
Received: 1 March 2022 Revised: 11 September 2022 Accepted: 20 September 2022

DOI: 10.1002/env.2770

R E S E A R C H A R T I C L E

Large-scale environmental data science with ExaGeoStatR

Sameh Abdulah Yuxiao Li Jian Cao Hatem Ltaief David E. Keyes
Marc G. Genton Ying Sun

Computer, Electrical and Mathematical
Sciences and Engineering Division, King
Abdullah University of Science and
Technology (KAUST), Thuwal,
Saudi Arabia

Correspondence
Marc G. Genton, Computer, Electrical and
Mathematical Sciences and Engineering
Division, King Abdullah University of
Science and Technology (KAUST),
Thuwal, Saudi Arabia
Email: marc.genton@kaust.edu.sa

Funding information
King Abdullah University of Science and
Technology

Abstract
Parallel computing in exact Gaussian process (GP) calculations becomes nec-
essary for avoiding computational and memory restrictions associated with
large-scale environmental data science applications. The exact evaluation of
the Gaussian log-likelihood function requires O(n2) storage and O(n3) oper-
ations, where n is the number of geographical locations. Thus, exactly com-
puting the log-likelihood function with a large number of locations requires
exploiting the power of existing parallel computing hardware systems, such as
shared-memory, possibly equipped with GPUs, and distributed-memory sys-
tems, to solve this exact computational complexity. In this article, we present
ExaGeoStatR, a package for exascale geostatistics in R that supports a paral-
lel computation of the exact maximum likelihood function on a wide variety
of parallel architectures. Furthermore, the package allows scaling existing GP
methods to a large spatial/temporal domain. Prohibitive exact solutions for
large geostatistical problems become possible with ExaGeoStatR. Paralleliza-
tion in ExaGeoStatR depends on breaking down the numerical linear algebra
operations in the log-likelihood function into a set of tasks and rendering
them for a task-based programming model. The package can be used directly
through the R environment on parallel systems without the user needing
any C, CUDA, or MPI knowledge. Currently, ExaGeoStatR supports several
maximum likelihood computation variants such as exact, diagonal super tile
and tile low-rank approximations, and mixed-precision. ExaGeoStatR also pro-
vides a tool to simulate large-scale synthetic datasets. These datasets can help
assess different implementations of the maximum log-likelihood approximation
methods. Herein, we show the implementation details of ExaGeoStatR, analyze
its performance on various parallel architectures, and assess its accuracy
using synthetic datasets with up to 250K observations. The experimen-
tal analysis covers the exact computation of ExaGeoStatR to demonstrate
the parallel capabilities of the package. We provide a hands-on tutorial
to analyze a sea surface temperature real dataset. The performance evaluation
involves comparisons with the popular packages GeoR, fields, and bigGP
for exact Gaussian likelihood evaluation. The approximation methods in

Environmetrics. 2023;34:e2770. wileyonlinelibrary.com/journal/env © 2022 John Wiley & Sons Ltd. 1 of 28
https://doi.org/10.1002/env.2770

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com/journal/ENV
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fenv.2770&domain=pdf&date_stamp=2022-11-06

2 of 28 ABDULAH et al.

ExaGeoStatR are not considered in this article since they were analyzed in
previous studies.

K E Y W O R D S

environmental application, Gaussian process, Matérn covariance function, maximum likelihood
optimization, parameter estimation, prediction

1 INTRODUCTION

Massive data require a delicate analysis to extract meaningful information from their complex structure. With the
availability of large data volumes coming from different sources, an objective of data science is to combine a set of
principles and techniques from data mining, machine learning, and statistics to support a better understanding of the
given data. Like other sciences, environmental science has been very much impacted by the field of data science. Indeed,
a vast pool of techniques has been developed to understand spatial and spatio-temporal data coming from intelligent
sensors or satellite images. However, new challenges have arisen with today’s data sizes that require a unique treatment
paradigm.

Environmental applications deal with measurements regularly or irregularly located across a geographical region.
Gaussian processes (GPs), or Gaussian random fields (GRFs), are among the most useful tools in applications for fitting
spatial datasets. For the last two decades, GPs have been used extensively to model spatial data and are able to cover a
wide range of spatial data with different specifications (Gelfand & Schliep, 2016). Spatial data can also be described as
random effects, hence they can often be modeled with a Gaussian distribution. Therefore, the dependencies in spatial
data can be described through a GP.

GRFs also serve as building blocks for numerous non-Gaussian models in spatial statistics such as trans-GRFs, mix-
ture GRFs and skewed GRFs. For example, Xu and Genton (2017) introduced the Tukey g-and-h random field which
modifies the GRF by a flexible form of variable transformation; Andrews and Mallows (1974), West (1987), and Rue and
Held (2005) considered the scale-mixture of Gaussian distributions and GRFs; and Allard and Naveau (2007) and Azza-
lini (2005) proposed many skewed GRFs and their variations. However, likelihood-based inference methods for GP models
are computationally expensive for large-scale spatial datasets. It is crucial to provide fast computational tools to fit a GP
model to large-scale spatial datasets often available in many real-world applications.

Specifically, suppose Z(s) is a stationary GRF with mean function m(s) and covariance function C(s, s′), and we observe
data on a domain D ⊂ Rd at n locations, s1, … , sn. Then, the random vector {Z(s1), … ,Z(sn)}⊤ is assumed to follow a
multivariate Gaussian distribution:

∀{s1, … , sn} ⊂ D, {Z(s1), … ,Z(sn)}⊤ ∼n(𝝁,𝚺), (1)

where 𝝁 = {m(s1), … ,m(sn)}⊤ and 𝚺 are the mean vector and the covariance matrix of the n-dimensional multivariate
normal distribution. Given 𝝁 and 𝚺, the (Gaussian) likelihood of observing z = {z(s1), … , z(sn)}⊤ at the n locations is

L(𝝁,𝚺) = 1
(2𝜋)n∕2|𝚺|1∕2 exp

{

−1
2
(z − 𝝁)⊤𝚺−1(z − 𝝁)

}

. (2)

The (i, j)th element of 𝚺 is Σij = C(si, sj), where the covariance function C(si, sj) is assumed to have a parametric form
with unknown vector of parameters𝜽. Various classes of covariance functions can be found in, for example, Cressie (2015).
For simplicity, in this work, we assume the mean vector 𝝁 to be zero to focus on estimating the covariance parameters.
We choose the most popular isotropic Matérn covariance kernel, which is specified as,

Σij = C(||si − sj||) =
𝜎

2

2𝜈−1Γ(𝜈)

(
||si − sj||

𝛽

)
𝜈


𝜈

(
||si − sj||

𝛽

)

, (3)

where ||si − sj|| is the Euclidean distance between si and sj, Γ(⋅) is the gamma function, 
𝜈
(⋅) is the modified Bessel

function of the second kind of order 𝜈, and 𝜎

2, 𝛽 > 0, and 𝜈 > 0 are the key parameters of the covariance function
controlling the variance, spatial range, and smoothness, respectively. The Matérn covariance kernel is highly flexible

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 3 of 28

and includes the exponential (𝜈 = 1∕2) and Gaussian (𝜈 = ∞) kernels as special cases. The variance, spatial range, and
smoothness parameters, 𝜎2, 𝛽, and 𝜈 determine the properties of the GRF.

The typical inference for GRFs includes parameter estimation, stochastic simulation, and kriging (spatial prediction).
Among these tasks, parameter estimation, or model fitting, is the most time-consuming. Once the parameters are esti-
mated, one can easily simulate multiple realizations of the GRF or obtain predictions at new locations. To obtain the
maximum likelihood estimator (MLE), we need to optimize the likelihood function in Equation (2) over 𝜽 = (𝜎2

, 𝛽, 𝜈)⊤.
However, the likelihood for a given 𝜽 requires computing the inverse (𝚺(𝜽)−1) and the determinant (|𝚺(𝜽)|) of the
covariance matrix 𝚺(𝜽), and performing the triangular linear solve (𝚺(𝜽)−1Z). The most time-consuming operation to
compute the likelihood function is the Cholesky factorization for 𝚺(𝜽), which requires O(n3) operations and O(n2)
memory. This factorization is required to compute the inverse and the determinant of 𝚺(𝜽). Due to the likelihood esti-
mation complexity, the standard methods and traditional algorithms for GRFs are computationally infeasible for large
datasets.

On the other hand, technological advances in sensor networks along with the investments in data monitoring, col-
lection, resource management provide massive open-access spatial datasets (Finley et al., 2015). The unprecedented data
availability and the challenging computational complexity call for novel methods, algorithms, and software packages to
deal with modern “Big Data” problems in spatial statistics.

A broad literature focuses on developing efficient methodologies by approximating the covariance function in the
GP model, so that the resulting covariance matrix is easier to compute. Sun et al. (2012), Bradley et al. (2016), and
Liu et al. (2020) systematically reviewed these methods. Some popular approximation methods are covariance tapering
(Furrer et al., 2006; Kaufman et al., 2008), discrete process convolutions (Higdon, 2002; Lemos & Sansó, 2009),
fixed rank kriging (Cressie & Johannesson, 2008), lattice kriging (Nychka et al., 2015), and predictive processes
(Banerjee et al., 2008; Finley et al., 2009). Meanwhile, some studies proposed to approximate the Gaussian likelihood
function using conditional distributions (Katzfuss & Guinness, 2021; Vecchia, 1988) or composite likelihoods
(Eidsvik et al., 2014; Varin et al., 2011), and some seek for equivalent representation of GPs using spectral density
(Fuentes, 2007) and stochastic partial differential equations (Lindgren et al., 2011).

A recent direction of this research aims at developing parallel algorithms (Datta et al., 2016; Guhaniyogi &
Banerjee, 2018; Katzfuss & Hammerling, 2017; Paciorek et al., 2015) and using modern computational architec-
tures, such as multicore systems, GPUs, and supercomputers, in order to avoid insufficient approximation of the GP
(Simpson et al., 2012; Stein, 2014). Aggregating computing power through high-performance computing (HPC) becomes
an important tool in scaling existing software in different disciplines to handle the exponential growth of datasets
generated in these fields (Vetter, 2013). However, the literature lacks a well-developed HPC software that practitioners
can use to support their applications with HPC capabilities. Although most studies provide reproducible source codes,
they are difficult to extend to new applications, especially when the algorithms require certain hardware setups.
R (Ihaka & Gentleman, 1996) is the most popular software in statistics, applied analytics, and interactive exploration of
data by far. As a high-level language, however, R is relatively weak for HPC compared to lower-level languages, such
as C, C++, and Fortran. Scaling statistical software and bridging HPC with the R language can be performed using two
different strategies. One strategy has been followed by the pbdR (Ostrouchov et al., 2012) project, Programming with Big
Data in R, which transfers the HPC libraries to the R environment by providing a high-level R interface to a set of HPC
libraries such as MPI, ScaLAPACK, ZeroMQ, to name a few. However, one drawback of this strategy is that the R developer
should have enough background in HPC to be able to use the provided interfaces to scale his/her code. Another strategy
that we adopt in this article is to implement the statistical functions using an HPC-friendly language such as C. Then it
is easier to directly wrap the C functions into R functions. In this case, these functions can directly be used inside the R
environment without the need to understand the underlying HPC architectures or the development environment.

