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Abstract—The burgeoning interest in large-scale geospatial
modeling, particularly within the domains of climate and weather
prediction, underscores the concomitant critical importance of
accuracy, scalability, and computational speed. Harnessing these
complex simulations’ potential, however, necessitates innovative
computational strategies, especially considering the increasing
volume of data involved. Recent advancements in Graphics
Processing Units (GPUs) have opened up new avenues for
accelerating these modeling processes. In particular, their efficient
utilization necessitates new strategies, such as mixed-precision
arithmetic, that can balance the trade-off between computational
speed and model accuracy. This paper leverages PaRSEC runtime
system and delves into the opportunities provided by mixed-
precision arithmetic to expedite large-scale geospatial modeling in
heterogeneous environments. By using an automated conversion
strategy, our mixed-precision approach significantly improves
computational performance (up to 3X) on Summit supercom-
puter and reduces the associated energy consumption on various
Nvidia GPU generations. Importantly, this implementation en-
sures the requisite accuracy in environmental applications, a crit-
ical factor in their operational viability. The findings of this study
bear significant implications for future research and development
in high-performance computing, underscoring the transformative
potential of mixed-precision arithmetic on GPUs in addressing
the computational demands of large-scale geospatial modeling
and making a stride toward a more sustainable, efficient, and
accurate future in large-scale environmental applications.

Index Terms—Task-based runtime, Geospatial statistics, Auto-
mated precision conversion, GPU acceleration, HPC

I. INTRODUCTION

Modern computing architectures have evolved to become

increasingly powerful, driven by the need to meet the ever-

growing computational demands of various applications. These

architectures often combine diverse hardware components,

such as multi-core CPUs and accelerators (e.g., GPUs), along

with intricate memory hierarchies and interconnects. This

complexity presents challenges in terms of resource utilization,

load balancing, data management, etc. In this context, task-

based runtime systems [1]–[6] are designed to decompose ap-

plications into smaller, independent tasks that can be executed

concurrently, allowing for greater adaptability and flexibility in

managing the diverse hardware components found in modern

architectures. By dynamically scheduling tasks across different

processing elements, task-based runtime systems can optimize

resource utilization and exploit the inherent parallelism avail-

able in these complex computing environments, which can lead

to improved performance, efficiency, and scalability for a wide

range of applications [7]–[11]. As computing systems continue

to evolve towards more complex and heterogeneous designs,

the importance of task-based runtime systems in managing and

optimizing these environments will only grow.

Geospatial modeling is an interdisciplinary field that in-

volves the creation and analysis of spatial data representa-

tions to simulate, predict, and understand complex phenomena

occurring in the physical world. It plays a crucial role in ad-

dressing global challenges and enhancing our understanding of

Earth’s systems, which are essential for studying the impacts

of climate change on ecosystems, species distribution, natural

resources, etc. Despite numerous efforts [12]–[15], geospatial

statistics still faces several challenges that must be addressed

to fully harness its potential. One of the primary challenges is

efficiently handling the large-scale, high-resolution spatial data

that these models often require. Therefore, developing scalable

algorithms and leveraging advanced computing architectures

are essential for addressing these data-intensive challenges and

ensuring that geospatial models can effectively manage the

increasing volume and complexity of spatial information.

At the frontier of these two topics there is a growing

interest in integrating geospatial modeling with task-based

runtime systems [16]–[18] aimed at tackling the multifaceted

challenges intrinsic to this field. These studies exploit the

benefits of task-based runtime systems, covering a broad

spectrum of topics such as scalable algorithms, efficient data

management, and high user productivity. Notably, previous

research [18] put forth a framework that unites geospatial mod-

eling applications with the PaRSEC runtime system [6] using

adaptive mixed-precision computations on CPU architectures.
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This paper builds on this existing framework, by extending

it to support heterogeneous architectures and also by intro-

ducing an innovative automated precision conversion strategy

within PaRSEC. The basic principles of task scheduling and

execution were not affected, allowing PaRSEC to maintain

its strong asynchronous capabilities. However, details of how

those principles are applied differ significantly and typically

transitioning from CPU to GPU necessitates careful thought,

new solutions, and sometimes even a different architectural

approach. For instance:

• efficiently managing data transfer between host and de-

vices, or between devices themselves, is a critical chal-

lenge, and poor handling of these transfers can lead to

GPU idly waiting for data, and thus to lower efficiency.

