios. Examples of the
"rst idea include the weighted average of the marginal func-
tional depths (Ieva and Paganoni 2013) and the simplicial and
modi"ed simplicial band depths (López-Pintado et al. 2014).
An example of the second idea is the multivariate functional
halfspace depth (Claeskens et al. 2014).

With the intensive development of di#erent depth notions,
various tools have been developed for visualizing functional
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data and detecting outliers. Hyndman and Shang (2010) made
use of the "rst two robust functional principal component scores
and presented functional versions of the bagplot and the high-
est density region plot. With the modi"ed band depth giving
the ranks among data, Sun and Genton (2011) proposed the
functional boxplot, a potent analog to the classical boxplot
(Tukey 1975), for visualizing functional data. For functional
data with a dependence structure, Sun and Genton (2012a)
provided an adaptive way of determining the outlier selection
factor in the adjusted functional boxplot. Arribas-Gil and Romo
(2014) explored the relationship between modi"ed band depth
and modi"ed epigraph index (López-Pintado and Wei 2011)
and proposed the outliergram to visualize and detect shape
outliers among functional data. Genton et al. (2014) introduced
a surface boxplot based on the modi"ed volume depth and
developed an interactive surface boxplot tool for the visual-
ization of samples of images. Mirzargar, Whitaker, and Kirby
(2014) extended the notion of depths from functional data to
curves, presenting the curve boxplot for visualizing ensembles
of 2D and 3D curves. Dai and Genton (2018a) developed a
two-stage functional boxplot for multivariate curves, combining
directional outlyingness (Dai and Genton 2019) and a classical
functional boxplot in the outlier detection procedure. Addi-
tionally, Dai and Genton (2018b) introduced the magnitude-
shape (MS) plot for visualizing both the magnitude and shape
outlyingness of multivariate functional data. Yao, Dai, and Gen-
ton (2020) proposed the trajectory functional boxplot and the
modi"ed simplicial band depth (MSBD) versus wiggliness of
directional outlyingness (WO) plot for visualizing trajectory
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Figure 1. Observed CD4 cell counts from 366 patients (black solid points) measured
from 18 months before to 42 months after seroconversion (the time period during
which a speci!c antibody develops and becomes detectable in the blood).

functional data. For more visualization examples, see the recent
review of Genton and Sun (2020).

The above visualization techniques can only be applied to
samples of curves measured on "ne and common grids. In prac-
tice, the grids are not always "ne or common; rather, curves are
sometimes observed on sparse or irregularly spaced time points.
Figure 1 shows a longitudinal study of CD4 cell counts (Gold-
smith, Greven, and Crainiceanu 2013) per milliliter of blood
to track the progress of HIV. Overall, there are 366 patients,
with between 1 and 11 observations per subject and a mean
of 5, yielding 1888 data points. Figure 2 presents a dataset of
malnutrition metrics, consisting of the prevalence of stunted
growth and low birth weight, between 1985 and 2019 for 77
countries. Sparseness appears randomly for the "rst variable,
stunted growth, and values for low birth weight are only avail-
able for years 2000 to 2015. Applying visualization tools to
sparse functional data is di!cult but necessary in order to
visualize sparse multivariate functional data.

Various ideas have been proposed to deal with missingness
in the notion of depth in the univariate functional case. A "rst
approach is to "t the sparse functional data before applying
current univariate depths and a second approach is to revise the
notions of depth for the sparse functional data case. One exam-
ple of the "rst approach is in López-Pintado and Wei (2011), in
which the ideas of univariate functional principal component
analysis (UFPCA, Yao, Müller, and Wang 2005) are applied
for sparse data "tting and the modi"ed band depth is used to
order the "tted data. Other available methods for "tting sparse
functional data include UFPCA under di#erent frameworks
(James, Hastie, and Sugar 2000, Liu, Ray, and Hooker 2017),
B-spline models (Thompson and Rosen 2008), and covariance
estimation (Xiao et al. 2018). It is worth noting that Goldsmith,
Greven, and Crainiceanu (2013) proposed a bootstrap proce-
dure to improve curve estimates by accounting for both uncer-
tainty in UFPCA decompositions and model-based estimates

based on UFPCA estimates in Yao, Müller, and Wang (2005).
Additionally, pointwise and simultaneous con"dence bands that
account for both model- and decomposition-based variability
were constructed. One example of the second approach is in
Sguera and López-Pintado (2021), where the idea of depth is
extended by incorporating both the curve estimation and its
con"dence bands (Goldsmith, Greven, and Crainiceanu 2013)
into the depth analysis, which can be applied to any univariate
functional depth.

Similar methods have been generalized to "t sparse data in
the multivariate functional setting. Zhou, Huang, and Carroll
(2008) modeled paired longitudinal data with principal com-
ponents and "tted them by penalized splines under the mixed-
e#ects model framework. However, their method is limited to
only two variables when the data are either observed or missing
simultaneously. Happ and Greven (2018) proposed a multivari-
ate functional principal component analysis (MFPCA) de"ned
on di#erent time grids, which is also suitable for data with
missing values. Li, Xiao, and Luo (2020) derived a fast algorithm
for "tting sparse multivariate functional data via estimating the
multivariate covariance function with tensor product B-spline.
However, a bootstrap procedure was not considered in the
sparse multivariate functional data to improve curve estimates.
Still, the depth of sparse multivariate functional data has not
been considered in detail.

The novel contributions in this article are 3-fold. First, we
implement a bootstrap procedure to improve the MFPCA "t
(Happ and Greven 2018). Second, we propose a revised depth
in the sparse multivariate functional case to determine the order
of sparse multivariate functional data. Third, we develop visual-
ization tools for both marginal and joint sparse functional data.
The sparse functional boxplot mainly displays the percentage
of sparse points within the central region, whereas the intensity
sparse functional boxplot highlights the intensity of the sparse
points in the central region.

The remainder of the article is organized as follows. The
procedure of "tting sparse multivariate functional data and
computing depths for sparse multivariate functional data are
considered in Section 2. Sparse and intensity sparse functional
boxplots, together with their two-stage forms, are presented
in Section 3. The depth selection and outlier detection per-
formance for di#erent visualization tools are demonstrated in
Section 4. Applications to the aforementioned CD4 and malnu-
trition data are presented in Section 5. The article ends with a
discussion in Section 6.

2. Ordering Sparse Multivariate Functional Data

We consider a two-step procedure to order sparse multivariate
functional data: "rst we generalize the bootstrap procedure
(Goldsmith, Greven, and Crainiceanu 2013) from UFPCA to
MFPCA (Happ and Greven 2018) to generate improved curve
estimates and con"dence bands; second, we consider various
notions of depth for sparse multivariate functional data. The
depth notions we consider are either from the direct general-
ization of the univariate revised functional depth (Sguera and
López-Pintado 2021) to multivariate functional data, or our new
idea described in Section 2.2.2.
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Figure 2. The observed prevalence of stunted growth and prevalence of low birth weight for 77 countries from 1985 to 2019. Observations are joined with solid black lines
if observed continuously; otherwise, joined with gray dashed lines.