This article presents ExaGeoStatR, a high-performance package in R for large-scale environmental data science
and geostatistical applications that depends on a unified C-based software called ExaGeoStat (Abdulah et al., 2018a).
ExaGeoStat is able to fit GP models and provide spatial predictions and simulations for geostatistics appli-
cations in large-scale domains. ExaGeoStat provides both exact and approximate computations for large-scale
spatial datasets. Besides the exact method, the software also supports three approximation methods: diago-
nal super tile (DST), tile low-rank (TLR), and mixed-precision (MP) computations. This study highlights the
capabilities of the ExaGeoStatR exact computations since it can be considered a benchmark for the perfor-
mance of other computation methods. Moreover, the evaluation of the DST and the TLR approximations has
already been covered in Abdulah et al. (2018a, 2018b, 2019, 2022) and Hong et al. (2021). The software also
includes a synthetic dataset generator for generating large spatial datasets with the exact prespecified covariance

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 28 ABDULAH et al.

function. Such large datasets can be used to perform broader scientific experiments related to large-scale
computational geostatistics applications. Besides its ability to deal with different hardware architectures such as mul-
ticore systems, GPUs, and distributed systems, ExaGeoStatR utilizes the underlying hardware architectures to its full
extent. Existing assessments on ExaGeoStat show the ability of the software to handle up to 3.4 million spatial locations
on manycore systems with exact calculations (Abdulah et al., 2022).

Existing R packages for fitting GRFs include GeoR (Ribeiro & Diggle, 2016), fields (Nychka et al., 2017), spBayes
(Finley et al., 2007, 2015), RandomFields (Schlather et al., 2015, 2019), INLA (Martins et al., 2013; Rue et al., 2009), and
bigGP (Paciorek et al., 2015). These packages feature different degrees of flexibility as well as computational capacity. The
spBayes package fits GP models in the context of Bayesian or hierarchical modeling based on MCMC. The RandomFields
package implements the Cholesky factorization method, the circulant embedding method (Dietrich & Newsam, 1996),
and an extended version of Matheron’s turning bands method (Matheron, 1973) for the MLE of GRFs. The INLA pack-
age uses an integrated nested Laplace approximation to tackle additive models with a latent GRF, which outperforms the
MCMC method. The bigGP package utilizes distributed memory systems through RMPI (Gropp et al., 1999) to imple-
ment the estimation, prediction, and simulation of GRFs. The packages GeoR and fields both estimate the GRF covariance
structures designed for spatial statistics while GeoR provides more flexibilities, such as estimating the mean structure
and the variable transformation parameters. Among these popular packages, only the bigGP package, according to our
knowledge, focuses on distributed computing, which is essential for solving problems in data-rich environments in exact
mode. The bigGP package was built using the RMPI and OpenMP libraries to facilitate GP calculations on manycore sys-
tems. The bigGP package relies on block-based algorithms to perform the underlying linear algebra operations required to
perform the GP calculations. Compared to the bigGP package, ExaGeoStatR provide better performance since it depends
on the state-of-the-art parallel linear algebra operations through applying tile-based algorithms to perform the required
linear solvers. Table 1 provides a summary of some of the existing packages for fitting GRFs. The comparison includes
common features for each package and if it supports parallel execution or not.

Our package ExaGeoStatR, at the current stage, performs data generation, parameter estimation, and spatial predic-
tion for the univariate GRF with mean zero and a Matérn covariance structure, which is a fundamental model in spatial
statistics. We feature breakthroughs in the optimization routine for the MLE and the utilization of heterogeneous compu-
tational units. Specifically, we build on the optimization library NLopt (Johnson, 2014) and provide a unified application
programming interface (API) for multicore systems, GPUs, clusters, and supercomputers. The package also supports
using the great circle distance on the sphere in constructing the covariance matrix. These parallelization features largely
reduce the time-per-iteration in computing exact MLEs compared with existing packages and make GRFs even with 106

locations estimable on hardware accessible to most institutions.

T A B L E 1 Comparison of some existing Gaussian process software

Package Platform Version Exact calc. Approx. calc. Supports parallel execution Reference

bigGP R V0.1-7 ✓ × ✓ Paciorek et al. (2015)

ExaGeoStatR R V1.0.1 ✓ ✓ ✓ This work

fields R V14.1 ✓ × × Nychka et al. (2017)

GeoR R V1.9-2 ✓ × × Ribeiro and Diggle (2016)

GPfit R V1.0-8 ✓ × × MacDonald et al. (2015)

GpGp R V0.4.0 × ✓ × Guinness (2021)

GPvecchia R V0.1.3 ✓ ✓ × Katzfuss et al. (2020)

GPy Python V1.0.7 ✓ ✓ × Matthews et al. (2017)

gstat R V2.0-9 ✓ × × Pebesma (2004)

INLA R V22.05.07 × ✓ ✓ Lindgren and Rue (2015)

LaGP R V1.5-7 × ✓ ✓ Gramacy (2016)

mlegp R V3.1.9 ✓ × ✓ Dancik and Dorman (2008)

RandomFields R V3.1.50 ✓ × × Schlather et al. (2015)

spBayes R V0.4-6 ✓ × ✓ Finley et al. (2007)

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 5 of 28

The remainder of this article is organized as follows. Section 2 states the basics of ExaGeoStatR, and the package
components for keen readers. Section 3 compares the estimation accuracy and time of ExaGeoStatR with two aforemen-
tioned exact computation packages, that is, GeoR and fields, with simulated data. It demonstrates the efficiency that can
be gained when the ExaGeoStatR package utilizes powerful architectures including GPUs and distributed memory sys-
tems. Section 4 is a tutorial to fit a GRF to a sea surface temperature dataset with more than ten thousand spatial locations
per day and perform kriging with the estimated parameter values. Section 5 concludes with the contributions of the Exa-
GeoStatR package. In the Appendix, we provide a user guide for installing the ExaGeoStatR package on different hardware
environments.

2 SOFTWARE OVERVIEW

2.1 ExaGeoStat outline

ExaGeoStat1 is a C-based software that targets environmental applications through a high-performance paral-
lel implementation of the MLE operation that is widely used for geospatial statistics (Abdulah et al., 2018a).
This software provides a novel solution to deal with the scaling limitation impact of the MLE operation by
exploiting the computational power of emerging hardware architectures. ExaGeoStat permits exploring the MLE
computational limits using state-of-the-art high-performance dense linear algebra libraries by leveraging a sin-
gle source code to run on various cutting-edge parallel architectures with the aide of runtime systems soft-
ware. The “separation of concerns” philosophy adopted by ExaGeoStat from the beginning permits improving the
software from different perspectives by allowing fast linear solvers and porting the code to different hardware
architectures.

ExaGeoStat is developed to solve the MLE problem for a given set of data observed at n geographical locations on a
large scale and to provide a prediction solution for unobserved values at new locations. The software also allows for exact
synthetic data generations with a given covariance function, which can be used to test and compare different approxi-
mation methods. To sum up, ExaGeoStat includes three primary tools: large-scale synthetic data generator, the Gaussian
MLE, and the geospatial predictor.

In ExaGeoStat, the MLE operation is implemented in four different ways: fully dense (exact), DST (Abdulah
et al., 2018a), TLR (Abdulah et al., 2018b), and MP (Abdulah et al., 2019, 2022). The four different implementations
rely on state-of-the-art parallel algebraic computations by exploiting advances in algorithmic solutions and many-
core computer architectures. The parallel implementation consists in dividing the given covariance matrix into a set
of small tiles where a single processing unit can process a single tile at a time. The main difference between dif-
ferent implementations is the structure of the underlying covariance matrix. In dense computation, matrix tiles are
represented in fully double-precision format as shown in Figure 1a. The provided solution is exact but with the
cost of more computing power and storage space. The DST implementation depends on annihilating some of the
off-diagonal tiles because their contributions and qualitative impact on the overall statistical problem may be lim-
ited while depending on diagonal tiles, which should have a stronger influence on the underlying model. Choosing
the number of tiles to be ignored is up to the user who should expect losing some accuracy with more zero tiles.
Figure 1b depicts the covariance matrix in the case of DST representation where two-diagonal tiles are represented in
dense format while all the other tiles are set to zero. The TLR implementation depends on representing the tiles in
low-rank format. Currently, ExaGeoStat supports the singular value decomposition (SVD) technique to compress the
off-diagonal tiles in low-rank while other compression methods exist in the literature. The TLR computation depends
on the TLR linear algebra operations that can provide fast computation with appropriate accuracy. In Figure 1c,
the TLR approximation method is used where the k most significant singular values/vectors are captured for each
off-diagonal tile to maintain the overall fidelity of the numerical model depending on the application-specific accu-
racy. Finally, the MP implementation is inspired by the DST approximation technique. Instead of ignoring some
off-diagonal tiles and setting their elements as zero, ExaGeoStat represents their elements in lower-precision, that
is, single or half. In this case, we can speed up the computation compared to the fully dense implementation but
with higher accuracy than the DST approximation. Figure 1d depicts the MP covariance matrix structure supported
by ExaGeoStat.

1https://github.com/ecrc/exageostat

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/ecrc/exageostat

6 of 28 ABDULAH et al.

(a) Fully dense (Exact) (b) Diag. Super-Tile (DST) (c) Tile Low-Rank (TLR) (d) Mixed-Precision (MP)

F I G U R E 1 ExaGeoStat supports various computation methods. The tile is a subset of the matrix with size ts × ts. Here ts should be
tuned for performance on parallel systems. DP refers to double-precision (64-bit) tile, SP refers to single-precision (32-bit) tile, and HP refers
to half-precision (16-bit) tile

2.2 The ExaGeoStat infrastructure

To provide the different computational variants shown above, ExaGeoStat internally relies on three parallel linear algebra
libraries to construct the basic linear algebra operations for the MLE computation. Exact, DST, and MP approximation
computations rely on the Chameleon library, a high-performance numerical library that provides high-performance dense
linear solvers (Chameleon, 2021) or the DPLASMA library, dense linear algebra algorithms on massively parallel archi-
tectures (Bosilca et al., 2011). The TLR approximation computation depends on the HiCMA library, a hierarchical linear
algebra library on manycore architectures, that provides parallel approximation solvers (Abdulah et al., 2021). The HiCMA
is associated with the STARS-H library, a high-performance -matrix generator library on large-scale systems, which
provides test cases for the HiCMA library (STARS-H, 2021). Both Chameleon and HiCMA libraries provide linear algebra
operations through a set of sequential task-based algorithms.

For hardware portability, ExaGeoStat features the StarPU (Augonnet et al., 2011) and PaRSEC (Bosilca et al., 2013)
dynamic runtime systems as backends. The runtime system proposes a kind of abstraction to improve the user’s pro-
ductivity and creativity. For example, Chameleon and HiCMA provide sequential task-based linear algebra operations
through a sequential task flow (STF) programming model. StarPU is able to execute the set of given sequential tasks in
parallel with given hints of the data dependencies (e.g., read, write, and read-write). The main advantage of using runtime
systems that rely on task-based implementations is becoming oblivious to the targeted hardware architecture. Multiple
implementations of the same tasks are generated for: CPU, CUDA, OpenCL, OpenMP, and MPI, to name a few. To achieve
the highest performance, the runtime system decides which implementation will achieve the highest performance at
runtime. For the first execution, the runtime system generates a set of cost models that determine the best hardware for
optimal performance during the given tasks. This set of cost models may be saved for future executions.