• GPU operates asynchronously with respect to CPU, and

therefore ensuring correct program execution often re-

quires careful coordination and synchronization between

tasks on CPU and GPU. This can be particularly chal-

lenging in a dynamic task-based runtime where tasks may

have complex dependencies.

• GPUs have their own separate memory, which requires

specialized memory management, not only for handling

temporary memory usage, but also for ensuring data

consistency between different tasks.

From an application perspective, we accelerate the dense

mixed-precision Cholesky factorization that drives Gaussian

maximum log-likelihood estimation (MLE) in geospatial mod-

eling. We assess the impact of the automated conversion strat-

egy on data movement and MLE’s elapsed time on Summit

supercomputer. We also report significant reduction in energy

consumption on various Nvidia GPU generations (i.e., V100,

A100, and H100). More importantly, our method maintains

the required accuracy of the application driver by verifying the

accuracy of the statistical parameter estimators that govern the

modeling of environmental applications. This is paramount to

the success of the approach, as inaccurate results, regardless

of speed or efficiency, would ultimately prove useless in real-

world applications.
Our main contributions are as follows:
• adding support for adaptive mixed-precision computa-

tions on heterogeneous architectures in PaRSEC;

• reducing data transfers by relying on an automated pre-

cision conversion strategy;

• validating the parameter estimations accuracy via syn-

thetic geospatial datasets under various configurations;

• evaluating the proposed approach on Summit supercom-

puter with up to 384 V100 GPUs;

• investigating the impact on power consumption using

various Nvidia GPU generations, i.e., V100, A100, and

H100.
The remainder of the paper is organized as follows. Sec-

tion II covers related work, and Section III provides the essen-

tial background knowledge. We motivate the impact of mixed

precisions in Section IV by benchmarking the most time-

consuming kernel (i.e., GEMM) of the Cholesky factorization.

Section V describes the adaptive mixed-precision Cholesky

framework in the context of heterogeneous architectures. Sec-

tion VI discusses the automated precision conversion strategy.

Section VII evaluates the accuracy, performance, and power

consumption and we conclude in Section VIII.

II. RELATED WORK

A. Runtime Systems

Task-based runtime systems have gained significant atten-

tion in recent years due to their ability to efficiently man-

age the complexity and parallelism of modern architectures.

These systems focus on expressing parallelism through fine-

grained tasks, enabling efficient scheduling and load balancing

while hiding communication and synchronization overheads.

QUARK (QUeueing And Runtime for Kernels) [19], [20]

targets shared-memory multicore architectures and provides a

simple and lightweight API for expressing fine-grained tasks

and their dependencies. Its primary focus is on linear algebra

operations and has been successfully used to implement sev-

eral high-performance numerical libraries, such as PLASMA

[21]. OpenMP [3] is an industry-standard API for shared-

memory parallel programming. With the introduction of task-

ing features in recent versions, OpenMP has evolved into a

task-based runtime system that supports dynamic scheduling

and data dependencies and allows users to express parallelism

through directives and runtime library routines, enabling the

compiler and runtime system to generate and manage tasks

efficiently. OmpSs [2] extends the OpenMP standard with

support for heterogeneous architectures, asynchronous paral-

lelism, and data dependencies. Moreover, COMP Superscalar

(COMPSs) [22] is designed to simplify the development of

applications for distributed infrastructures and offers a pro-

gramming interface for application development and a runtime

system that leverages the intrinsic parallelism of applications

during execution. StarPU [1] provides a unified framework

for distributed heterogeneous multicore architectures, allowing

developers to write parallel code by annotating computational

kernels with their respective task implementations while the

runtime takes care of scheduling and data movement. HPX

(High-Performance ParalleX) [4] is a general-purpose C++

runtime system designed for parallel and distributed comput-

ing. It is based on the ParalleX execution model. Legion [5]

is a data-centric task-based runtime system designed for dis-

tributed and heterogeneous architectures. It introduces a novel

programming model that decouples the specification of tasks

and data from the mapping of tasks onto hardware resources.