2.1. Fitting Sparse Multivariate Functional Data

2.1.1. Data Structure and Notation
This article considers multivariate functional data. A multivari-
ate functional random variable Y (Hsing and Eubank 2015) is
a random vector with values in an in"nite-dimensional space.
A well-received model of multivariate functional data is to
consider paths of a stochastic process taking values in some
Hilbert space, H, of functions de"ned on some set T . First
we consider a p-variate (p ∈ Z+) stochastic process Y(t) =
(Y(1)(t(1)), . . . , Y(p)(t(p)))" with t" := (t(1), . . . , t(p)) ∈ T :=
T1 × · · · × Tp. Note that t is a p-dimensional vector, with
its element t(j) being a random time and independent of all
other random variables. Each element Y(j)(t(j)) (j = 1, . . . , p)
is de"ned on the domain Tj, where the Tjs are compact sets
in R with "nite Lebesgue measure. Brie$y speaking, Y(j)(t(j)):
Tj → R is assumed to be square-integrable in Tj, expressed
as L2(Tj). Second, we consider the p-dimensional functional
data Y = {Y(t)}t∈T and we have Y ∈ H, where the space
H := L2(T1) × · · · × L2(Tp).

For s, t ∈ T , de"ne the matrix of covariances C(s, t) :=
cov{Y(s), Y(t)} with elements Cij(s(i), t(j)) := cov{Y(i)(s(i)),
Y(j)(t(j))} for s(i) ∈ Ti and t(j) ∈ Tj. De"ne the covariance
operator ! : H → H with the jth element of !f for f ∈
H given by (!f )(j)(t(j)) := ∑p

i=1
∫
Ti

Cij(s(i), t(j))f (i)(s(i))ds(i)

for tj ∈ Tj. By the Hilbert-Schmidt Theorem (Renardy and
Rogers 2006, pp. 253–262), it follows that there exists a complete
orthonormal basis of eigenfunctions ψm = (ψ

(1)
m , . . . , ψ (p)

m )" ∈
H, m ∈ N of ! such that !ψm = νmψm and lim

m→+∞
νm = 0.

Here, νm is a sequence of nonzero real eigenvalues such that
ν1 ≥ ν2 ≥ · · · ≥ 0. In Proposition 2 of Happ and Greven
(2018), the covariance operator ! is a linear, self-adjoint and
positive operator. Let

∑∞
m=1 νmψ

(j)
m (s(j))ψ

(j)
m (t(j)) be the spec-

tral decomposition of Cjj(s(j), t(j)). Based on the property of !

and the decomposition of covariance elements, a multivariate
Karhunen-Loève representation (Happ and Greven 2018) for
Y(t) is Y(t) = µ(t) + ∑∞

m=1 ρmψm(t) for t ∈ T , µ(t) :=
E{Y(t)} is the mean function µ evaluated at time t, with the
element µ(j)(t(j)) = E{Y(j)(t(j))} for j = 1, . . . , p, and ψm(t)

is the mth (m ∈ N) eigenfunction evaluated at time t. Here,
ρm = ∑p

j=1
∫
Tj

{Y(j)(t(j)) − µ(j)(t(j))}ψ (j)
m (t(j))dt(j) are zero

mean random variables with cov(ρm, ρn) = νm if m = n, and
cov(ρm, ρn) = 0 if m (= n for m, n ∈ N.

In the following, let Y1, . . . , YN be a set of independent
observations of Y . In practice, we observe the functions
Y i(t) (i = 1, . . . , N) with error εi(t) = (ε

(1)
i (t(1)), . . . ,

ε
(p)
i (t(p)))", and the element ε

(j)
i (t(j))"

iid∼ N (0, σ 2
j ). Moreover,

the functions Y i(ti) are observed on sparse "nite grids at the
subject and element level, that is, the jth (j = 1, . . . , p) element
t(j)
i of ti (ti ∈ T ) can vary per curve. Let the observed functions

with measurement errors and the sparseness be Ỹ i(ti) such that
Ỹ i(ti) = Y i(ti) + εi(ti).

Then, the estimation of observed functions Ỹ i(ti) can be
approximated by the multivariate truncated Karhunen-Loève
expansions (Happ and Greven 2018) Y i(ti) such that Y i(ti) =
µ(ti) + ∑M

m=1 ρi,mψm(ti) + εi(ti). Here, M is the minimal
number of eigenfunctions that explain 99% variability in the
observed curves. De"ne # = (ψ1, . . . , ψM) the collection
of the "rst M eigenfunctions, V = diag{ν1, . . . , νM}, $ =
diag{σ 2

1 , . . . , σ 2
p }. We name the decomposition objects θ =

{M, µ, # , V , $}. Let the eigenscores for function Y i be ρi =
{ρi,m : m = 1, . . . , M}, the estimation of ρi is regarded as
an expectation based on the objects estimated in the MFPCA
decomposition, θ̂ . Then, the estimation of Y i(ti) is seen as the
expectation of Ỹ i(ti) based on the estimated θ̂ and ρ̂i. Take a
random t = (t(1), . . . , t(p))" ∈ T . The estimated jth component
of the ith observation at t(j) is expressed as below:

Ŷ(j)
θ̂ ,i(t(j)) = E

{
Ỹ(j)

i (t(j))|̂ρθ̂ ,i, θ̂
}

= µ̂(j)(t(j)) +
M∑

m=1
ρ̂i,mψ̂

(j)
m (t(j)),

i = 1, . . . , N, j = 1, . . . , p, t(j) ∈ T (j). (1)

The MFPCA estimation is available in MFPCA package (Happ
2018) in R (Ihaka and Gentleman 1996).
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2.1.2. Bootstrap Improved Estimation and Con!dence Bands
The MFPCA "t is a model-based estimate without taking
into account the uncertainty in the decomposition objects.
Hence, we implement the bootstrap (Goldsmith, Greven, and
Crainiceanu 2013) to combine the model-based conditional
estimates across the distribution of decompositions.

Assume we implement the bootstrap with B = 100 replicates.
We randomly select N functions from observations Y1, . . . , YN
with replacement, and obtain the model-based estimate in (1).
The bootstrap MFPCA (BMFPCA) "t is obtained from the iter-
ated expectation and we provide the estimated jth component
of the ith observation at t(j) as below:

Ŷ(j)
i (t(j)) = Eθ̂

[
EỸ(j)

i |̂θ

{
Ỹ(j)

i (t(j))|̂ρθ̂ ,i, θ̂
}]

,

i = 1, . . . , N, j = 1, . . . , p, t(j) ∈ T (j). (2)

Like Happ and Greven (2018), we do not assume any
distribution for ρi,m. Thus, we use the naive bootstrap to
obtain the con"dence bands. Given the con"dence level α,
for each "xed time grid and the component of the curve,
we take the (1 − α

2 )th percentile across the bootstrap as the
con"dence upper bound, and the α

2 th percentile across the
bootstrap as the con"dence lower bound. Here, we de"ne the
jth component of the ith upper bound at t(j) as Y(j)

ub,i(t(j)) :=
q1− α

2
(Ŷ(j)

θ̂1,i(t(j)), . . . , Ŷ(j)
θ̂B,i(t(j))), where qβ(A) denotes the βth

percentile of the set A. Similarly, the jth component of the ith
lower bound at t(j) as Y(j)

lb,i(t(j)) := q α
2
(Ŷ(j)

θ̂1,i(t(j)), . . . , Ŷ(j)
θ̂B,i(t(j))).