The top layer of ExaGeoStat is the optimization toolbox. ExaGeoStat relies on an open-source C/C++ nonlinear
optimization toolbox, NLopt (Johnson, 2014), to perform the MLE optimization operation. Among 20 global and local
optimization algorithms supported by the NLopt library, we selected the bound optimization by quadratic approximation
(BOBYQA) algorithm to be our optimization algorithm. BOBYQA performs well with our target nonlinear problem with
a global maximum point. BOBYQA is a numeric, global, derivative-free, and bound-constrained optimization algorithm.
It generates a new computed point on each iteration by solving a trust-region subproblem subject to given constraints.
In ExaGeoStat, only upper and lower bound constraints are used. Though BOBYQA does not require evaluating the
derivatives of the cost function, it iteratively employs an updated quadratic model of the objective, so there is an implicit
assumption of smoothness.

In summary, ExaGeoStat relies on a set of software that expands the software portability capabilities. Figure 2 shows
the ExaGeoStat infrastructure with four main layers: the BOBYQA algorithm from the NLopt library for optimization
purpose; the log-likelihood estimation upper-level operation; the Chameleon/HiCMA/DPLASMA libraries, which provide
exact (the focus of this study) and approximate solvers for the linear algebra operations using task-based parallel
algorithms; and the StarPU/PaRSEC dynamic runtime systems, which translate the software for execution on the
appropriate underlying hardware. Table 2 summarizes the complete list of software dependencies. An optimized BLAS
library should be available based on the hardware architecture, for example, Intel MKL for CPU and OpenBLAS for GPU.

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 7 of 28

F I G U R E 2 ExaGeoStat infrastructure

T A B L E 2 ExaGeoStat software dependencies

Software Description

NLopt Nonlinear optimization library provides a common interface for several optimization algorithms
implementations

Chameleon A dense linear algebra software relying on sequential task-based algorithms and dynamic runtime systems

HiCMA Hierarchical computations on manycore architectures: a low rank matrix computation library exploiting the
data sparsity of the matrix operator

DPLASMA A dense linear algebra package for distributed heterogeneous systems

StarPU A runtime system library for task-based programming model running on shared/distributed-system
architectures as well as GPU-based systems

PaRSEC A generic framework for architecture aware scheduling and management of micro-tasks on distributed
many-core heterogeneous architectures

STARS-H Software for testing accuracy, reliability, and scalability of hierarchical computations: a high performance
low-rank matrix approximation library generating low-rank matrices on shared/distributed-memory systems

Intel MKL/OpenBLAS Optimized linear algebra libraries implementations for CPU/GPU

hwloc Portable hardware locality provides a portable abstraction of the hierarchical topology of modern architecture

GSL GNU Scientific Library provides a set of numerical computing routines

The hwloc library is used to abstract the underlying hardware topology to the runtime system. In contrast, the GSL library
provides a vast set of numerical functions that are needed by some of the covariance functions. For instance, the Bessel
and gamma functions for the Matérn covariance function.

2.3 ExaGeoStatR package

To facilitate the use of large-scale executions in the R environment, we present a package in R, that is, ExaGeoStatR,2
on top of our ExaGeoStat software that provides high-performance geospatial statistics functions in R. This package in
R should help disseminate our software to a large computational and spatial statistics community. To the best of our
knowledge, most of the existing R solutions for the MLE problem are sequential and restricted to limited data sizes. A
few of them depend on running on multiple cores within the same shared memory system by enabling OpenMP support.
ExaGeoStatR targets all the existing parallel hardware architectures, including GPUs and distributed memory systems,
with a high-level abstraction of the underlying hardware architecture for the user. Table 3 gives an overview of current

2https://github.com/ecrc/exageostatR

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/ecrc/exageostatR

8 of 28 ABDULAH et al.

T A B L E 3 Overview of ExaGeoStatR functions

Function name Description

exageostat_init Initiate ExaGeoStat instance, defining the underlying hardware (i.e., number of CPU/GPU cores and
the tile size)

simulate_data_exact Generate z measurements vector at n unstructured random 2D locations

simulate_obs_exact Generate z measurements vector at n given 2D locations

exact_mle Compute the MLE model parameters (exact computation)

dst_mle Compute the MLE model parameters (DST approximation computation)

tlr_mle Compute the MLE model parameters (TLR approximation computation)

mp_mle Compute the MLE model parameters (mixed-precision approximation computation)

exact_predict Predict measurements at new locations with given model parameters (exact computation)

exact_mloe_mmom Compute MLOE and MMOM metrics (Hong et al., 2021) based on new locations with given model
parameters (exact computation)

exact_fisher Compute Fisher information matrix with given model parameters (exact computation)

exageostat_finalize Finalize current active ExaGeoStat instance

ExaGeoStatR functions with a description of their main operations. We provide an ExaGeoStatR installation tutorial in
the Appendix.

3 SIMULATION STUDIES

In this section, we provide a set of examples with associated code to better understand the ExaGeoStatR package. The
examples possess three goals: (1) provide step-by-step instructions of using ExaGeoStatR on multiple different tasks; (2)
assess the performance and accuracy of the proposed exact computation compared to existing R packages; and (3) assess
the performance of the ExaGeoStatR package using different hardware architectures. All the upcoming experiments rely
on the Chameleon linear algebra library and StarPU runtime system when executing the ExaGeoStatR functions.

3.1 Performance evaluation of ExaGeoStatR

The performance of ExaGeoStatR is evaluated on various systems: the experiments in Examples 1 and 2 are implemented
on a Ubuntu 16.04.5 LTS workstation with a dual-socket 8-core Intel Sandy Bridge Intel Xeon E5-2650 without any GPU
acceleration; Example 3 is assessed on a dual-socket 14-core Intel Broadwell Intel Xeon CPU E5-2680 v3 running at 2.40
GHz and equipped with 8 NVIDIA K80s (2 GPUs per board); Example 4 is tested on KAUST’s Cray XC40 supercomputer
system, Shaheen II, with 6174 nodes, each node is dual-socket 16-core Intel Haswell processor running at 2.30 GHz and
128 GB of DDR4 memory, and Example 5 is tested on KAUST Ibex cluster with up to 16 nodes. Two popular R packages,
GeoR (Ribeiro & Diggle, 2016) and fields (Nychka et al., 2017), are selected as our references for exact computations.

Since ExaGeoStatR works with multiple cores and different hardware architectures, users need to initialize their
preferred settings using the exageostat_init function. When users want to change or terminate the current hardware
allocation, the exageostat_finalize function is required:

> library (" e x a g e o s t a t r ")

> hardware = list (n c o r e s = 2 , ngpus = 0 , ts = 320 , p g r i d = 1 , q g r i d = 1)

> e x a g e o s t a t_ i n i t (hardware)

> e x a g e o s t a t_ f i n a l i z e ()

The hardware = list() specifies the required hardware to execute the code. Here, ncores and ngpus are the numbers of
CPU cores and GPU accelerators to deploy, ts denotes the tile size used for parallelized matrix operations, pgrid and qgrid
are the cluster topology parameters in case of distributed memory system execution.

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 9 of 28

T A B L E 4 ExaGeoStatR supported covariance functions

Kernel Description

ugsm-s Univariate Gaussian stationary Matérn—space

bgsfm-s Bivariate Gaussian stationary flexible Matérn—space

bgspm-s Bivariate Gaussian stationary parsimonious Matérn—space

tgspm-s Trivariate Gaussian stationary parsimonious Matérn—space

ugsm-st Univariate Gaussian stationary Matérn—space-time

bgsm-st Bivariate Gaussian stationary Matérn— space-time

3.2 Performance optimization options

In general, the performance of the ExaGeoStatR package on shared memory, GPUs, and distributed memory systems
can be optimized by explicitly using StarPU optimization environment variables. For example, the STARPU_SCHED
environment variable is used to select appropriate parallel tasks scheduling policies provided by StarPU, such as
random, eager, and stealing. It determines how to distribute individual tasks to different processing units. The user needs
to try various schedulers to satisfy the best performance on the target hardware. Other examples of environment vari-
ables are STARPU_LIMIT_MAX_SUBMITTED_TASKS and STARPU_LIMIT_MIN_SUBMITTED_TASKS which control
the number of submitted tasks and enable cache buffer reuse in main memory.

3.3 Example 1: Data generation

ExaGeoStatR offers two functions to generate realizations from GRFs with zero mean and Matérn covariance
function shown in Equation (3). The simulate_data_exact function generates a GRF at a set of irregularly
spaced random locations. Five inputs need to be given. The kernel input accepts one of seven covariance func-
tions: univariate Gaussian stationary Matérn—space (ugsm-s), bivariate Gaussian stationary flexible Matérn—space
(bgsfm-s), bivariate Gaussian stationary parsimonious Matérn—space (bgspm-s), trivariate Gaussian stationary parsi-
monious Matérn—space (tgspm-s), univariate Gaussian stationary Matérn—space-time (ugsm-st), and bivariate Gaus-
sian stationary Matérn—space-time (bgsm-st). Table 4 summarizes the current covariance functions supported by
ExaGeoStatR.

The theta input is a vector of the initial model parameters used to generate the simulated target geospatial dataset.
The theta vector length depends on the chosen kernel. The dmetric input accepts two values: euclidean for Euclidean
distance or great_circle for great circle distance in case of spherical data (Veness, 2010). The n input accepts the number
of geospatial locations of the generated data in the unit square as mentioned in Abdulah et al. (2018a). The code below
gives a simple example of generating a realization from a univariate Gaussian stationary random field at 1600 random
locations using the simulate_data_exact function:

> hardware = list (n c o r e s = 4 , ngpus = 0 , ts = 320 , p g r i d = 1 , q g r i d = 1)

> e x a g e o s t a t_ i n i t (hardware)

> data . exageo . i r r e g = s i m u l a t e_data_e x a c t (k e r n e l = " ugsm−s " , t h e t a= c (1 , 0 . 1 , 0 . 5) ,

dmetr ic = " e u c l i d e a n " , n = 1600 , seed = 0)

> e x a g e o s t a t_ f i n a l i z e ()

The code starts with defining the hardware resources which will be used to run the example. The second line ini-
tiates a new ExaGeoStatR instance. The third line simulates synthetic data using a given covariance function with a
given parameter vector. Finally, the last line closes the active ExaGeoStatR instance. The results are stored as a list,
data= list{x,y,z}, where x and y are coordinates, and z stores the simulated realizations. Here, x and y are generated from a
uniform distribution on [0, 1]. Therefore, the generated locations are irregular on [0, 1] × [0, 1] with simulate_data_exact
function. To generate data on a regular grid, outside the range of [0, 1] × [0, 1], or at specific locations, one can use the

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 28 ABDULAH et al.

simulate_obs_exact function by providing the coordinates x and y. The following code shows an example of generating a
GRF on a [0, 2] × [0, 2] spatial grid with 1600 locations:

> hardware = list (n c o r e s = 2 , ngpus = 0 , ts = 320 , p g r i d = 1 , q g r i d = 1)

> e x a g e o s t a t_ i n i t (hardware)

> xy = expand .grid ((1 : 40) / 2 0 , (1 : 40) / 20)

> x = xy [, 1]

> y = xy [, 2]

> data . exageo . r e g = s i m u l a t e_obs_e x a c t (x = x , y = y , k e r n e l = " ugsm−s " ,

t h e t a= c (1 , 0 . 1 , 0 . 5) , dmetr ic = " e u c l i d e a n ")

> e x a g e o s t a t_ f i n a l i z e ()

Line 5 in the code simulates synthetic data on given 2d locations using a predefined covariance function and a given
parameter vector. In Figure 3, some examples of data simulated using the ExaGeoStatR package at 1600 locations in the
unit square using the univariate Matérn stationary covariance function. The data was generated using seed = 1.