This separation allows for the automatic discovery of paral-

lelism and efficient management of data locality, leading to

improved performance and scalability.

B. Mixed-Precision Matrix Computations

Mixed-precision computations have gained significant at-

tention [23]–[26] and has been widely applied in various

domains, including deep learning [27], [28], computational

fluid dynamics [29], astronomy [30], and quantum mechan-

ics [31]. The driving innovation behind all these techniques

is the same, leverage mixed-precision hardware features to
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accelerate computations while maintaining the required level

of accuracy.

Mixed-precision computations have been employed in cli-

mate and weather applications to improve modeling and

prediction over large spatial regions. In [12], [13], a band-

based approach was utilized to accelerate matrix operations,

exploiting the band data sparsity pattern of the matrix op-

erator. By representing correlations between distant locations

in lower precision, the computational efficiency of modeling

and prediction operations was enhanced. This approach builds

upon the covariance tapering methods used in statistics [14],

[15]. Recently, Higham and Mary conducted a linear algebra

survey in [32] to explore existing mixed-precision algorithms.

They proposed a formula based on the norm at the block-level

computation to select the appropriate precision for mixed-

precision computations. This approach helps guide the choice

of precision to balance accuracy and computational efficiency.

Cao et al. [18] utilized the aforementioned formula to scale

MLE operations on the Fugaku supercomputer, toying with

up to three different arithmetic precisions. In this study,

we aim to take this study further, and accelerate geospatial

statistical applications by leveraging adaptive mixed-precision

technology on heterogeneous architectures and deploying an

automated precision conversion strategy within a task-based

runtime, PaRSEC.

Lower precision computations also offer the advantage

of reduced energy consumption, making it an attractive ap-

proach for fostering energy efficiency in computing operations.

In [33], energy-efficient matrix operations were proposed in

the context of mixed-precision linear solvers with iterative

refinement. The study reported significant energy savings. This

paper also delves into energy efficiency linear solvers across

various Nvidia GPU architectures, but without having to store

copies of the whole matrix in considered precisions.

III. BACKGROUND

A. Geospatial Modeling

Gaussian processes (GPs) are widely used in machine learn-

ing and Bayesian inference as flexible and powerful tool for

modeling complex systems and making predictions. GPs can

be applied in many applications, including spatial statistics,

where GPs are used in modeling spatial data because of their

easy-to-implement structure to model spatially correlated data,

where the values of nearby locations are expected to be more

similar than those of distant locations. Under the assumption of

stationarity, i.e., constant statistical properties over the entire

spatial domain, GPs can be used to model a wide range

of spatial phenomena, such as temperature, rainfall, and air

pollution, and to make predictions at unobserved locations.

Maximum likelihood estimation (MLE) is a widespread

technique utilized for modeling geospatial data when com-

bined with GPs. The GP model defines mean and covariance

functions between a given set of spatial locations that help

evaluate the likelihood function given a set of parameters.

The MLE operation involves finding the values of the model

parameters that maximize the likelihood function, which mea-

sures the probability of observing the given spatial data

under the assumed model. Assume a collection of observa-

tions Z derived from a Gaussian random field Z(s), where

Z = {Z(s1), . . . , Z(sn)}� represents the values at n spatial

locations s1, . . . , sn in R
d. For GP modeling, we assume a

stationary and isotropic Gaussian random field characterized

by a mean of zero. The covariance function C(h;θ) =
cov{Z(s), Z(s+ h)} is utilized, where h ∈ R

d denotes a lag

vector, and θ ∈ R
q represents an unknown parameter vector.