We can easily obtain Yub,i(t) = (Y(1)
ub,i(t(1)), . . . , Y(p)

ub,i(t(p)))"

and Y lb,i(t) = (Y(1)
lb,i (t(1)), . . . , Y(p)

lb,i (t(p)))" with each compo-
nent given, and the con"dence bands bounded by Yub,i and
Y lb,i.

2.2. Notions of Depth for Sparse Multivariate Functional
Data

We take multivariate functional halfspace depth (MFHD,
Hubert, Rousseeuw, and Segaert 2015) as an example to
represent depth revision in sparse settings in later sections;
in principle, any reasonable multivariate functional depth can
be used. Since multivariate functional depth (MFD) requires
common time grids for all variables, without loss of generality,
we let Tj = T̃ for j = 1, . . . , p, where T̃ is a compact set
in R. Later, the revised depth can be proposed by applying
MFHD to the "tted data (see López-Pintado and Wei 2011 in
the univariate sparse functional case), or by taking the depths of
"tted data and their con"dence bands into account. There are
several implementations in the latter case, see Section 2.2.2 for
details.

2.2.1. Conventional Depth for Multivariate Functional Data
For X a random vector on Rp, let D(·; FX ) : Rp −→ [0, 1]
be a statistical depth function (Zuo and Ser$ing 2000) for the
probability distribution of X with associated cdf FX . Accord-
ingly, the depth region Dβ(FX ) at level β ≥ 0, is de"ned as
Dβ(FX ) = {X ∈ Rp : D(X; FX ) ≥ β}. We let Cp(T̃ ) be
continuous paths for the p-variate continuous functions with
t ∈ T̃ . The de"nition of MFD combines the local depths at each

time point and includes a weight function that may change with
time.

Consider such a p-variate stochastic process {X (t), t ∈ T̃ }
on Rp with cdf FX (t) at each time point t that generates
continuous paths in Cp(T̃ ). Take an arbitary Y ∈ Cp(T̃ ).
Let w be a weight function that integrates to one on the
domain T̃ . The MFD of Y is de"ned as MFD(Y ; FX ) =∫
T̃ D(Y(t); FX (t))w(t)dt. Here, if the weight is a constant,

then w(t) := w; if w(t) changes with time t, then w(t) :=
vol{Dβ(FX (t))}/

∫
T̃ vol{Dβ(FX (u))}du is proportional to the

volume of the depth region at time point t. The popula-
tion halfspace depth (HD, Tukey 1975) at Y(t) ∈ Rp is
HD(Y(t); FX (t)) = inf

u∈Rp,‖u‖=1
P{u"X (t) ≥ u"Y(t)}. Thus,

the population de"nition of MFHD is expressed as

MFHD(Y ; FX ) =
∫

T̃
HD(Y(t); FX (t))w(t)dt. (3)

In practice, instead of observing curves, one observes curve
evaluations at a set of time points t1 < · · · < tL in T̃ = [t1, tL],
not necessarily equidistant. Consider a sample of multivariate
functional observations X f (tl) = {X 1(tl), . . . , X N(tl); tl ∈ T̃ }
with at each time point t cdf FX (t),N . The sample multivariate
functional depth at Y ∈ Cp(T̃ ) is de"ned with t0 = t1,
tL+1 = tL and Wl =

∫ (tl+tl+1)/2
(tl−1+tl)/2 w̃(t)dt, by MFD(Y ; X f ) =

∑L
l=1 D(Y(tl); FX (tl),N)Wl. Similarly, Wl = w̃ · (tl+1 − tl−1)/2

if w̃(t) is a constant, otherwise Wl = vol{Dβ(FX (tl),N)}(tl+1 −
tl−1)/[

∑L
l=1 vol{Dβ(FX (tl),N)}(tl+1 − tl−1)]. The "nite-sample

halfspace depth (HD) is: HD(Y(tl); FX (tl),N) = 1
N min

u∈Rp,‖u‖=1
#{X i(tl), i = 1, . . . , N : u"X i(tl) ≥ u"Y(tl)}, where #
represents the number of counts. Therefore, the "nite sample
de"nition of MFHD is

MFHD(Y ; X f ) =
L∑

l=1
HD(Y(tl); FX (tl),N)Wl. (4)

2.2.2. Revised Depth for Sparse Multivariate Functional
Data

We let Ŷ f = {Ŷ1, . . . , ŶN} be a set including N samples
of "tted multivariate functional data over dense time grids.
We also obtain a set of con"dence upper bounds Ŷ f

ub =
{Ŷub,1, . . . , Ŷub,N} and con"dence lower bounds Ŷ f

lb =
{Ŷ lb,1, . . . , Ŷ lb,N}. We list the revised depth notion in the "nite-
sample version, and the population version can be analogously
derived.

Besides applying the current multivariate functional depths
to the "tted data, we consider two additional ideas for revising
the notion of depth for sparse multivariate functional data.
They de"ne the revised depth of Y i (i = 1, . . . , N) as the
weighted average MFHD of the "tted data Ŷ i, the con"dence
upper bound Ŷub,i, and the con"dence lower bound Ŷ lb,i in
Ŷupd := {Ŷ f , Ŷ f

ub, Ŷ f
lb} with di#erent weights. Speci"cally,

the "rst depth assigns 1/3 to the "tted data, and to each of
its con"dence upper and lower bounds, which is the same
as that in Sguera and López-Pintado (2021) in the univariate
sparse functional case, while the second depth assigns 1/2
to the "tted data and 1/4 to its con"dence upper and lower
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bounds, respectively. The weights in the second depth are new.
We name the aforementioned revised depths the average-weight
revised depth RMFHDaw, and non-average-weight revised
depth RMFHDnaw:

RMFHDtype(Ŷ ; Ŷupd)

=






1
3 MFHD(Ŷ ; Ŷupd) + 1

3 MFHD(Ŷub; Ŷupd)

+ 1
3 MFHD(Ŷ lb; Ŷupd), if type = aw,

1
2 MFHD(Ŷ ; Ŷupd) + 1

4 MFHD(Ŷub; Ŷupd)

+ 1
4 MFHD(Ŷ lb; Ŷupd), if type = naw.

(5)

We apply the conventional depth MFHD and its revised forms
RMFHD to various data settings in simulations in Section 4.1,
and we identify the best depth according to the Spearman rank
coe!cient in Section 4.2.

3. Construction of Sparse Functional Boxplots

The revised depths in Section 2 make the visualization of sparse
multivariate functional data possible. The novel visualization
tools coined sparse functional boxplot and intensity sparse func-
tional boxplot not only keep the features of the original func-
tional boxplot (Sun and Genton 2011) but also display sparse-
ness features. We further add a section illustrating the process
of obtaining the two-stage (Dai and Genton 2018a) version of
those two visualization tools. Without loss of generality, we
use Zi (i = 1, . . . , N) to express the "tted data Ŷ i and the
corresponding set Zf := (Z1, . . . , ZN) in Section 3 and the
directional outlyingness is applied to only Zi but not its con-
"dence bands.