For comparison purpose, we also show how the sim.rf function of fields and the grf function of GeoR generate similar
GRFs:

> library (geoR)

> sims = g r f (n = 1600 , grid = " r e g " , cov . p a r s = c (1 , 0 . 1) , kappa = 0 . 5)

> data . geoR . r e g = list (x = sims$coords [, 1] , y = sims$coords [, 2] , z = sims$data)

F I G U R E 3 Data simulated using ExaGeoStatR with univariate Matérn stationary covariance function in (𝜎2, 𝛽, 𝜈) form at 1600
geospatial locations in the unit square

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 11 of 28

> library (fields)

> sigma_sq = 1

> grid = list (x = (1 : 40) / 20 , y = (1 : 40) / 20)

> xy = expand .grid (x =(1 : 40) / 20 , y =(1 : 40) / 20)

> o b j = matern .image .cov (grid = grid , t h e t a = 0 . 1 , smoothness = 0 . 5 , s e t u p = TRUE)

> sims .fields = sqrt (sigma_sq) * sim .rf (o b j)

> data .fields . r e g = list (x = xy [, 1] , y = xy [, 2] , z = c (sims .fields))

As can be seen, the three packages offer different types of flexibility in terms of data generation. However, when the
goal is to generate a large GRF on an irregular grid with more than 20K locations, both the sim.rf function and the grf
function are not feasible. The sim.rf function simulates a stationary GRF only on a regular grid, and the grf function
shows memory issues for large size (i.e., Error:vector memory exhausted). On the other hand, the simulate_data_exact
function can easily generate the GRF within one minute with the following code:

> n = 25600

> hardware = list (n c o r e s = 4 , ngpus = 0 , ts = 320 , p g r i d = 1 , q g r i d = 1)

> e x a g e o s t a t_ i n i t (hardware)

> data . exageo . r e g = s i m u l a t e_data_e x a c t (k e r n e l = " ugsm−s " , t h e t a= c (1 , 0 . 1 , 0 . 5) ,

dmetr ic = " e u c l i d e a n " , n , seed = 0)

> e x a g e o s t a t_ f i n a l i z e ()

Simulating data on a large scale requires enough memory and computation resources. Thus, we recommend the users
be consistent when generating large datasets with the available hardware resources. We also provide a set of synthetic
and real large spatial data examples that can be downloaded from https://ecrc.github.io/exageostat/md_docs_examples.
html for experimental needs.

3.4 Example 2: Performance on shared memory systems for moderate
and large sample size

To investigate the estimation of parameters based on the exact computation, we use the exact_mle function in
ExaGeoStatR. On a shared memory system with a moderate sample size, the number of cores (ncores) and tile size (ts)
significantly affect the performance (see Figure 4). The following code shows the usage of the exact_mle function and
returns execution time per iteration for one combination of n, ncores, and ts:

> hardware = l i s t (n c o r e s = 4 , ngpus = 0 , ts = 160 , p g r i d = 1 , q g r i d = 1)

> e x a g e o s t a t_ i n i t (hardware)

> data . exageo . r e g = s i m u l a t e_data_e x a c t (k e r n e l = " ugsm−s " , t h e t a= c (1 , 0 . 1 , 0 . 5) ,

dmetr ic = " e u c l i d e a n " , n = 1600 , seed = 0)

> r e s u l t = e x a c t_mle (data . exageo . reg , k e r n e l = " ugsm−s " , dmetr ic = " e u c l i d e a n " , o p t i m i z a t i o n =

l i s t (c l b = c (0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1) , cub = c (5 , 5 , 5) , t o l = 1e−4 , max_ i t e r s = 2 0))

> time = r e s u l t$ t ime_per_ i t e r

> e x a g e o s t a t_ f i n a l i z e ()

In the exact_mle function, the first argument, data = list{x, y, z}, is a list that defines a set of locations in
two-dimensional coordinates, x and y, and the measurement z of the variable of interest. The kernel input defines the

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://ecrc.github.io/exageostat/md_docs_examples.html
https://ecrc.github.io/exageostat/md_docs_examples.html

12 of 28 ABDULAH et al.

F I G U R E 4 Parallel execution performance of ExaGeoStatR under different hardware settings. Each subfigure corresponds to a single
sample size n and shows the execution time in seconds per iteration with regards to the number of cores up to 16. Curves with different colors
provide the effect of tile size (ts). (Red: ts = 100. Green: ts = 160. Blue: ts = 320. Purple: ts = 560)

required covariance function. Here, dmetric is a distance parameter, the same as in the simulate_data_exact function. The
optimization list specifies the optimization settings including the lower and upper bounds vectors, clb and cub, tol is
the optimization tolerance and max_iters is the maximum number of iterations to terminate the optimization process.
The optimization function uses the clb vector as the starting point of the optimization.

The above example has been executed using 3 different sample sizes, 16 different numbers of cores, and 4 different tile
sizes to assess the parallel execution performance of ExaGeoStatR. We visualize the results by using the ggplot function in
ggplot2 (Wickham, 2016) as shown in Figure 4. The figure shows the computational time for the estimation process using
a different number of cores up to 16 cores. The y-axis shows the total computation time per iteration in seconds, while the
x-axis represents the number of cores. The three subfigures show the performance with different n values: 400, 900, and
1600. Different curves represent different tile sizes which impact the performance of different hardware architectures.
The figure shows that on our Intel Sandy Bridge machine, the best-selected tile size is 100. Tiling helps parallel execution
to achieve the highest performance by increasing the reuse of data already loaded from the main memory (RAM) to
the processor cache and reducing the data movements from RAM to cache. So, obtaining the best tile size depends on
the processor cache size. Moving a complete tile from RAM to cache should increase the computation efficiency of the
underlying algorithm. However, small tiles can also impact performance by satisfying better load balancing between the
running processes, making determining the best tile size tricky. The simplest way to obtain the best tile size is to tune it
on new hardware architectures before running large problems. We recommend trying different tile sizes to get the best
performance from the ExaGeoStatR package.

After specifying the hardware environment settings, we test the accuracy of the likelihood-based estimation of
ExaGeoStatR in comparison with GeoR and fields. The counterparts to the exact_mle function are likfit in GeoR and spa-
tialProcess in fields. The simulated datasets from Example 1 are used as the input to assess the performance of parameter
estimations. The synthetic datasets are generated on n = 1600 points in [0, 1] × [0, 1]. We take a moderate sample size
that costs GeoR and fields approximately ten minutes to obtain enough results with different scenarios and iterations.
The mean structure is assumed to be constantly zero across the region. One hundred replicates of samples are generated
with different seed (seed = 1, … , 100) to quantify the uncertainty. We estimate the parameter values for each sample and
obtain 100 sets of estimates independently. A Matérn covariance kernel is selected to generate the covariance matrix with
nine different scenarios. Specifically, the variance is always chosen to be one, sigma_sq= 1.0, the spatial range takes three
different values representing high, medium, and low spatial correlation, beta = c(0.3, 0.1, 0.03), and the smoothness also
takes three values from rough to smooth, nu = c(0.5, 1, 2). The simulated datasets with moderate sample size are gener-
ated by the grf function. We choose the grf function in GeoR due to its flexibility in changing the parameter settings and
in switching between regular and irregular grids. Herein, we depend on irregular grids to generate the data.

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 13 of 28

T A B L E 5 Differences between the estimation functions of GeoR, fields, and ExaGeoStatR

Package GeoR fields ExaGeoStatR

Function name likfit spatialProcess exact_mle

Mean Estimated Estimated Fixed as zero

Variance Estimated Estimated Estimated

Spatial range Estimated Estimated Estimated

Smoothness Estimated Fixed Estimated

Default optimization method Nelder–Mead BFGS BOBYQA

Abbreviations: BFGS, Broyden–Fletcher–Goldfarb–Shanno; BOBYQA, bound optimization by quadratic approximation.

We set the absolute tolerance to 10−5 and unset the maximum number of iterations (max_iters= 0) to avoid
non-optimized results. Hence, each package can show its best performance to estimate the correct value of each parameter.
The simulated GRFs are generated by the grf function and stored as a list called data:

> library (geoR)

> sigma_sq = 1

> b e t a = 0 . 1 # choose one from c(0.3, 0.1, 0.03)

> nu = 0 . 5 # choose one from c(0.5, 1, 2)

> sims = g r f (n = 1600 , grid = " r e g " , cov . p a r s = c (sigma_sq , b e t a) , kappa = nu)

> data = list (x = sims$coords [, 1] , y = sims$coords [, 2] , z = sims$data)

We have tried to keep the irrelevant factors as consistent as possible when comparing ExaGeoStatR with GeoR and
fields. However, we identified some differences between the three packages that can hardly be reconciled. For example,
GeoR estimates the mean structure together with the covariance structure, and fields does not estimate the smoothness
parameter, 𝜈, in our package. In addition, in terms of the optimization methods, both GeoR and fields call the optim
function in stats to maximize the likelihood function. The optim function includes six methods such as Nelder–Mead and
BFGS. However, ExaGeoStatR uses the BOBYQA algorithm, which is one of the optimization algorithms of the sequential
NLopt library in C/C++. The BOBYQA algorithm has the best performance in terms of MLE estimation. However, it is
not available in the optim function. Table 5 lists the differences between the three packages.

Multiple algorithms are offered by the optim function and further implemented by GeoR and fields. However, many
studies in the literature point out that the optim function is not numerically stable for a large number of mathematical
functions, especially when a reparameterization exists (Mullen et al., 2014; Nash, 2014; Nash & Varadhan, 2011). Based on
the 100 simulated samples, we show that ExaGeoStatR provides faster computation and gives more accurate and robust
estimations with regards to the initial value and grid type.

We first estimate the parameters by exact_mle in ExaGeoStatR. We use the number of cores to be eight to repro-
duce the results on most machines. Users can specify their settings and optimize the performance by referring to the
results in Figure 4. The final results also report the time per iteration, total time, and the number of iterations for each
optimization:

> hardware = list (n c o r e s = 8 , ngpus = 0 , ts = 100 , p g r i d = 1 , q g r i d = 1)

> e x a g e o s t a t_ i n i t (hardware)

> r e s u l t = e x a c t_mle (data , k e r n e l = " ugsm−s " , dmetr ic = " e u c l i d e a n " , o p t i m i z a t i o n =

list (c l b = c (0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1) , cub = c (5 , 5 , 5) , t o l = 1e−4 , max_ i t e r s = 2 0))

> para_mat = r e s u l t$ e s t_ t h e t a

> time_mat = c (r e s u l t$time_per_ i t e r , r e s u l t$ t o t a l _time , r e s u l t$no_ i t e r s)

> e x a g e o s t a t_ f i n a l i z e ()

Then we estimate the parameters under the same scenarios using the likfit function in GeoR and the spatialProcess
function in fields. For GeoR and fields, the chosen optimization options are method = c("Nelder–Mead"), abstol = 1e-5,
and maxit = 500, where the maximum number of iterations set as 500 could never be reached. Because fields does not

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 28 ABDULAH et al.

optimize the smoothness, 𝜈, so we set it as the true value (an advantageous favor for fields). GeoR has to optimize the
mean parameter, at least a constant, but it is treated to be independent of the covariance parameters as the mean value of
data. In addition, to accelerate the optimization of fields, we minimize the irrelevant computation by setting gridN= 1:

> r e s u l t = s p a t i a l P r o c e s s (x = cbind (da ta$x , data$y) , y = data$z ,

cov .args = list (Covar iance = " Matern " , smoothness = nu) , gridN = 1 , r e l t o l = 1e−05)