Herein, the covariance function C(h;θ) relies on the distance

between any two locations, denoted by Σ(θ). This discrete

covariance matrix is defined with entries Σij = C(si − sj ;θ)
for i, j = 1, . . . , n. Σ(θ) is a symmetric and positive definite

matrix. Statistical inference about θ is often based on the

Gaussian log-likelihood function:

�(θ) = −n

2
log(2π)− 1

2
log |Σ(θ)| − 1

2
Z�Σ(θ)−1Z (1)

The modeling process depends on defining the covariance

function C(h;θ) to compute ̂θ, the parameter vector that max-

imizes (1). In this study, we consider two existing functions,

which we summarize as:

1) The 2D/3D Squared Exponential Covariance Function
(2D/3D-sqexp): C(h;θ) = σ2 exp(−h2/β) where h = ‖h‖
represents the distance between spatial locations, σ2 is the

variance parameter, β is the range parameter representing

a strong, medium, or weak correlation between the spatial

locations, and θ = (σ2, β)�.

2) The 2D Matérn Covariance Function (2D-Matérn): The

Matérn covariance function is a flexible family of covariance

functions that incorporates different levels of smoothness. It is

defined as C(h;θ) = σ2(21−ν/Γ(ν))(h/β)νKν(h/β) where

σ2 is the variance parameter, β is the range parameter, ν
controls the smoothness representing a rough or smooth field,

and Kν(·) is the modified Bessel function of the second kind

of order ν, and θ = (σ2, β, ν)�.

B. The PaRSEC Runtime System

PaRSEC [6] is a powerful and versatile task-based platform

designed to facilitate the efficient execution of fine-grained

tasks on distributed many-core heterogeneous architectures.

Its primary objective is to provide high-performance solutions

for a wide range of applications in scientific computing and

other domains requiring high computational throughput. Like

most task-based runtime systems, by representing algorithms

as Directed Acyclic Graphs (DAGs), with vertices symbolizing

tasks and edges defining dependencies between them, PaRSEC

enables effective management of task scheduling and data

movement. One of the most prominent features of PaRSEC is

its asynchronous, architecture-aware scheduling, which allows

tasks to be executed as soon as their dependencies are satisfied,

in contrast to synchronous scheduling, which requires tasks to

be executed in a predefined order. Asynchronous scheduling

enables PaRSEC to make better use of available computational

resources by avoiding unnecessary idle time and reducing the
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(a) Accuracy. (b) Performance, V100 (NVLink). (c) Performance, A100 (SXM). (d) Performance, H100 (PCIe).

Fig. 1: Accuracy and performance of GEMM benchmark on 1 GPU. The dashed line is the theoretical peak of the corresponding

solid line about that precision format. FP64 operates on tensor cores on A100 and H100, so they share the same peak

performance. Regarding accuracy, lower is better, while for performance, higher is better.

overall execution time. Furthermore, the architecture-aware na-

ture of the scheduling process ensures that tasks are optimally

scheduled across heterogeneous resources, taking into account

their unique characteristics, such as processing capabilities.

PaRSEC employs a rich set of Domain-Specific Languages

(DSLs) to facilitate interaction with the runtime system. These

DSLs provide increased flexibility, enabling domain scientists

to express algorithms more productively and allowing for a

more straightforward mapping of the algorithm to the under-

lying hardware. One such DSL, the Parameterized Task Graph

(PTG) [34], used in this paper, represents task dependencies

through a concise yet comprehensive task graph description

called Job Data Flow (JDF). The resulting DAG can be

viewed as a collection of task classes containing information

necessary for creating and executing task instances, including

operations to be performed on different computational units.

The Template Task Graph (TTG) [35] offers a C++ API and

expands on the PTG concept by generalizing parameter types

and enabling data-dependent selection of task dependencies.

Other DSLs, like Dynamic Task Discovery [36], are less

domain science-oriented and express DAG through sequential

task insertion in nested loops, which might encounter similar

scalability issues as seen with other distributed task-insertion

runtimes like StarPU and QUARK.