3.1. Sparse Functional Boxplot

The functional boxplot is constructed given the functional
depth values for functional observations. Similar to the classical
boxplot (Tukey 1977), it mainly displays "ve characteristics:
the central region, the median, the outliers, the nonoutlying
maximal bound, and the nonoutlying minimal bound. The
50% central region is delimited by the envelope of the 50%
deepest curves from the sample set Zf . In particular, the
sample 50% central region C0.5 for the jth (j = 1, . . . , p)
component is C(j)

0.5 = {(t, Z(j)(t)) : min
r=1,...,+N/2,

Z(j)
[r](t) ≤

Z(j)(t) ≤ max
r=1,...,+N/2,

Z(j)
[r](t), t ∈ T̃ }, where +N/2, is the

smallest integer not less than N/2, and Z(j)
[r](t) is the jth

component of the rth deepest curve evaluated at t for t ∈ T̃ .
The upper bound of the central region evaluated at time t is
Z(j)

ub,0.5(t) = max
r=1,...,+N/2,

Z(j)
[r](t), and the lower bound evaluated

at t is Z(j)
lb,0.5(t) = min

r=1,...,+N/2,
Z(j)

[r](t). We also de"ne the range of

C(j)
0.5 at t as the di#erence between the upper bound and lower

bound that R(j)
0.5(t) := max

r=1,...,+N/2,
Z(j)

[r](t) − min
r=1,...,+N/2,

Z(j)
[r](t).

The median Z(j)
+1,(t) is the curve with the highest depth.

Then, a curve Zo is detected as an outlier, if the measurement
of the jth component of Zo is higher than the summation of
1.5 times the range of C(j)

0.5 and the upper bound of C(j)
0.5(t) (or

lower than the di#erence between the lower bound of C(j)
0.5 and

1.5 times the range of C(j)
0.5(t)) at some time t. That is Z(j)

o (t) >

Z(j)
ub,0.5(t) + 1.5R(j)

0.5(t) or Z(j)
o (t) < Z(j)

lb,0.5(t) − 1.5R(j)
0.5(t). Let

So be the set of functional outliers. The nonoutlying maximal
(minimal) bound is established by connecting the maximal
(minimal) points at all time indexes excluding the outliers. That
is, Z(j)

ub(t) = max
Z∈Zf \So

Z(j)(t), and Z(j)
lb (t) = min

Z∈Zf \So
Z(j)(t) for

t ∈ T̃ .
The sparse functional boxplot, apart from displaying the

aforementioned features, underlines the sparseness features
in the median Z(j)

+1,(t), the 50% central region C(j)
0.5, and the

detected outliers So. The median is drawn in black for the
observed values and gray for the missing ones (Figure 3, second
row). At each time point t ∈ T̃ within C(j)

0.5, we count the
number of missing points n(j)

ms(t) and that of observed points
n(j)

obs(t), and obtain the sparseness proportion p(j)
s (t), which is

the number of sparse points divided by the total number of
points n(j)

ms(t)/{n(j)
ms(t)+n(j)

obs(t)}. Then, we de"ne the proportion
line such that: l(j)(t, p(j)

s (t)) := Z(j)
ub,0.5(t) − p(j)

s (t)R(j)
0.5(t) for

t ∈ T̃ . It is derived from subtracting the range of the central
region R(j)

0.5(t) times the sparseness proportion p(j)
s (t) from the

upper bound of C(j)
0.5(t) at each time index t. Then, we display

this percentage with a smoothed l(j)(t, p(j)
s (t)) over T̃ showing

the observed proportion below and the sparseness proportion
above. We "ll the observed proportion area in magenta and
the sparseness proportion area in gray. In addition, we plot a
thin dotted cyan reference line, l(j)(t, 0.5), to represent the case
of p(j)

s (t) = 0.5 for all t ∈ T̃ . For the detected outliers, the
"tted missing values are represented by dashed gray, whereas
the observed values are marked with dashed red.

3.2. Intensity Sparse Functional Boxplot

The sparse functional boxplot provides information about the
sparse point proportion at each time, but we do not know the
distribution of sparse points within the central region. To give
a pattern of the intensity of sparse points, we construct the
intensity sparse functional boxplot.

In addition to the aforementioned characteristics of the func-
tional boxplot, we display the intensity of "tted missing point
patterns within the 50% central region C(j)

0.5, for any jth (j =
1, . . . , p) component. Assuming that we have altogether S orig-
inal missing point data within C(j)

0.5, we regard the "tted sparse
points within C(j)

0.5 as a spatial point pattern u(j)
s := {(ts, Z(j)

s ) ∈
C(j)

0.5, s = 1, . . . , S} with ts the time, and Z(j)
s the "tted value

inside the central region. Then we compute a kernel smoothed
intensity function (Diggle 1985) from the point pattern. The
intensity estimate is corrected by dividing it by the convolution
of the Gaussian kernel with the observation window. Thus, the
sparseness intensity at a new point u(j) ∈ C(j)

0.5 is
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Figure 3. The !rst row displays the univariate functional data from a Gaussian process with mean zero and exponential covariance function C(t, s) = exp{−|t − s|},
with the corresponding sparse functional boxplots on the second-row and the corresponding intensity sparse functional boxplots on the third-row. Plots from left to right
display three sparseness cases: No sparseness, medium sparseness (on average 20% values are missing in each curve), and high sparseness (on average 60% values are
missing in each curve).

λ(u(j)) = e(u(j))
S∑

s=1
wsK(u(j)

s − u(j)), (6)

where K is the Gaussian smoothing kernel, e(u(j)) is an edge
correction factor, and ws are the weights. The computation of
such intensity is available in the R package spatstat.core (Bad-
deley et al. 2022). By default, the intensity values of "tted sparse
point patterns are expressed in estimated missing points per unit
area.

Then, we normalize λ(u(j)) to λnorm(u(j)) := λ(u(j))

max
u(j)

s

{λ(u(j)
s )}

. To

visualize the change of the relative intensity, we use a color
scale between magenta for the case of zero intensity within the
central region (λnorm(u(j)) = 0), and white for the case of
maximal intensity within the central region (λnorm(u(j)) = 1).
Furthermore, we can divide the intensity λ(u(j)) by the maxi-
mum among all variables j if one wants to compare the relative

intensity among variables. We also leave an option of whether
contours of the sparseness intensity are shown in the central
region.

To illustrate the visualization tools, we generate univariate
functional data without outliers through a Gaussian process
with zero mean and exponential covariance C(t, s) = exp{−|t−
s|}. Here we normalize the sparseness intensity by dividing it by
the maximum sparseness intensity across all sparseness levels.
The "rst row in Figure 3 displays settings of no sparseness,
medium sparseness, and high sparseness, with the correspond-
ing sparse functional boxplots on the second-row and the corre-
sponding intensity sparse functional boxplots on the third-row.
Here, medium sparseness implies around 20% missing values
in every curve, whereas high sparseness implies around 60%
missing values in every curve. The magenta and gray colors
in the sparse functional boxplot represent the proportion of
observed values and missing values within the central region.
Correspondingly, in the intensity sparse functional boxplot, the
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magenta color means zero sparseness intensity, the tomato color
means 25% of the maximum sparseness intensity, the gold color
means 50% of the maximum sparseness intensity, the yellow
color means 75% of the maximum sparseness intensity, and the
white color means the maximum 100% sparseness intensity.