> para_mat = c (r e s u l t$MLESummary [[7]] , r e s u l t$MLESummary [[8]] , r e s u l t$args$smoothness)

> time_mat = c (r e s u l t$ t i m i n g T a b l e [3 , 2]/dim (r e s u l t$MLEJoint$ l n L i k e .eval) [1] ,

r e s u l t$ t i m i n g T a b l e [3 , 2] , dim (r e s u l t$MLEJoint$ l n L i k e .eval) [1])

Using the GeoR package:

> time = system .time (f i t _o b j = l i k f i t (coords = cbind (da ta$x , data$y) ,

da ta = data$z , t r e n d = " c t e " , i n i .cov . p a r s = c (0 . 0 0 1 , 0 . 0 0 1) , fix . nugget = TRUE,

nugget = 0 , fix .kappa = FALSE , kappa = 0 . 0 0 1 , cov .model = " matern " , l i k . method = "ML" ,

l i m i t s = p a r s . l i m i t s (sigmasq = c (0 . 0 0 1 , 5) , phi = c (0 . 0 0 1 , 5) , kappa = c (0 . 0 0 1 , 5)) ,

method = " Nelder−Mead " , control = list (a b s t o l = 1e−5 , maxit = 5 0 0))) [3]

> time_mat = c (time / f i t _o b j$ i n f o . minimisat ion .function$counts [1] ,

time , f i t _o b j$ i n f o . minimisat ion .function$counts [1])

> para_mat = c (f i t _o b j$sigmasq , f i t _o b j$phi , f i t _o b j$kappa)

The computational efficiency is compared based on the average execution time per iteration and the average number
of iterations. As shown in Table 6, the running time per iterations of ExaGeoStatR is about 12X and 7X faster than GeoR
and fields, respectively. The running time per iteration is robust between different scenarios. Since fields does not estimate
the smoothness parameter, it runs faster than GeoR. Although GeoR also estimates an extra constant mean parameter,
it does not affect the computation much because the mean parameter is simply the mean of the measurements z and is
estimated separately. Table 6 also shows the number of iterations to reach the tolerance. We can see that ExaGeoStatR
requires more iterations but much less time to reach the accuracy.

Figures 5–7 show the estimation accuracy between the three packages using boxplots. It is clear that ExaGeoStatR out-
performs GeoR and fields. Together with Table 6, we can see that ExaGeoStatR requires more iterations when 𝜈 increases
since we set the initial values to be 0.001 for all scenarios. It implies that even under the circumstance of bad initial val-
ues, for example, 𝜈 = 2 and 𝛽 = 0.3, ExaGeoStatR can reach the global maximum by taking more iterations. However, the
estimation performance of both GeoR and fields becomes worse when the initial values deviate from the truth. In partic-
ular, GeoR reaches a local maximum only after about 20 iterations for medium and large smoothness and spatial range,
so that its estimated values are even not inside the range of fields and ExaGeoStatR.

The result is mainly due to the numerical optimization of 𝜈, which involves the non-explicit Bessel function in the
Matérn kernel. Therefore, fields has a more robust estimation because it does not estimate the smoothness (we fix it
as the truth), although fields calls the same optim function as GeoR. However, even though ExaGeoStatR estimates the
smoothness parameter, our package still outperforms fields in terms of 𝛽 and 𝜎2, especially for medium and large spatial
range correlation.

Other optimization methods rather than “Nelder–Mead” are also explored, such as the default optimization option
of fields, “BFGS”. As a quasi-Newton method, “BFGS” is fast but not stable in many cases. Similar to the worst result of
GeoR, the optimization jumps out after only a few steps and reports incorrect results even with a decent guess of initial
values. Even worse, both GeoR and fields report errors in computing the inverse of the covariance matrix (i.e., Error:error
in solve.default(v$varcov, xmat):system is computationally singular).

The experiment above shows that the optim function used by both GeoR and fields is not stable with regards to
the initial values, no matter what algorithm we choose. In addition, by simulating GRFs on an irregular grid (grid =
"irreg"), few simulated GRFs can get the output without any error. For data on an irregular grid, locations can be dense
so that the distances between certain points are very close to each other. Therefore, the columns of the covariance matrix
corresponding to the dense locations can be numerically equal. For the data on a unit square, we find that ExaGeoStatR
may only have the singularity problem when the closest distance is less than 1e-8. On the contrary, the problem occurs

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 15 of 28

T A B L E 6 The average execution time per iteration and the average number of iterations to reach the tolerance based on 100 samples

The average execution time per iteration (s)

Package GeoR fields ExaGeoStatR

𝜷

𝝂 0.03 0.1 0.3 0.03 0.1 0.3 0.03 0.1 0.3

0.5 1.39 1.49 1.47 0.75 0.97 0.99 0.10 0.12 0.12

1 1.35 1.49 1.56 0.66 0.90 0.90 0.09 0.13 0.13

2 1.34 1.56 1.57 0.67 0.91 0.93 0.09 0.13 0.13

The average number of iterations to reach the tolerance

Package GeoR fields ExaGeoStatR

𝜷

𝝂 0.03 0.1 0.3 0.03 0.1 0.3 0.03 0.1 0.3

0.5 160 157 135 73 72 70 231 204 237

1 193 33 23 75 75 80 318 320 275

2 216 25 20 100 70 85 427 436 332

Note: Nine scenarios with three smoothness parameters, 𝜈, and three spatial ranges, 𝛽, are assessed. The variance, 𝜎2, is set to be one. Smallest values are in bold.

F I G U R E 5 The estimation accuracy of ExaGeoStatR with different sets of parameter vectors. Each row shows the estimation of a
parameter among variance, 𝜎2, spatial range, 𝛽, and smoothness, 𝜈. Each column corresponds to one setting of spatial range, 𝛽, and the color
of the boxplots identifies a type of smoothness, 𝜈. True values are represented by a horizontal dashed line

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 of 28 ABDULAH et al.

F I G U R E 6 The estimation accuracy of GeoR with different sets of parameter vectors

F I G U R E 7 The estimation accuracy of fields with different sets of parameter vectors. The results related to fields only have two rows
since the package does not estimate 𝜈

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 17 of 28

F I G U R E 8 The execution time per iteration as n increases for GeoR, fields, and ExaGeoStatR with eight CPU cores. The covariance
parameters are set to be (𝜎2

, 𝛽, 𝜈) = (1, 0.1, 0.5). Each curve on the left panel shows the exact running time per iteration of one package, and
each curve on the right panel gives the ratio of execution time compared to ExaGeoStatR. The y-axis is shown in log10 scale

when the smallest distance is close to 1e-4 for fields and GeoR. As a result, although ExaGeoStatR is designed to provide a
faster computation by making use of manycore systems, the optimization algorithm it is based upon gives a more accurate
and robust estimation than any algorithm in the optim function.

We also investigate the computational time of the three packages as n increases. The hardware settings remain the
same for ExaGeoStatR with 8 CPU cores. The max number of iterations is set to 20 for all three packages to accelerate the
estimation. The results report the total computational time. The tested number of locations ranges from 100 to 90,000.
However, both GeoR and fields take too much time when n is large. For example, the estimation with GeoR for 22,500
locations requires more than 17 h. Thus we stop the simulation for GeoR and fields at the size of 22,500 and only show
the execution time of ExaGeoStatR for larger n with 8 CPU cores. The results are shown in Figure 8. It can be seen that,
when n = 22,500, ExaGeoStatR is 33 times faster than fields and 92 times faster than GeoR.

3.5 Example 3: Extreme computing on GPU systems

Since the main advantage of ExaGeoStatR is the multi-architecture compatibility, here we provide another example of
using ExaGeoStatR on GPU systems. We choose the number of locations ranging from 1600 to approximately 100K. The
R code below shows an example of how to use 26 CPU cores and 1 GPU core with n = 25,600:

> n = 25600

> hardware = list (n c o r e s = 26 , ngpus = 1 , ts=960 , p g r i d =1 , q g r i d =1)

> e x a g e o s t a t_ i n i t (hardware)

> data = s i m u l a t e_data_e x a c t (k e r n e l = " ugsm−s " , t h e t a = c (1 , 0 . 1 , 0 . 5) ,

dmetr ic = " e u c l i d e a n " , n , seed = 0)

> r e s u l t_cpu = e x a c t_mle (data , k e r n e l = " ugsm−s " , dmetr ic = " e u c l i d e a n " , o p t i m i z a t i o n =

list (c l b = c (0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1) , cub = c (5 , 5 , 5) , t o l = 1e−4 , max_ i t e r s = 2 0))

> time_cpu = r e s u l t_cpu$time_per_ i t e r

> e x a g e o s t a t_ f i n a l i z e ()

The above code shows that ExaGeoStatR has a user-friendly interface to abstract the underlying hardware architecture
to the user. The user needs only to specify the number of cores and GPUs required for one’s execution. Figure 9 reports
the performance with different numbers of GPU accelerators: 1, 2, and 4. The figure also shows the curve using the
maximum number of cores (28-core) on the machine without GPU support. The figure demonstrates how GPUs speed up
the execution time compared to CPU-based running. Moreover, the figure shows the scalability using different numbers
of GPUs.

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 of 28 ABDULAH et al.

F I G U R E 9 Execution performance of ExaGeoStatR under different CPU and GPU combinations. The covariance parameters are set to
be (𝜎2

, 𝛽, 𝜈) = (1, 0.1, 0.5). Each curve corresponds to the execution time per iteration with regards to different sample sizes, n

3.6 Example 4: Extreme computing on distributed memory systems

This subsection gives an example of using ExaGeoStatR on distributed memory systems (i.e., supercomputer Shaheen II
Cray XC40). As for shared memory and GPU systems, the ExaGeoStatR package abstracts the underlying hardware to a set
of parameters. With distributed systems, the user needs to define four main parameters: pgrid and qgrid which represent a
set of nodes arranged in a pgrid × qgrid rectangular array of nodes (i.e., two-dimensional block-cyclic distribution), ncores
which represents the number of physical cores in each node, and ts which represents the optimized tile size. Another
example of the usage of ExaGeoStatR on a distributed memory system with 31 CPU cores, 4 × 4 rectangular array of nodes,
ts = 960 and, n = 250,000 is shown below:

> n = 250000

> hardware = list (n c o r e s = 31 , ts=960 , p g r i d =4 , q g r i d =4)

> e x a g e o s t a t_ i n i t (hardware)

> data = s i m u l a t e_data_e x a c t (k e r n e l = " ugsm−s " , t h e t a = c (1 , 0 . 1 , 0 . 5) ,

dmetr ic = " e u c l i d e a n " , n , seed = 0)

> r e s u l t_cpu = e x a c t_mle (data , r e s u l t_cpu = e x a c t_mle (data , k e r n e l = " ugsm−s " ,

dmetr ic = " e u c l i d e a n " , o p t i m i z a t i o n = list (c l b = c (0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1) ,

cub = c (5 , 5 , 5) , t o l = 1e−4 , max_ i t e r s = 20)

> time_cpu = r e s u l t_cpu$time_per_ i t e r

> e x a g e o s t a t_ f i n a l i z e ()

Figure 10 shows the performance results of running different problem sizes on Shaheen II Cray XC40 using
different numbers of nodes. The distribution of the nodes are 2 × 2, 4 × 4, 8 × 4, 8 × 8, and 16 × 16. The figure shows strong
scalability of ExaGeoStatR with different numbers of nodes up to 64 nodes. The reported performance is the time per
iteration averaged over 20 iterations with settings:

> e x p o r t STARPU_SCHED = e a g e r .