IV. MIXED-PRECISION HPC APPLICATIONS: A MUST!

Nvidia’s V100, A100, and H100 GPUs have been specif-

ically engineered to support a range of precision levels in

order to meet diverse computational requirements and cater to

the unique demands of deep learning applications. But what
if we could steer these specific hardware features for HPC
applications? Table I outlines the theoretical peak performance

TABLE I: Peak performance of Nvidia GPUs (Tflop/s).

Precision V100 (NVLink) A100 (SXM) H100 (PCIe)

FP64 7.8 9.7 25.6
FP64 Tensor - 19.5 51.2
FP32 15.7 19.5 51.2
TF32 Tensor - 156 378
FP16 Tensor 125 312 756
BF16 Tensor - 312 756

across different floating-point precision formats of V100,

A100, and H100. This table highlights the escalating perfor-

mance gains that can be achieved when transitioning from the

traditional double or single precision modes to Tensor Core-

accelerated modes, thereby paving the way for substantial

enhancements in mixed-precision computation performance.

Within the context of the tile Cholesky factorization required

by MLE, the majority of floating-point operations (typically

more than 90%) are attributable to the General Matrix Multiply

kernel (GEMM, C = alpha×A×B+beta×C). Consequently,

we assess the accuracy and performance achieved on three

types of Nvidia GPUs listed in Table I, focusing specifically

on GEMM benchmark. This evaluation allows us to better

understand the technology trend, the potential benefits and

limitations of mixed-precision computations over the course

of several GPU generations.

In this study, we extend the standard GEMM benchmark

(which includes cudaMemcpyAsync from host to device,

GEMM execution on the device, and cudaMemcpyAsync from

device to host) to encompass multiple supported precisions

on Nvidia GPUs. These include FP64, FP32, TF32, FP16 32

(where A and B are in FP16 while C and operation are

in FP32), BF16 32 (with A and B in BF16 while C and

operation in FP32), and FP16 (A, B, C, and operation are

all in FP16). We insert timers as needed and compare the

accuracy of GEMMs with different precisions to FP64 GEMM

using the Frobenius norm. Fig. 1 presents the GEMM accuracy

and performance of various precisions on V100, A100, and

H100 GPUs with the data randomly initialized. With regard

to performance results, data movement between host and

device is not considered, while datatype conversion (existing in

FP16 32, BF16 32, and FP16) is accounted unless otherwise

specified. The findings from these figures indicate that (1)

each precision format displays distinct characteristics in terms

of accuracy and performance - notably, TF32, FP16 32, and

BF16 32 exhibit similar behaviors, a finding corroborated

in [24] and (2) near-theoretical peak performance is achieved

for each precision when ignoring the cost of data move-

ment and datatype conversion. Additionally, the volume of

data transferred between the host and device varies based

on different precisions. Therefore, considering the combined
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effects of accuracy and performance on these Nvidia GPUs, we

incorporate FP64, FP32, FP16 32, and FP16 into our adaptive-

precision framework. This approach can capture benefits of-

fered by different precisions on modern GPUs, resulting in a

more versatile and efficient computational framework.

V. ADAPTIVE MULTI-PRECISIONS CHOLESKY

Within the context of the covariance matrix, which is formu-

lated through MLE, a noteworthy pattern emerges where the

correlation among geospatial locations that are significantly

distant from one another diminishes as one moves farther

away from the matrix diagonal. This can be captured during

the computation process through the utilization of multiple

precision levels. In order to illustrate this, we refer to Fig. 2a.

This figure demonstrates the precision map at the tile level that

is adopted for the numerical kernels, which are responsible

for carrying out the operations on each tile. For instance,

when computations are performed on tiles that are situated

along the diagonal, they invariably make use of FP64 precision

since these tiles contain the strongest correlations. Operation-

precisions applied on off-diagonal tiles are adaptively de-

termined by a tile-centric strategy, which is determined by

thresholding the ratio of the Frobenius norms (F-norm) of

the tile and the global matrix [32] based on the application-

dependent accuracy, in accordance with the methodology on

CPUs outlined in [18], i.e., ||Aij || ×NT/||A|| ≤ ureq/ulow.

||Aij || is the F-norm at tile level; NT , the number of tiles

in a dimension; ||A||, F-norm of the whole matrix; ureq ,

the application required accuracy; ulow, machine epsilon of a

given lower precision. In our study, we employ a Monte Carlo

arithmetic method to check the impact of reduced precision

on the application. This involves utilizing different accuracy

levels to decrease the precision of the matrix tiles, which

subsequently affects the accuracy of parameter estimation.