When the data are complete, the sparse and intensity sparse
functional boxplots ("rst column, Figure 3) reduce to the orig-
inal functional boxplot. When the sparseness level increases,
the sparse functional boxplot (second row, Figure 3) changes
from no gray area to almost a 20% gray area, and then nearly
60% gray area in proportion to the central region, re$ecting
the change of the missing proportion per time index. Simul-
taneously, we observe that the sparseness intensity (third row,
Figure 3) within the central region generally increases with
the increase of sparseness, which can be seen from the corre-
sponding color change from the all-over magenta to tomato and
magenta, and "nally to mainly gold, yellow, and few white.

Given an intensity sparse functional boxplot, we can "nd
the area with the most and least relative sparseness intensities
and compare the relative sparseness intensity at any "xed time
within the central region. Taking the bottom right intensity
sparse functional boxplot as an example, we see the area with the
time index between 5 and 40 and the value between −1 and 0.2
is labeled in yellow, which indicates at least 75% of the maximum
sparseness intensity in this area. In contrast, the area close to the
envelopes of the central region is colored with gold and tomato,
which indicates 25%–50% of the maximum sparseness intensity.
On the other hand, the central region in the bottom middle
intensity sparse functional boxplot is mainly colored in magenta
and tomato, which indicates the sparseness intensity is smaller
than 25% of the maximal sparseness intensity. In addition,
the bottom middle intensity sparse functional boxplot displays
that the "tted sparse values mainly concentrate on the tomato
region.

3.3. Sparse Two-Stage Visualization Tools

Similar to the generalization of the two-stage functional box-
plot (Dai and Genton 2018a) from the functional boxplot, the
sparse two-stage functional boxplot and intensity sparse two-
stage functional boxplot can be easily proposed by implement-
ing the directional outlyingness (Dai and Genton 2019).

Consider a p-variate stochastic process {X (t), t ∈ T̃ } on Rp

with at each time point t cdf FX (t) that generates continuous
paths on Cp(T̃ ). Take an arbitrary Z ∈ Cp(T̃ ). Then Z(t) is
a random vector on Rp. These aforementioned authors "rst
de"ned the outlyingness O(Z(t), FX (t)) = {1/D(Z(t), FX (t)) −
1} · v, where D is a statistical depth function from Rp, and v
is the unit vector pointing from the median of FX (t) to Z(t).
Then, they proposed the magnitude outlyingness and shape
outlyingness: MO(Z, FX ) :=

∫

T̃
O(Z(t), FX (t))dt ∈ Rp and

VO(Z, FX ) :=
∫

T̃
{O(Z(t), FX (t))−MO(Z, FX)}"{O(Z(t), FX (t))

− MO(Z, FX )}dt ∈ R. Here MO and VO are used to measure
the magnitude and shape outlyingness of a curve.

A robust Mahalanobis distance (RMD, Rousseeuw 1984) is
calculated between all (MOi, VOi)" ∈ Rp+1 (i = 1, . . . , N)
and its mean vector obtained from the minimal covariance

determinant (Rousseeuw and Van Driessen 1999). Then, a
curve Zo is recognized as an outlier if its (MOo, VOo)" satis"es
RMD2

(MOo,VOo)"
≥ CFRMD,αf . Here, CFRMD,αf is the (1 − αf )th

percentile of Fisher’s F distribution, FRMD (Hardin and Rocke
2005), and αf is the signi"cance level.

With the directional outlyingness, we can improve the
robustness of the sparse functional boxplot in a two-stage
procedure. First, we obtain the set of outliers by applying
directional outlyingness to the "tted data. Then, we apply the
sparse functional boxplot procedure to the remaining curves.
We add the detected outlying curves from stage one, with green
color labeling the observed points, and gray color labeling the
missing points.

Overall, when combined, the sparse functional boxplot and
the intensity sparse functional boxplot provide information
about the proportion and intensity of sparse points within
the central regions. The choice between the sparse functional
boxplot and the sparse two-stage functional boxplot depends on
the existence of outliers in the data. When no outliers exist, there
is no di#erence between the sparse functional boxplot and the
sparse two-stage functional boxplot. Speci"cally, the simulation
in Section 4.3 explores performances of the sparse functional
boxplot and its two-stage form when detecting multivariate
functional outliers.

4. Simulation Study

This section starts with an introduction of the data settings and
a discussion of sparseness. Next, we address two problems in
the simulations: "rst, we explore the choice of the best depth;
second, we evaluate the outlier detection performances of the
sparse functional boxplot and the sparse two-stage functional
boxplot with the best depth.

4.1. Simulation Settings

For simplicity, we assume p = 3. The complete data are de"ned
on common time grids. Then we assign the point, peak, and
partial sparseness to variables 1–3 in the simulations. We set
N = 100, and the common times are from 50 equidistant
points in [0, 1]. We use µ(t) = (5 sin(2π t), 5 cos(2π t), 5(t −
1)2)", εi(t) iid∼ N3(0, diag{σ 2

1 , σ 2
2 , σ 2

3 }). Here, σ 2
1 , σ 2

2 , σ 2
3 are

independent and follow U[0.3, 0.5], where U means a random
sampling from the uniform distribution. We use orthonormal
Fourier basis functions to construct ψ

(j)
m (t). We let M = 9,

ρi,m
iid∼ N (0, νm), and νm = M+1−m

M .
Eight models are provided by specifying the eigenfunctions

and outliers as below. Model 1 is a reference model without
contamination, while the remaining models include contami-
nation by adjusting µ(t), ui(t), or εi(t), with a contamination
level of 10%. Models 2–4 introduce magnitude outliers (Sun and
Genton 2011), and Models 5–8 generate shape outliers (Dai and
Genton 2018b, Dai and Genton 2019).

Model 1 (no outlier): Y i(t) = µ(t) + ui(t) + εi(t) = µ(t) +∑M
m=1 ρi,mψm(t) + εi(t), i = 1, . . . , N.
Model 2 (persistent magnitude outliers): u(j)

i,ou(t) = u(j)
i (t) +

8wi,j for t ∈ [0, 1], where wi,j (j = 1, 2, 3) follows the binomial
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distribution of obtaining 1 with probability 0.5, and −1 with
probability 0.5 and all wi,js in the manuscript follow the same
distribution as in Model 2.

Model 3 (isolated magnitude outliers): u(j)
i,ou(t) = u(j)

i (t) +
8wi,j for t ∈ [Ts, Ts + 0.1], and Ts is from U[0, 0.9].

Model 4 (shape outliers I): µou(t) = (µ(1)(t − 0.3), µ(2)(t −
0.2), µ(3)(t − 0.5))".