> e x p o r t STARPU_LIMIT_MIN_SUBMITTED_TASKS = 9 0 0 0 .

> e x p o r t STARPU_LIMIT_MAX_SUBMITTED_TASKS = 1 0 0 0 0 .

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 19 of 28

F I G U R E 10 Performance of ExaGeoStatR using different numbers of nodes. The time per iteration is averaged over 20 iterations. The
realization is generated from a zero-mean GRF under the Matérn covariance structure with the parameters (𝜎2

, 𝛽, 𝜈) = (1, 0.1, 0.5)

3.7 Example 5: ExaGeoStatR versus bigGP on distributed systems

This subsection gives an example of using ExaGeoStatR on the Ibex HPC cluster from KAUST (https://www.hpc.kaust.
edu.sa/ibex) using up to 16 40-core Intel Skylake and 40-core Intel Cascadelake nodes. We intend in this example to
compare ExaGeoStatR with bigGP from a performance perspective on a distributed system. We focus on the performance
of the Cholesky factorization operation since it is the most time-consuming operation when evaluating the likelihood
function. We rely on the Matérn covariance function to build the target covariance matrix.

As in Example 4, the user needs to define four main parameters to be able to run ExaGeoStatR script on distributed sys-
tems: pgrid and qgrid which represent a set of nodes arranged in a pgrid× qgrid rectangular array, ncores which represents
the number of cores used in each node, and ts, which represents the tuned tile size.

The bigGP package uses RMPI (Yu, 2002), an MPI interface in R, to perform the GP modeling in a distributed manner.
Below is an example of bigGP code to calculate the Cholesky factorization for a given matrix that can be executed on
distributed-memory systems:

> library (" bigGP ")

> p = 4

> bigGP . i n i t (p−1)

> m = 100

> gd <- seq (0 , 1 , l e n g t h = m)

> l o c s = expand .grid (x = gd , y = gd)

> t h e t a <- c (1 , 0 . 1 , 0 . 5)

> mpi . b c a s t . R o b j 2 s l a v e (t h e t a)

> mpi . b c a s t . R o b j 2 s l a v e (covfunc)

> mpi . b c a s t . R o b j 2 s l a v e (l o c s)

> mpi . b c a s t . cmd (i n d i c e s <- l o c a l G e t T r i a n g u l a r M a t r i x I n d i c e s (nrow (l o c s)))

> mpi . b c a s t . cmd (C <- covfunc (t h e t a , l o c s , i n d i c e s))

> remoteLs ()

> remoteCalcChol ('C ' , ' L ' , n = m^ 2)

> bigGP .quit ()

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.hpc.kaust.edu.sa/ibex
https://www.hpc.kaust.edu.sa/ibex

20 of 28 ABDULAH et al.

F I G U R E 11 Performance of the Cholesky factorization operation using ExaGeoStatR (a–c) and bigGP (b–d) packages on 4 and 16
nodes on the KAUST Ibex HPC cluster, where each node is a 40-core Intel Skylake/Cascadelake processors

Here p represents the total number of nodes to run the script. bigGP relies on one master process and p − 1 slave
processes. The user has to submit the jobs with p processes. In line 3, a bigGP instance is initiated using three slaves nodes.
n represents the number geospatial locations where n = m2. locs is the set of locations, and theta is the parameter vector
to use with a predefined covariance function kernel. The remoteCalcChol function is the Cholesky factorization function
in the bigGP package.

Due to the high network congestion of the cluster, we repeated each run five times and selected the best execution
time for both ExaGeoStatR and bigGP. Figure 11 shows the execution time for running a single Cholesky factorization
on 4 and 16 Intel Skylake/Cascadelake nodes using the Ibex cluster. The figure shows how both ExaGeoStatR and bigGP
can take advantage of increasing the number of nodes to improve the overall performance of the Cholesky factorization.
On both architectures, it is demonstrated that ExaGeoStatR outperforms bigGP using a different number of nodes which
shows the benefits of tile-based parallel solvers and runtime systems compared to the block-based parallel solvers and
pure OpenMP/MPI implementation.

4 APPLICATION TO SEA SURFACE TEMPERATURE DATA: A TUTORIAL

West-blowing trade winds in the Indian Ocean push warm surface waters against the eastern coast of Africa. These waters
move south along the coastline, eventually spilling out along the Indian and Atlantic Oceans boundary. This jet of warm
water, known as the Agulhas Current, collides with the cold, west-to-east-flowing Antarctic Circumpolar Current, pro-
ducing a dynamic series of meanders and eddies as the two waters mix. The result makes for an interesting target for
spatial analysis that we illustrate as a tutorial.

This application study provides an example where the MLE is computed in high dimensions, and ExaGeoStatR
facilitates the procedure on many-core systems. We use the sea surface temperature collected by satellite for the
Agulhas and surrounding areas off the shore of South Africa. The data covers 331 days, from January 1 to

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 21 of 28

November 26, 2004. The region is abstracted into a 72 × 240 regular grid, with the grid lines denoting the latitudes
and longitudes and the spatial resolution is approximately 25 kilometers, though exact values depend on latitude.
Although fields and GeoR do not have input dimension limits, the computation with ExaGeoStatR has a distinct
advantage on parallel architectures, hence more suitable for MLE with more optimization iterations to reach
convergence.

Our analysis considers only the spatial structure in the spatio-temporal dataset and hence, assumes independence
between the parameters on different days. Before introducing our model, we first present some exploratory data analysis.
In Figure 12a, we use the image.plot function from the fields package to plot the heatmap of the sea surface temper-
ature on selected 4 days that are also used for showing the kriging results later. Numerous gaps are present in the
data, corresponding to three main causes: (1) land: specifically South Africa and Lesotho, visible in the left-center of
the top of the plot, as well as two small islands toward the southern boundary; (2) clipping: the large wedge-shaped
voids cutting N-S across the picture resulting from the satellite’s orbital path; and (3) cloud cover: all or most of the
remaining swirls and dots present in the image. Various forms of kriging can be used to attempt to fill those gaps
caused by orbital clipping and cloud cover. Of course, it does not make sense to estimate sea surface temperatures
for gaps caused by the presence of land. A pronounced temperature gradient is visible from highs of over 25◦C in
the north of the study area to a low of 3.5◦C toward the southern boundary. This indicates spatial correlation in
the dataset, but it also shows that the data are not stationary, as the mean temperature must vary considerably with
latitude.

We plot the mean and standard deviation along each latitude on the four days in Figure 13. The longitudi-
nal mean and standard deviation (not shown) are relatively stable, although there are spikes and troughs due to
the missing data. Since the locations are sufficient for a regression with only three parameters, we also include the
longitude as a regression variable and assume the following linear model with Gaussian noise for the sea surface
temperature, T(𝜆, 𝛼):

T(𝜆, 𝛼) = 𝜇(𝜆, 𝛼) + 𝜖(𝜆, 𝛼; 𝜎2
, 𝛽, 𝜈),

𝜇(𝜆, 𝛼) = c + a ⋅ 𝜆 + b ⋅ 𝛼,

where 𝜆 denotes longitude, 𝛼 denotes latitude, and 𝜖(𝜆, 𝛼) is a GRF with zero mean and a Matérn covariance struc-
ture parameterized as in (3). Here, a, b, and c are the linear coefficients for the mean structure, which we compute
prior to the covariance structure based on the least square estimation. MLE is only applied to 𝜎2

, 𝛽, and 𝜈 at the second
stage because non-convex optimization for six parameters requires a larger sample size and significantly more iterations.
The original data have different proportions of missing values, varying from Day 1 to Day 331. We ignore those days
whose missing value proportion exceeds 50% so that the number of predictions is not more than the original number of
observations.

The model fitting is done with the exact_mle function from the ExaGeoStatR package, which maximizes the exact
likelihood. Specifically, the function call is:

> x = x [!is .na (z)]

> y = y [!is .na (z)]

> z = z [!is .na (z)]

> mydf = data . frame (x , y , z)

> mymdl = lm (formula = z ∼ x + y , data = mydf)

> z = as .numeric (mymdl$residuals)

> mytime = system .time (t h e t a_out = e x a c t_mle (data , k e r n e l = " ugsm−s " ,

dmetr ic = " e u c l i d e a n " , o p t i m i z a t i o n = list (c l b = c (0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1) ,

cub = c (5 , 5 , 5) , t o l = 1e−4 , max_ i t e r s = 2 0)) [3]

Referring to Section 3, n is the number of spatial locations, ncore and ngpu are the numbers of CPU cores and GPU
accelerators to deploy, ts denotes the tile size used for parallelized matrix operations, pgrid and qgrid are the cluster

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

22 of 28 ABDULAH et al.

F I G U R E 12 (a) The original sea surface temperatures in Celsius (◦C) where the locations with NA values are colored in white. (b) The
predicted sea surface temperatures in Celsius (◦C) based on the linear mean structure and the kriging results where the land area is not
predicted and colored in white. Parameter estimates are provided for each panel

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 23 of 28

F I G U R E 13 Exploratory data analysis on Days 85, 21, 298, and 325. The mean and standard deviation are computed with missing
values removed

topology parameters, x and y store either the Cartesian coordinates or the spherical coordinates of the geometry, z is
one realization of the spatial variables of dimension n, clb, and cub define the search range for the three parameters,
dmetric is a boolean indicating whether the Euclidean distance or the great circle distance is used for the covariance
matrix, tol and niter specify the stopping criteria which supports both a tolerance level for reckoning convergence and the
maximum number of iterations. This application study uses 16 Intel Sandy Bridge Xeon E5-2650 processors without any
GPU acceleration.

The tile size is initialized at 160, and the grid dimensions are both 1 for simplicity. In order to compare with the GeoR
and fields packages, we set niter to 20 and measure the time cost of fitting the GRF to the data on Day 1, which has over
8,800 valid (not NA) locations. The following is the code calling the likfit and SpatialProcess functions while the function
call for exact_mle was already shown above:

> time = system .time (f i t _o b j = MLESpat ia lProcess (cbind (x , y) , z , cov .args = list (

Covar iance = " Matern " , smoothness = 0 . 8) , v e r b o s e = T , t h e t a .start = 0 . 1 ,

t h e t a .range = c (0 . 1 , 5) , optim .args = list (method = " Nelder−Mead " ,

control = list (maxit = 20 , t o l = 1e − 4)))) [3]

> data_o b j = as . geodata (cbind (x , y , z))

> time = system .time (f i t _o b j = l i k f i t (geodata = data_obj , t r e n d = " c t e " ,

i n i .cov . p a r s = c (0 . 1 , 0 . 1) , fix . nugget = TRUE, nugget = 0 , fix .kappa = FALSE ,

kappa = 0 . 1 , cov .model = " matern " , l i k . method = "ML" , l i m i t s = p a r s . l i m i t s (

sigmasq = c (0 . 0 1 , 2 0) , phi = c (0 . 0 1 , 2 0) , kappa = c (0 . 0 1 , 5)) , print . p a r s = TRUE,

method = " Nelder−Mead " , control = list (maxit = 20 , a b s t o l = 1e − 4))) [3]

The exact_mle function was executed with 15 CPUs and took 147 s, the likfit function from the GeoR package cost
2286 s, and the spatialProcess function from the fields package needed 4049 s. It usually requires more than 100 iterations
to reach convergence, which renders the GeoR and fields packages very difficult to use for fitting high-dimensional GRFs,
whereas the ExaGeoStatR package utilizes parallel architectures and reduces the time cost by more than one order of
magnitude. Hence, ExaGeoStatR allows to fill many spatial images quickly.