Therefore, this ureq is application-dependent. Simply put, if

the ratio of the F-norm of a tile to the global matrix is

relatively smaller, a lower level of precision can be adopted for

operations on that particular tile. In this paper, our exploration

of ulow extends now to a variety of floating-point precision

formats that are compatible with GPUs, including FP64, FP32,

FP16 32, and FP16, as illustrated in Section IV. Powered

by tensor cores, the resulting faster computations may further

displace the bottleneck to data movement overheads. We have

made the choice to ignore BF16 32 because the performances

FP64

FP32

FP16_32

FP16

(a) Kernel execution.

FP64

FP32

(b) Data storage.

Fig. 2: Precision map of kernel execution and data storage.

Algorithm 1: Adaptive GPU-based MP Cholesky.

1 for k = 0 to NT − 1
2 DPOTRF (k, k, Ckk)
3 for m = k + 1 to NT − 1
4 TRSM (m, k, C∗

kk , Cmk)
5 ← DPOTRF (k, k, C∗

kk)
6 for m = k + 1 to NT − 1
7 DSYRK (m, k, C∗

mk , Cmm)
8 ← TRSM (m, k, Ckk , C∗

mk)
9 for m = k + 2 to NT − 1

10 for n = k + 1 to m− 1
11 GEMM (m, n, k, C∗

mk , C∗
nk , Cmn)

12 ← TRSM (m, k, Ckk , C∗
mk)

13 ← TRSM (n, k, Ckk , C∗
nk)

in BF16 32 and FP16 32 are similar in the considered GPU

cards, although BF16 32 has a smaller machine epsilon [25],

[37].

Algorithm 1 describes the sequential process of the adaptive

mixed-precision (MP) Cholesky on block- or tile- partitioned

matrices. This algorithm involves the utilization of four distinct

numerical kernels, namely POTRF (Cholesky factorization),

TRSM (triangular solve), SYRK (symmetric rank-k update),

and GEMM (general matrix multiply). The arrow ← asso-

ciated with the blue task demonstrates the dependencies that

exist between tasks which engender data movement. The aster-

isk symbol ∗ on the parameter signifies that data is involved in

that communication. The character “D” prepended to POTRF

and SYRK numerical kernels means FP64 arithmetics since

they operate on diagonal tiles. The other two kernels can run

on any precisions depending on the tile position. To provide

a more comprehensive understanding, Fig. 3 offers a visual

demonstration of the execution of tasks during the first two it-

erations as described in Algorithm 1 along with representative

communications introduced by POTRF → TRSMs, TRSM →
GEMMs and TRSM → SYRK. Each communication process

possesses its own unique datatype, the specifics of which will

be expounded upon in the subsequent section. It is important to

highlight that the formats FP16 32 and FP16 are exclusively

supported in GEMM kernel when using Nvidia GPUs. As a

consequence of this hardware limitation, TRSM must execute

in FP32 in case the precision format of that particular tile turns

P

T S

T G S

T G G S

T G G G S

T G G G G S

T G G G G G S

T G G G G G G S

T G G G G G G G

T G G G G G G G

S

G S

FP64

FP32

FP16_32

FP16

(a) Panel k = 0.

P

T S

T G S

T G G S

T G G G S

T G G G G S

T G G G G G S

T G G G G G G

T G G G G G G

S

G S

FP64

FP32

FP16_32

FP16

(b) Panel k = 1.

Fig. 3: Demonstration of the first two iterations in Algorithm 1.

P, POTRF; T, TRSM; S, SYRK; G, GEMM. Arrows are

representative dependencies introducing communications. The

white color indicates numerical kernels on that tile are finished.
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out to be FP16 32 or FP16. This results in those tiles being

stored directly in FP32 during the matrix generation phase,

and Fig. 2b visually represents this concept by showing the

corresponding precision in data storage as it applies to the

example provided in Fig. 2a.