Model 5 (shape outliers II): u(1)
i,ou(t) = u(1)

i (t) + 2 sin(4π t),
u(2)

i,ou(t) = u(2)
i (t) + 2 cos(4π t), u(3)

i,ou(t) = u(3)
i (t) + 2 cos(8π t),

u(j)
i,no(t) = u(j)

i (t) + Uj, j = 1, 2, 3, where Uj is generated from
U[−2.1, 2.1].

Model 6 (mixed outliers): µi,ou(t) = ((2 + R(1)
i )µ(1)(t), (2 +

R(2)
i )µ(2)(t), (2 + R(3)

i )µ(3)(t) − 6)", j = 1, 2, 3, where R(j)
i

follows Exp(2), and Exp is a random sampling from the expo-
nential distribution.

Model 7 (joint outliers): u(1)
i,ou(t) = Z1t sin(π t), u(2)

i,ou(t) =
Z2t cos(π t), u(3)

i,ou(t) = Z3t sin(2π t), u(1)
i,no(t) = Z4t sin(π t),

u(2)
i,no(t) = (8 − Z4)t cos(π t), u(3)

i,no(t) = (Z4 − 2)t sin(2π t),
where Z1-Z4 are generated from U[2, 8].

Model 8 (covariance outliers): εi(t) are generated from a
stationary isotropic cross-covariance model belonging to the
Matérn family (Gneiting, Kleiber, and Schlather 2010) with
smoothness parameters νij > 0: Cii(s, t) = σ 2

i M(|s − t|; νii)
for i = 1, 2, 3, and Cij(s, t) = ρijσiσjM(|s − t|; νij) for 1 ≤ i (=
j ≤ 3, and M(r; νij) = 21−νij

!(νij)
(
√

2νijr)νij Kνij(
√

2νijr), where Kν

is the modi"ed Bessel function of the second kind of order ν,
νii is generated from the uniform distribution, with ranges [2, 3]
for the nonoutliers and [0.1,0.2] for the outliers, νij = νii+νjj

2 ,
ρii = 1, and ρij = i+j

i+j+3 .
To categorize possible sparseness scenarios, we consider

three sparseness types in marginal functional data: point, peak,
and partial sparseness. Point sparseness means that missing
points appear randomly in time grids, and the location and
number of missing points are independent per curve. The peak
and partial sparseness mean that values are missing during a
continuous interval starting from a random point tstart. The
di#erence between peak and partial sparseness lies in the
tstart. In the peak sparseness, for each curve, tstart is generated
independently, while in the partial sparseness, all curves with
missing values share a common tstart. De"ne psize (the number
of curves with missing values divided by the total number of
curves) as the probability of a curve with at least one missing
value in all sample curves, and pcurve (the number of missing
points in the curve divided by the number of complete-time
measurements in the curve) as the probability of sparseness
in each of those curves with missing values. Hence, we use
the sparseness parameter ps = (psize, pcurve, tstart)" to tune the
sparseness.

It is worth noting that tstart is only required in the peak
and partial sparseness as a starting point of the missing inter-
val. Here, tstart is a realization from U[0, 1 − pcurve]. Usually,
the missing interval does not cover the "rst or the last time
point in [0, 1]. Otherwise, it is di!cult for BMFPCA to recon-
struct curves with suitable "ttings unless the curves follow
simple monotone trends, such as for the data application in
Section 5.2.

We display a simulation for Models 1, 2, 4 (Figure 4) to
illustrate the sparseness types and ps, while the remaining sim-
ulation visualizations are shown in the supplementary material.
In Figure 4, variables 1–3 belong to the point ("rst column),
peak (second column), and partial (third column) sparseness
types, respectively, with N = 100 and contamination level
10%. Here, psize = 100% means that 100 curves from the
simulation contain missing values, and pcurve = 40% means that
in each curve with missing values, there are about 20 time mea-
surements with missing values given 50 time measurements.
We can see that each curve has di#erent missing time points
per curve in the point sparseness ("rst column, Figure 4). In
addition, we also observe a missing interval with the various
start of missing points per curve (second column, Figure 4)
in the peak sparseness, and a missing interval with a common
start of missing points (third column, Figure 4) in the partial
sparseness.

4.2. Simulation I: Choice of Depth

We apply the conventional depth to the MFPCA and BMF-
PCA "ts (Equations (1)–(2)), and name them MFHDmfpca and
MFHDbmfpca, respectively. We set B = 100 in the BMFPCA
"t. The BMFPCA "t is more robust and closer to the original
data than the MFPCA "t. Hence, we apply the remaining revised
depths RMFHDaw and RMFHDnaw (Equation (5)) to the BMF-
PCA "t.

The Spearman rank correlation coe!cient (Kendall 1945)
assesses how well the rank based on the "tted data, given by the
revised depth, correctly associates with the rank based on the
original complete data, given by the conventional depth. When
the coe!cient is closer to 1, the stronger the association, and
when it is closer to 0, the weaker the association.

The Spearman coe!cients of the above four methods are
presented in Figure 5 under various pcurve with psize = 100%
for Models 1, 2, and 4 when the point sparseness exists in
all variables. The results of the remaining models from the
point sparseness and those from other sparseness types can be
seen in the supplementary materials. All depths show a bit of
weaker association when the curve is sparser on average in the
peak and partial sparseness types. Generally, the application of
MFHD to the BMFPCA has a stronger rank association than
the application of MFHD to the MFPCA with the original data
and have a slight advantage over the revised depth MFHDaw and
MFHDnaw.

Overall, MFHDbmfpca provides excellent performance with
its strong rank associated with the original data and simple
procedure of application for sparse multivariate functional data.
It omits the con"dence band construction and thus, requires
no additional depth modi"cations and is more e!cient in
computation.

4.3. Simulation II: Choice of Visualization Tools

We apply the sparse functional boxplot and the sparse two-stage
functional boxplot in di#erent scenarios with MFHDbmfpca. The
two-stage functional boxplot detects both magnitude and shape
outliers with the help of directional outlyingness. We use pc, the

https://doi.org/10.1080/10618600.2022.2066680
https://doi.org/10.1080/10618600.2022.2066680
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Figure 4. Simulations for Models 1 (no outlier), 2 (persistent magnitude outliers), and 4 (shape outliers I), with pcurve = 40% and psize = 100%. Typical curves are colored
in black in the simulation plot, and outliers are colored in red, with the observed points shown as black dots. Arti!cial sparseness is represented by gray dashed lines. We
assign the point, peak, and partial sparseness to variables 1, 2, and 3 in the simulation.

correct detection rate (the number of correctly detected outliers
divided by the number of outliers) and pf , the false detection rate
(the number of falsely detected outliers divided by the number
of nonoutliers) to measure the performance of the above two
tools in multivariate functional outlier detection.

We display in Table 1 the performance of pc and pf for Models
2 and 4 when the point sparseness is assigned to all variables,
while the other performances are provided in the supplementary
materials. Overall, the sparse two-stage functional boxplot per-
forms better in detecting true outliers than the sparse functional
boxplot, at the expense of a slightly higher pf .