We select (0.01, 20.0) as the searching range for 𝜎2 and 𝛽 and (0.01, 5.00) for 𝜈 to guarantee the results not landing on
boundary values. The initial values for all three parameters are the corresponding lower bounds of the searching ranges by
default, and the optimization continues without any limit on the number of iterations until convergence is reached within
a tolerance level of 10−4. There are 174 days whose missing value percentages are below 50%, and Table 7 summarizes
the independently-estimated parameters for these days.

Here, 𝜈 has the most consistent estimations among the three parameters while 𝜎2 and 𝛽 have similar variability. Based
on the estimated parameters, we predict the sea surface temperature at locations where the data are missing with kriging,

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

24 of 28 ABDULAH et al.

T A B L E 7 Summary statistics for the estimated parameters across 174 days of sea surface temperature

Min 25% Q Median Mean 75% Q Max

𝜎

2 3.41 5.78 6.44 6.33 6.76 14.40

𝛽 1.99 2.76 3.02 3.03 3.27 4.60

𝜈 0.81 0.89 0.91 0.91 0.93 1.00

which computes the conditional expectation using a global neighborhood. The kriging is done with exact_predict() from
the ExaGeoStatR package as indicated below:

> hardware = list (n c o r e s = 2 , ngpus = 0 , ts = 320 , p g r i d = 1 , q g r i d = 1)

> e x a g e o s t a t_ i n i t (hardware)

> Data_ t r a i n_list <- list (" x " = x_known , " y " = y_known , " z " = z_known)

> Data_predict_list <- list (" x " = x_unknown , " y " = y_unknown)

> p r e d i c t i o n_ r e s u l t <- e x a c t_predict (Data_ t r a i n_list ,

Data_predict_list , " ugsm−s " , dmetric , e s t_ t h e t a , 0)

> e x a g e o s t a t_ f i n a l i z e ()

In Figure 12, we show the original and the predicted sea surface temperature for the four days corresponding to the
99%, 66%, 33%, and 1% quantiles of the estimated 𝜈 to visualize the smoothness change. Day 85 seemingly has more
details than Day 325, although the main factor governing the temperature change is the mean structure.

5 DISCUSSION

Statistical modeling methods have been widely used to analyze and understand the behavior of geospatial data in envi-
ronmental data science applications. For example, the MLE is used to model environmental data by building a covariance
matrix to describe the relations between the observations at geographical locations. This operation has O(n3) computa-
tion complexity and O(n2) memory complexity due to the need to perform an inverse function to a generated covariance
matrix with dimension equal to the number of locations, n.

Environmental data have increased tremendously in size due to recent advances in observational techniques and
existing tools cannot easily handle them, especially in the statisticians’ preferred programming environment, that is, R.
Therefore, in this work, we tackled the computational complexity of the MLE operation on large-scale systems within the
R environment. We presented the ExaGeoStatR package that allows large-scale geospatial modeling and prediction using
the MLE operation. By exploiting the current state-of-the-art parallel linear algebra solvers and dynamic runtime systems,
ExaGeoStatR can compute the Gaussian maximum likelihood function on different parallel architectures (i.e., shared
memory, GPUs, and distributed systems). Large-scale Gaussian calculations in R become possible with ExaGeoStatR by
mitigating its memory space and computing restrictions.

The ExaGeoStatR package provides four options to evaluate the MLE operation, that is, exact, DST, TLR, and MP.
However, this work was only concerned with analyzing and assessing the performance of the exact computation variant
(the focus of comparison in this article) against existing well-known R packages, such as GeoR and fields. We focused on
exact computations to highlight the parallel capabilities of ExaGeoStatR with the exact solution over the aforementioned
R packages and its ability to run on different hardware architectures. Of course, parallelizing the approximation meth-
ods and scaling them on a large system will allow crossing the memory threshold of these methods with large problem
sizes. However, we did not cover the approximation capabilities of ExaGeoStatR since it was well-covered in previous
studies (Abdulah et al., 2018a, 2018b, 2019, 2022; Hong et al., 2021).

The evaluation demonstrates a significant difference in ExaGeoStatR performance compared to the other two pack-
ages. The accuracy evaluation also shows that ExaGeoStatR performs very well on synthetic datasets compared to GeoR
and fields. The evaluations of the other ExaGeoStatR computation methods (DST, TLR, MP) can be found in Abdulah
et al. (2018a, 2018b, 2019, 2022). ExaGeoStatR also includes seven covariance functions. In this work, we evaluated the

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 25 of 28

performance of univariate stationary GRFs with Matérn covariance function. Other studies include the evaluation of
other covariance functions such as multivariate models (Salvaña et al., 2021), and space-time models (Salvaña et al., 2022).
ExaGeoStatR can also include a nugget effect in all of its kernels.

We aimed from the beginning to abstract the parallel execution functions away from the concerns of the R developer.
The developer only needs to specify some parameters to define the underlying hardware architecture and the package
will automatically optimize the execution on the target hardware through the internal runtime system. In this way, we
improve the portability of our software and make it more suitable for the R community developers. The current version of
ExaGeoStatR only supports a zero mean to provide a robust and efficient estimation of covariance. However, the package
can also be helpful in many other problems. First, when the mean function is not zero, the simplest approach is to estimate
the mean and the covariance function independently, as we did in the application tutorial. Theoretically, this indepen-
dent MLE will result in a biased random effect and can be improved by the restricted maximum likelihood (REML)
techniques. However, as fields suggests, using REML typically does not make much difference. Second, we can predict at
new locations (kriging) with uncertainties once the covariance parameters are estimated. The prediction is calculated by
the conditional distribution of the multivariate Gaussian. Third, even when spatial nonstationarity is observed, we can
still apply ExaGeoStatR by assuming local stationarity. This idea is implemented in convoSPAT (Risser & Calder, 2017).
Once we obtain the estimated parameters locally, we can reconstruct the nonstationary covariance function. Finally, Exa-
GeoStatR is also useful for space-time and multivariate GRFs, where the covariance function we use should be replaced by
a spatio-temporal covariance function and a cross-covariance function, respectively. As for our future work, ExaGeoStatR
will provide the necessary built-in functions to support the extensions mentioned above for more complex applications.

ACKNOWLEDGMENTS
The research in this paper was supported by funding from the King Abdullah University of Science and Technology
(KAUST) in Thuwal, Saudi Arabia. We would like to thank the Supercomputing Laboratory (KSL) at KAUST for providing
the hardware resources used in this work, including the Ibex cluster and Shaheen-II Cray XC40 supercomputer. Finally,
the authors would like to thank Bilel Hadri and Greg Wickham from the KSL team for their valuable help in running the
experiments in this publication.

REFERENCES
Abdulah, S., Akbudak, K., Boukaram, W., Charara, A., Keyes, D., Ltaief, H., Mikhalev, A., Sukkari, D., & Turkiyyah, G. (2021). Hierarchical

computations on manycore architectures (HiCMA). http://github.com/ecrc/hicma
Abdulah, S., Cao, Q., Pei, Y., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E., Ltaief, H., & Sun, Y. (2022). Accelerating geostatistical

modeling and prediction with mixed-precision computations: A high-productivity approach with parsec. IEEE Transactions on Parallel and
Distributed Systems, 33(4), 964–976.

Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2018a). ExaGeoStat: A high performance unified software for geostatistics on
manycore systems. IEEE Transactions on Parallel and Distributed Systems, 29(12), 2771–2784.

Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2018b). Parallel approximation of the maximum likelihood estimation for the
prediction of large-scale geostatistics simulations. In 2018 IEEE International Conference on Cluster Computing (CLUSTER) (pp. 98–108).
IEEE.

Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2019). Geostatistical modeling and prediction using mixed precision tile Cholesky
factorization. In 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 152–162). IEEE.

Allard, D., & Naveau, P. (2007). A new spatial skew-normal random field model. Communications in Statistics—Theory and Methods, 36(9),
1821–1834.

Andrews, D. F., & Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society: Series B (Methodological),
36(1), 99–102.

Augonnet, C., Thibault, S., Namyst, R., & Wacrenier, P.-A. (2011). StarPU: A unified platform for task scheduling on heterogeneous multicore
architectures. Concurrency and Computation: Practice and Experience, 23(2), 187–198.

Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics, 32(2), 159–188.
Banerjee, S., Gelfand, A. E., Finley, A. O., & Sang, H. (2008). Gaussian predictive process models for large spatial data sets. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 70(4), 825–848.
Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T., Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek,

P., YarKhan, A., & Dongarra, J. (2011). Flexible development of dense linear algebra algorithms on massively parallel architectures with
DPLASMA. In 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum (pp. 1432–1441). IEEE.

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., & Dongarra, J. J. (2013). PaRSEC: Exploiting heterogeneity to enhance scalability.
Computing in Science & Engineering, 15(6), 36–45.

Bradley, J. R., Cressie, N., & Shi, T. (2016). A comparison of spatial predictors when datasets could be very large. Statistics Surveys, 10, 100–131.
Chameleon. (2021). Chameleon: A dense linear algebra software for heterogeneous architectures. http://project.inria.fr/

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://github.com/ecrc/hicma
http://project.inria.fr/

26 of 28 ABDULAH et al.

Cressie, N. (2015). Statistics for Spatial Data. John Wiley & Sons.
Cressie, N., & Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 70(1), 209–226.
Dancik, G. M., & Dorman, K. S. (2008). mlegp: Statistical analysis for computer models of biological systems using R. Bioinformatics, 24(17),

1966–1967.
Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). Hierarchical nearest-neighbor Gaussian process models for large geostatistical

datasets. Journal of the American Statistical Association, 111(514), 800–812.
Dietrich, C., & Newsam, G. (1996). A fast and exact method for multidimensional Gaussian stochastic simulations: Extension to realizations

conditioned on direct and indirect measurements. Water Resources Research, 32(6), 1643–1652.
Eidsvik, J., Shaby, B. A., Reich, B. J., Wheeler, M., & Niemi, J. (2014). Estimation and prediction in spatial models with block composite

likelihoods. Journal of Computational and Graphical Statistics, 23(2), 295–315.
Finley, A. O., Banerjee, S., & Carlin, B. P. (2007). spBayes: An R package for univariate and multivariate hierarchical point-referenced spatial

models. Journal of Statistical Software, 19(4), 1–24.
Finley, A. O., Banerjee, S., & Gelfand, A. E. (2015). spBayes: A package for large univariate and multivariate point-referenced spatio-temporal

data models. Journal of Statistical Software, 63(13), 1–28.
Finley, A. O., Sang, H., Banerjee, S., & Gelfand, A. E. (2009). Improving the performance of predictive process modeling for large datasets.

Computational Statistics and Data Analysis, 53(8), 2873–2884.
Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. Journal of the American Statistical Association, 102(477),

321–331.
Furrer, R., Genton, M. G., & Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. Journal of Computational and

Graphical Statistics, 15(3), 502–523.
Gelfand, A. E., & Schliep, E. M. (2016). Spatial statistics and Gaussian processes: A beautiful marriage. Spatial Statistics, 18, 86–104.
Gramacy, R. B. (2016). laGP: Large-scale spatial modeling via local approximate Gaussian processes in R. Journal of Statistical Software, 72,

1–46.
Gropp, W. D., Gropp, W., Lusk, E., & Skjellum, A. (1999). Using MPI: Portable parallel programming with the message-passing interface (Vol. 1).