VI. AUTOMATED PRECISION CONVERSION STRATEGY

Section V outlines communication patterns in Cholesky fac-

torization: (1) POTRF (k, k) on diagonal tile (k, k) broadcasts

to TRSMs in column k, and (2) TRSM (m, k) broadcasts

to GEMMs in row m, GEMMs in column m, and SYRK

(m, k). Given the adaptive tile-centric precision strategy, the

precision of the data received by a task may not match

the precision it operates on, necessitating a likely precision

conversion. This datatype conversion can occur either at the

sender’s end, referred to as sender/source task conversion

(STC), or at the receiver’s end, called receiver/target task

conversion (TTC). The latter was originally introduced in [18],

[38]. As their names suggest, STC ensures that the data

sent matches the receiver’s precision requirements up front;

while TTC works in a way where the sender task forwards

the data in the precision it generates, and the receiver is in

charge of the local conversion of the data according to its

specific needs. Two potential performance advantages of the

innovative STC strategy over TTC [18], [38] are evident. Using

TRSM → GEMMs as an example, the datatype conversion

will only occur once in TRSM rather than in each successive

GEMM, provided what TRSM sends matches what GEMMs

require. We recall the overhead of datatype conversion in

Fig. 1. In addition to this, if down-casting occurs in TRSM,

the succeeding GEMMs can transfer data of lower precision

to GPUs, mitigating data motion overheads. Table II presents

the time required for different precision on one V100 GPU

(within Summit supercomputer) when moving a tile/matrix to

GPU and then applying a GEMM operation. All numerical

kernels in our framework operate on GPUs, so these scenarios

can exist in our approach. As can be seen from the table,

data movement can obliterate any GEMM performance on

the GPU, particularly if a GEMM task operates in a lower

precision than what the data has been moved into the GPU

(such as FP16 while receiving data in FP64). This overhead

could be further amplified when considering the two input data

in GEMM, as shown in Algorithm 1.

We emphasize that while consistently downgrading to the

lowest precision could further reduce GPU data transfer, it

might also unnecessarily compromise the accuracy, given that

TABLE II: Time measurement on V100 (milliseconds).

Matrix Size 2048 4096 6144 8192 10240

Move one tile/matrix in FP64 0.67 2.68 6.04 10.74 16.78
Move one tile/matrix in FP32 0.34 1.34 3.02 5.37 8.39
Move one tile/matrix in FP16 0.17 0.67 1.51 2.68 4.19

Execute GEMM in FP64 2.2 17.62 59.47 140.96 275.32
Execute GEMM in FP32 1.09 8.75 29.54 70.03 136.78
Execute GEMM in FP16 0.14 1.1 3.71 8.8 17.18

subsequent tasks may function at higher precisions. Further-

more, we refrain from constantly sending relevant data to

all subsequent tasks since it may necessitate maintaining and

propagating several precisions of each data. For instance,

consider the tile (0, 0) outlined in orange in Fig. 4a: POTRF (0,

0) applied on this tile need to retain (for TRSMs on the same

process) and broadcast (for TRSMs on a different process) the

same data in three precisions (FP64, FP32, and FP16).

We provide an approach that combines STC and TTC,

automatically adapting our strategy during runtime when ini-

tiating communication to reduce data transfer to GPUs. This

prevents unnecessary accuracy loss and avoids the redundancy

of multiple precision data. In essence, we opt for STC when all

successors of a sender operate at a lower precision; otherwise,

TTC is deployed. The precision in STC is determined by the

highest precision among all successors, while the precision in

TTC is based on the precision of kernel execution in POTRF

or TRSM that issues communications.