BMFPCA "ts the curves a%er removing the mean trend;
hence, it manages to capture the typical behavior of the curves
independently of their amplitude. Suppose outliers show an
abnormality, especially in the shi%ed amplitude or time. In that
case, the sparse two-stage functional boxplot obtains a high
pc, see Models 2 (persistent magnitude outliers) and 4 (shape
outliers I). We see a somewhat smaller pc, between 50% and

80%, from the sparse two-stage functional boxplot in Models
3 (isolated magnitude outliers), 6 (mixed outliers), and 7 (joint
outliers), where the abnormality mainly appears in an interval
of the outliers. Furthermore, we notice that the sparse two-
stage functional boxplot does not detect outliers well in Models
5 (shape outliers II) and 8 (covariance outliers), showing a
smoothness di#erence between abnormal and normal curves.
It is di!cult to detect the outlying samples due to not many
smoothness di#erences among the "tted curves. On the whole,
we recommend the sparse two-stage functional boxplot for
detecting potential outliers.

5. Applications

Applications include the univariate CD4 cell counts and bivari-
ate malnutrition data introduced in Section 1. The analysis
follows the procedures of "tting the data and consideration
between the sparse functional boxplot and its two-stage form.

https://doi.org/10.1080/10618600.2022.2066680
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Figure 5. Comparison of four depth ranking methods for Models 1, 2, and 4. The panels from top to bottom represent boxplots of Spearman coe"cients under various
data settings. In each setting, pcurve is given from 10% to 60%, with psize = 100% in the point sparseness type. The number of replicates is 100.

Table 1. The mean and standard deviation (in parenthesis) of the percentages pc and pf for the sparse functional boxplot and the sparse two-stage functional boxplot
with 100 replications and 100 curves when the curve sparseness pcurve is 20%, 40%, and 60%, respectively, and psize = 100% for the point sparseness type, in the presence
of Models 2 (persistent magnitude outliers) and 4 (shape outliers I).

Curve sparseness pcurve = 20% pcurve = 40% pcurve = 60%

Methods
Ratios pc pf pc pf pc pf

Sparse: Model 2 64.9 (25.0) 0.0 (0.0) 61.4 (23.5) 0.0 (0.0) 66.0 (25.5) 0.0 (0.0)
Sparse: Model 4 15.7 (19.4) 0.0 (0.0) 15.4 (21.4) 0.0 (0.0) 13.5 (19.4) 0.0 (0.0)
Sparse Two-stage: Model 2 100.0 (0.0) 0.0 (0.0) 100.0 (0.0) 0.0 (0.0) 100.0 (0.0) 0.0 (0.0)
Sparse Two-stage: Model 4 97.8 (4.9) 0.1 (0.5) 97.1 (6.3) 0.1 (0.4) 97.5 (4.8) 0.1 (0.4)

NOTE: The probability of outliers in each model is 10%.
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Figure 6. The sparse two-stage functional boxplot and the intensity sparse two-stage functional boxplot for observed CD4 cell counts. Seventy-eight outliers (green
dashes) are detected from directional outlyingness, and eight outliers (red dashes) are detected from the functional boxplot.

We do not show contours in the intensity sparse two-stage func-
tional boxplot for the CD4 cell counts due to the narrow range in
the central region, but we o#er them for the malnutrition data.

5.1. Univariate Case: CD4 Cell Counts Data

The human immune de"ciency virus (HIV) harms the body by
attacking an immune cell called the CD4 cell and, thus, making
the body more vulnerable to other illness-causing germs. Hence,
CD4 cell count per milliliter of blood (Taylor et al. 1989) can be
used to track the progression of HIV. A person with untreated
HIV will experience a series of stages: acute HIV infection (2–
6 weeks), stage one (1–5 years), stage two (6–9 years), stage
three (9–11 years), which is advanced HIV disease, and stage
four (11–12 years), which is called the acquired immunod-
e"ciency syndrome (AIDS). In the acute HIV infection and
in stage one, the CD4 cell count drops slowly and is usually
above 500; during stage two, it ranges between 350 and 499.
In the stage three, the CD4 count is 200–349, whereas in the
stage four the CD4 count is less than 200 (HIV.gov 2020).
These CD4 cell counts data are available in the refund package
(Crainiceanu and Goldsmith 2010) in R and were analyzed
by Goldsmith, Greven, and Crainiceanu (2013) to construct
the bootstrap improved con"dence bands for sparse functional
data. It includes observed CD4 cell counts for 366 infected
individuals from −18 to 42 months (Figure 1), where 0 repre-
sents seroconversion, the moment when the antibody becomes
detectable in the blood. The observation period in this dataset
includes acute HIV infection and stage one, or stage two for
some patients who are in worse situations.

Figure 6 contains the CD4 cell counts a%er they were "t-
ted with the iterated expectation from UFPCA, and ordered
according to the modi"ed band depth (MBD, López-Pintado
and Romo 2009). Compared to the original sparse observations
shown in Figure 1, the "t ranges between 20 and 2173, which
lies in the "eld of low and normal CD4 cell count per cubic
millimeter of blood. The CD4 cell count is a point sparseness
case with psize = 100.0% and pcurve is between 82.0% (11
observations per subject) and 98.4% (1 observation), which is
displayed by the magenta area in the sparse two-stage functional
boxplot in Figure 6. The sparse functional boxplot detects seven
outliers with a contamination level of 3.0%. The sparse two-stage

functional boxplot detects 78 outliers (green dashed lines) from
directional outlyingness and eight extra outliers (red dashed
lines) from the functional boxplot, with a contamination level
of 23.0%. Additionally, the intensity sparse two-stage functional
boxplot indicates that gold and yellow colors "ll most central
parts within the central region, which correspond to 50%–75%
of the maximal sparseness intensity. Conversely, the region with
small sparseness intensity mainly lies in the magenta areas,
one at the start when the CD4 estimated counts are below 700
and above 1200, and another between 20 and 42 months a%er
seroconversion when the CD4 cell counts are below 400 and
above 800.

The 50% central region starts between 631 and 1497 at 18
months before seroconversion and ends between 316 and 744 at
42 months a%er seroconversion. The median shows a change in
CD4 cell counts from 935 to 500 during the observation period.
There are 27.5% of patients who show CD4 cell counts below
350 at 42 months a%er seroconversion, implying that they are
close to, or already at, stage three. However, 89.5% of outliers
show a rising trend of CD4 cell counts above 500 in the period
a%er seroconversion, suggesting that they are on the right track
against HIV.

In this analysis, we wish to review the progression of an HIV
infection during di#erent observation periods according to the
visualization tools we introduced. In the window period, before
the HIV antibody can be detected in the blood, CD4 cell counts
have an inverse U shape, which can be seen from outliers and the
upper fence of the central region (Figure 6) between 10 months
before and 10 months a%er the seroconversion, implying the
process of rapid replication and severe drop in CD4 cells. This
re$ects the HIV "rst invading the body, stimulating CD4 cells
to replicate, and then infecting CD4 cells by injecting them with
its genetic material, leading to a fast drop in the number of CD4
cells. Surprisingly, there are 21 patients with CD4 cell counts
around or above 1000 at 42 months a%er seroconversion, whose
treatment or lifestyle may deserve further study.