MIT Press.
Guhaniyogi, R., & Banerjee, S. (2018). Meta-kriging: Scalable Bayesian modeling and inference for massive spatial datasets. Technometrics,

60(4), 430–444.
Guinness, J. (2021). Gaussian process learning via Fisher scoring of Vecchia’s approximation. Statistics and Computing, 31(3), 1–8.
Higdon, D. (2002). Space and space-time modeling using process convolutions. In C. W. Anderson, V. Barnett, P. C. Chatwin, & A. H. El-Shaarawi

(Eds.), Quantitative Methods for Current Environmental Issues (pp. 37–56). Springer.
Hong, Y., Abdulah, S., Genton, M. G., & Sun, Y. (2021). Efficiency assessment of approximated spatial predictions for large datasets. Spatial

Statistics, 43, 100517.
Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3),

299–314.
Johnson, S. (2014). The NLopt nonlinear-optimization package [Software].
Katzfuss, M., & Guinness, J. (2021). A general framework for Vecchia approximations of Gaussian processes. Statistical Science, 36(1), 124–141.
Katzfuss, M., & Hammerling, D. (2017). Parallel inference for massive distributed spatial data using low-rank models. Statistics and Computing,

27(2), 363–375.
Katzfuss, M., Jurek, M., Zilber, D., Gong, W., Guinness, J., Zhang, J., & Schäfer, F. (2020). Gpvecchia: Fast Gaussian-process inference using

Vecchia approximations (R package version 0.1, 3).
Kaufman, C. G., Schervish, M. J., & Nychka, D. W. (2008). Covariance tapering for likelihood-based estimation in large spatial data sets. Journal

of the American Statistical Association, 103(484), 1545–1555.
Lemos, R. T., & Sansó, B. (2009). A spatio-temporal model for mean, anomaly, and trend fields of North Atlantic sea surface temperature.

Journal of the American Statistical Association, 104(485), 5–18.
Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63, 1–25.
Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic

partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423–498.
Liu, H., Ong, Y.-S., Shen, X., & Cai, J. (2020). When Gaussian process meets big data: A review of scalable GPs. IEEE Transactions on Neural

Networks and Learning Systems, 31(11), 4405–4423.
MacDonald, B., Ranjan, P., & Chipman, H. (2015). GPfit: An R package for fitting a Gaussian process model to deterministic simulator outputs.

Journal of Statistical Software, 64, 1–23.
Martins, T. G., Simpson, D., Lindgren, F., & Rue, H. (2013). Bayesian computing with INLA: New features. Computational Statistics & Data

Analysis, 67, 68–83.
Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5(3), 439–468.
Matthews, A. G. d. G., Van Der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z., & Hensman, J. (2017).

GPflow: A Gaussian process library using TensorFlow. Journal of Machine Learning Research, 18(40), 1–6.
Mullen, K. M., et al. (2014). Continuous global optimization in R. Journal of Statistical Software, 60(6), 1–45.
Nash, J. C. (2014). On best practice optimization methods in R. Journal of Statistical Software, 60(2), 1–14.

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

ABDULAH et al. 27 of 28

Nash, J. C., & Varadhan, R. (2011). Unifying optimization algorithms to aid software system users: optimx for R. Journal of Statistical Software,
43(9), 1–14.

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., & Sain, S. (2015). A multiresolution Gaussian process model for the analysis of
large spatial datasets. Journal of Computational and Graphical Statistics, 24(2), 579–599.

Nychka, D., Furrer, R., Paige, J., & Sain, S. (2017). fields: Tools for spatial data (R package version 9.7). github.com/NCAR/Fields
Ostrouchov, G., Chen, W.-C., Schmidt, D., & Patel, P. (2012). Programming with big data in R. http://r-pbd.org/
Paciorek, C. J., Lipshitz, B., Zhuo, W., Prabhat, Kaufman, C. G., & Thomas, R. C. (2015). Parallelizing Gaussian process calculations in

R. Journal of Statistical Software, 63(10), 1–23.
Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683–691.
Ribeiro, P. J., Jr., & Diggle, P. J. (2016). geoR: Analysis of geostatistical data (R package version 1.7-5.2). https://CRAN.R-project.org/package=

geoR
Risser, M. D., & Calder, C. A. (2017). Local likelihood estimation for covariance functions with spatially-varying parameters: The convoSPAT

package for R. Journal of Statistical Software, 81(14), 1–32. https://doi.org/10.18637/jss.v081.i14
Rue, H., & Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC.
Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace

approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 319–392.
Salvaña, M. L. O., Abdulah, S., Huang, H., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2021). High performance multivariate geospatial

statistics on manycore systems. IEEE Transactions on Parallel and Distributed Systems, 32(11), 2719–2733.
Salvaña, M. L. O., Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2022). Parallel space-time likelihood optimization for air

pollution prediction on large-scale systems. In Proceedings of the Platform for Advanced Scientific Computing Conference, PASC’22.
Schlather, M., Malinowski, A., Menck, P. J., Oesting, M., & Strokorb, K. (2015). Analysis, simulation and prediction of multivariate random

fields with package RandomFields. Journal of Statistical Software, 63(8), 1–25.
Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Martini, J., Ballani, F., Moreva, O., Auel, J., Menck, P. J.,

Gross, S., Ober, U., Ribeiro, P., Ripley, B. D., Singleton, R., Pfaff, B., & R Core Team. (2019). RandomFields: Simulation and analysis of
random fields (R package version 3.3.6). https://cran.r-project.org/package=RandomFields

Simpson, D., Lindgren, F., & Rue, H. (2012). Think continuous: Markovian Gaussian models in spatial statistics. Spatial Statistics, 1, 16–29.
STARS-H. (2021). STARS-H: A high performance parallel software for testing accuracy, reliability and scalability of hierarchical computations.

https://github.com/ecrc/stars-h
Stein, M. L. (2014). Limitations on low rank approximations for covariance matrices of spatial data. Spatial Statistics, 8, 1–19.
Sun, Y., Li, B., & Genton, M. G. (2012). Geostatistics for large datasets. In E. Porcu, J. Montero, & M. Schlather (Eds.), Advances and challenges

in space-time modelling of natural events (pp. 55–77). Springer.
Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 5–42.
Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society: Series B

(Methodological), 50(2), 297–312.
Veness, C. (2010). Calculate distance, bearing and more between latitude/longitude points. Movable Type Scripts, 2002–2014.
Vetter, J. S. (2013). Contemporary high performance computing: From petascale toward exascale. Chapman and Hall/CRC.
West, M. (1987). On scale mixtures of normal distributions. Biometrika, 74(3), 646–648.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Xu, G., & Genton, M. G. (2017). Tukey g-and-h random fields. Journal of the American Statistical Association, 112(519), 1236–1249.
Yu, H. (2002). Rmpi: Parallel Statistical Computing in R. R News, 2(2), 10–14. https://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf

How to cite this article: Abdulah, S., Li, Y., Cao, J., Ltaief, H., Keyes, D. E., Genton, M. G., & Sun, Y. (2023).
Large-scale environmental data science with ExaGeoStatR. Environmetrics, 34(1), e2770. https://doi.org/10.1002/
env.2770

APPENDIX. EXAGEOSTATR INSTALLATION TUTORIAL

Herein, we provide a detailed description of how to install the ExaGeoStatR package with different capabilities.
ExaGeoStatR is currently supported on both macOS and Linux systems. To automatically compile several dependencies,
ExaGeoStatR requires a source of BLAS, CBLAS, LAPACK and LAPACKE routines (e.g., Intel MKL and OpenBLAS)
that must be available on the system before installing ExaGeoStatR. The package is hosted in a GitHub repository and
can be downloaded and installed directly from there. The ExaGeoStatR package is available through https://github.com/
ecrc/exageostatR GitHub repository, at which the code of all examples are also posted. We also provide an ExaGeoStatR
docker image to increase the reusability of the package. The docker image can be found at https://hub.docker.com/r/ecrc/
exageostat-r.

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://github.com/NCAR/Fields
http://r-pbd.org/
https://cran.r-project.org/package=geoR
https://cran.r-project.org/package=geoR
https://doi.org/10.18637/jss.v081.i14
https://cran.r-project.org/package=RandomFields
https://github.com/ecrc/stars-h
https://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf
https://doi.org/10.1002/env.2770
https://doi.org/10.1002/env.2770
https://github.com/ecrc/exageostatR
https://github.com/ecrc/exageostatR
https://hub.docker.com/r/ecrc/exageostat-r
https://hub.docker.com/r/ecrc/exageostat-r

28 of 28 ABDULAH et al.

ExaGeoStatR includes a self-installation configuration file that helps the user installation of different software
dependencies as mentioned in Section 2. Thus, to directly install ExaGeoStatR from GitHub:

> install .packages (" d e v t o o l s ")

> library (" d e v t o o l s ")

> install_ g i t (url = " h t t p s ://g i t h u b . com/e c r c/e x a g e o s t a t R ")

The install−git command can be edited to change the default configuration of the ExaGeoStatR package to support
several installation modes:

• To enable MPI support for distributed memory systems (i.e., an MPI library should be available on the system (e.g.,
MPICH, OpenMPI, and IntelMPI)):

> install_ g i t (url = " h t t p s ://g i t h u b . com/e c r c/e x a g e o s t a t R " ,

c o n f i g u r e .args = c (' --enable−mpi '))

• To enable CUDA support for GPU systems (i.e., the CUDA library should be available on the system):

> install_ g i t (url = " h t t p s ://g i t h u b . com/e c r c/e x a g e o s t a t R " ,

c o n f i g u r e .args = c (' --enable−cuda '))

• If all ExaGeoStatR software dependencies have been already installed on the system (i.e., install ExaGeoStatR package
without dependencies):

> install_ g i t (url = " h t t p s ://g i t h u b . com/e c r c/e x a g e o s t a t R " ,

c o n f i g u r e .args = c (' --no−bui ld−deps '))

The Docker image can be also an easy way to use the ExaGeoStatR package but the performance could be impacted
on different hardware architectures. The Docker pull command for ExaGeoStatR package is:

docker p u l l e c r c / e x a g e o s t a t −r

To independently install ExaGeoStatR dependencies, the user can follow the complete installation guide at: https://
github.com/ecrc/exageostatR/blob/master/InstallationGuide.md

 1099095x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2770 by C

ochrane Saudi A
rabia, W

iley O
nline L

ibrary on [29/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/ecrc/exageostatR/blob/master/InstallationGuide.md
https://github.com/ecrc/exageostatR/blob/master/InstallationGuide.md

	Large-scale environmental data science with ExaGeoStatR
	1 INTRODUCTION
	2 SOFTWARE OVERVIEW
	2.1 ExaGeoStat outline
	2.2 The ExaGeoStat infrastructure
	2.3 ExaGeoStatR package

	3 SIMULATION STUDIES
	3.1 Performance evaluation of ExaGeoStatR
	3.2 Performance optimization options
	3.3 Example 1: Data generation
	3.4 Example 2: Performance on shared memory systems for moderate and large sample size
	3.5 Example 3: Extreme computing on GPU systems
	3.6 Example 4: Extreme computing on distributed memory systems
	3.7 Example 5: ExaGeoStatR versus bigGP on distributed systems

	4 APPLICATION TO SEA SURFACE TEMPERATURE DATA: A TUTORIAL
	5 DISCUSSION

	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX . EXAGEOSTATR INSTALLATION TUTORIAL