5.2. Bivariate Case: Malnutrition Data

The malnutrition data, from the United Nations Children’s Fund
(UNICEF 2020) data warehouse, include two variables, stunted
growth and the prevalence of low birth weight, collected in
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Figure 7. Visualization of stunted growth and low birth weight data for 77 countries with the sparse two-stage functional boxplot and the intensity sparse two-stage
functional boxplot. One-to-one maps (number, outlier/median nation) are the following: (2, Argentina), (5, Burundi), (8, Bangladesh), (10, Bhutan), (12, Chile), (22, Ecuador),
(25, Guinea-Bissau), (36, Kuwait), (51, Nepal), (57, Romania), and (71, United States).

77 countries from 1985 to 2019. Stunted growth is de"ned as
the proportion of newborns aging from 0 to 59 months with
a low height-for-age measurement (below two standard devi-
ations). The stunted growth data represent a point sparseness
case with 4–23 recordings per nation; pcurve ranges from 29.4%
in Bangladesh to 88.2% in Argentina. The low birth weight data
are a partial sparseness case, with recordings during 2000–2015
only; pcurve = 52.9% for all nations.

Since only one outlier (Bangladesh) is detected as a magni-
tude outlier in the prevalence of the low birth weight via the
sparse functional boxplot, we implemented the sparse two-stage
functional boxplot and detected 10 outliers. First, the gray and
magenta in the central region (top row of Figure 7) display the
sparseness proportion of the central region for each variable. In
addition, the median and fences of the central region display
that most nations went through a signi"cant decline in stunted
growth prevalence over time, while most countries had a slow
drop or rise before 2000 and a steady trend since 2000 in low
birth weight. Furthermore, the low birth weight prevalence is
right-skewed which can be seen from the margin di#erence
between the central region and the fences. The skewed setting
suggests more attention to nations with high prevalence of low
birth weight is needed.

The intensity sparse two-stage functional boxplot (bottom
row, Figure 7) displays the relative intensity of the "tted missing
values inside the central region for each variable. The missing
values for the prevalence of low birth weight are most intense
in the almost white region: with the interval 1985–1988 and
the estimates around 30%–40%. Comparatively, the missing
values with the most intensity for the low birth weight lie in
the region where the estimates are between 8% and 12% and
time is between 2018–2019. In addition, we can see the relative
intensity of "tted missing values in both variables at each "xed
time. For instance, for the stunted growth, when the year is
1985, missing values are mostly distributed between 25% and
40% prevalence labeled in white, followed by the prevalence
between 21%–25% and 40%–42% labeled in yellow, a%er that
the prevalence between 19–21% and 42–44% labeled in gold,
then the prevalence between 16%–19% and 45%–49% labeled
in tomato, succeeded by the prevalence above 49% including the
least sparseness intensity labeled in magenta.

We use the human development index (United Nations Devel-
opment Programme 2019), which categorizes countries into
low, medium, high, and very high human development groups,
to analyze the malnutrition trend in these countries. In the
last 35 years, the median, Ecuador, shows a representative
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trend of a smooth decline from 40% to 24% in the prevalence
of stunted growth, and a constant trend around 12% in the
prevalence of low birth weight. Outliers exist in almost all
human development groups, o%en showing an abnormality in
the shape of stunted growth prevalence. From the very high
human development group, Argentina, Chile, Kuwait, Romania,
and the United States demonstrate an exception in shape lying at
the bottom of the stunted growth’s prevalence and a slow rise at
the bottom of the low birth weight’s prevalence. From the middle
human development group, Bhutan shows only an abnormal
shape in the prevalence of stunted growth, which is not far from
their respective median. Finally, Bangladesh, Burundi, Guinea-
Bissau, and Nepal, which all belong to the low human develop-
ment index group, lie at the top of the samples in Figure 7. They
all show a faster decline rate in the prevalence of the stunted
growth compared to the rest of their group and a signi"cant
decline, especially for Bangladesh and Nepal, in the prevalence
of the low birth weight. Nevertheless, they are on top of the
curves in 2019 and need more actions to reduce malnutrition.

6. Discussion

In this article, we proposed two $exible tools, the sparse func-
tional boxplot and the intensity sparse functional boxplot, for
visualizing sparse multivariate functional data. We also intro-
duced a sparse form of the two-stage functional boxplot (Dai
and Genton 2018a), which is itself a derivation from the func-
tional boxplot (Sun and Genton 2011) with better outlier detec-
tion. All of these can be applied in both univariate and multivari-
ate functional settings. When the data are observed on common
time grids without missing values, the tools reduce to the orig-
inal functional boxplot and two-stage functional boxplot. We
believe the introduction of visualization tools for sparse data is
of great importance due to the wide applications of longitudinal
studies and the common challenge of missing values in real
datasets.

To apply the visualization tools described above to sparse
functional data, an appropriate data "tting and depth for data
ordering is required. In addition to the novel contribution in the
sparse and intensity sparse functional boxplot, we improved the
"tting of data (MFPCA, Happ and Greven 2018) through the
iterated expectation from bootstrap (Goldsmith, Greven, and
Crainiceanu 2013), and investigated several depths for sparse
multivariate functional data. Here, we took the multivariate
functional halfspace depth (MFHD, Claeskens et al. 2014) as a
building block for proposing various revised depths for sparse
multivariate functional data. We obtained the best depth via
the Spearman rank coe!cient simulated in various data settings
and sparseness scenarios. In the univariate functional setting,
MFPCA became UFPCA (Yao, Müller, and Wang 2005), and we
used the modi"ed band depth (MBD, López-Pintado and Romo
2009) to order the data, prior to the application of visualization
tools.

Besides data visualization, the sparse functional boxplot and
its two-stage form can also detect outliers. Simulations demon-
strated that generally, the sparse two-stage functional boxplot
performed better than the sparse functional boxplot in outlier
detection. In some shape outlier cases, the advantage of outlier
detection from directional outlyingness (Dai and Genton 2019)

is not obvious, and may require further innovations in outlier
detection. Two public health applications, CD4 cell counts in
individuals and malnutrition data at national levels, displayed
how information may be extracted from the sparse two-stage
functional boxplot and the intensity sparse two-stage functional
boxplot. Extensions of the methods proposed in this article to
sparse images and surfaces could be explored with the surface
boxplot (Genton et al. 2014).

Supplementary Materials

Supplements: R-code for sparse and intensity functional boxplots: R-code
for the commands sparse_&plot and intensity_sparse_&plot described in
the articles (sparse_&plot.R & intensity_sparse_&plot.R). Simulation code:
Simulation code for the optimal depth under eight models described in
the article (00_execute_simulation_spearman.R) and the outlier detection
under eight models described in the article (execute_outldetect.R). CD4
data: CD4 count for 366 subjects from 18 months before to 42 months
a%er seroconversion, load cd4 (Goldsmith, Greven, and Crainiceanu 2013)
in refund package. Malnutrition data: The original sparse prevalence of
stunted growth and low birth height from 1985 to 2019 (malnutrition.csv).
Supplementary Material: The performances of several depths and outlier
detection under eight models in di#erent sparseness types. All "les can be
found in a single zip "le (sparse_&plot.zip).
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