Fig. 4a illustrates this automated precision conversion strat-

egy by offering three instances of STC applied in the same

example discussed in Fig. 2a. Tiles marked with the numbers

1 and 2 denote TRSMs operating on these tiles in the first

iteration (k = 0) in Algorithm 1, and POTRF (2, 2) operates

on the tile labeled with number 3 in the third iteration

(k = 2). Tasks (POTRF and TRSMs) operating on these tiles

can send data in lower precision than the kernel-generated

precision since all their successors work with lower-precision

numerical kernels. The recipient task/tasks might still require

conversion, but as previously mentioned in this section, we

strive to minimize the transfer cost by always lowering, as

much as allowed/possible, the precision of the data about to be

transferred. Fig. 4b enumerates precisions of all tiles, thereby

determining the communication precision for tasks executed

on these tiles. Algorithm 2 details the sequential process for

creating the communication-precision map (Fig. 4b) based on

the kernel-precision map (Fig. 4a), which traverses successors

of POTRF and TRSM tasks. The main objective is to identify

tasks that are suitable for STC. During this traversal, every

tile’s comm precision is initialized to the lowest precision

(STC) and concludes when TTC advantages are observed. NT

FP64

FP32

FP16_32

FP16
1

2

3

(a) Demonstration of STC.

FP64

FP32

FP16

(b) Precision in communication.

Fig. 4: Automated precision conversion. (a) showcases when

STC is applied. (b) depicts the precision in the communication

at tile level when POTRF or TRSM operates on this tile; tasks

on tiles with red boundaries use STC, and others TTC.

335

Authorized licensed use limited to: KAUST. Downloaded on January 06,2024 at 14:23:29 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2: Automated precision conversion.

1 /∗ Precision of kernel operated on each tile ∗/
2 Input: kernel precision
3 /∗ Precision of communication issued on each tile ∗/
4 Output: comm precision
5 /∗ Diagonal tiles (k, k) operating POTRF (k, k) ∗/
6 for k = 0 to NT − 1
7 comm precision(k, k) = FP 32
8 for m = k + 1 to NT − 1
9 if kernel precision(m, k) == FP 64

10 comm precision(k, k) = FP 64
11 break
12 /∗ Off-diagonal tiles (m, k) operating TRSM (m, k) ∗/
13 for k = 0 to NT − 2
14 for m = k to NT − 1
15 comm precision(m, k) = FP 16
16 storage precision(m, k) =

get storage precision(kernel precision(m, k))
17 /∗ Check row broadcast in TRSM ∗/
18 for n = k + 1 to m
19 comm precision(m, k) =

get higher precision(comm precision(m, k),
kernel precision(m, n))

20 if comm precision(m, k) is not lower than
storage precision(m, k)

21 comm precision(m, k) = storage precision(m, k)
22 goto done this tile
23 /∗ Check column broadcast in TRSM ∗/
24 for n = m+ 1 to NT − 1
25 comm precision(m, k) =

get higher precision(comm precision(m, k),
kernel precision(n, m))

26 if comm precision(m, k) is not lower than
storage precision(m, k)

27 comm precision(m, k) = storage precision(m, k)
28 goto done this tile
29 done this tile:

represents the number of tiles in a dimension, and the time

complexity of this entire operation is O((NT )3). A notable

aspect of this procedure is that each task’s calculation (POTRF

and TRSM) is independent, indicating the potential for par-

allelization. Upon successful execution of the algorithm, the

outcome is provided to the runtime via the DSL. In this way,

the precision of each communication can be automatically

ascertained at runtime, thereby, on the receiving end, reducing

the amount of data transfer to GPUs, avoiding unnecessary

datatype conversions as much as possible, while preventing

unnecessary accuracy loss, and eliminating redundancy of

multiple precision data.

VII. PERFORMANCE RESULTS AND ANALYSIS

A. Experimental Settings

The experiments are conducted on three systems with dif-

ferent Nvidia GPUs, as described in Table I.

• Summit at Oak Ridge National Laboratory (ORNL). A

GPU-based IBM system including 4,356 compute nodes.

Each node contains two 22-core Power9 CPUs operating

at 3.07 GHz and 256 GB of main memory, and each CPU

is equipped with three NVIDIA Tesla V100 GPUs [39].

The deployed CUDA version is 11.0.3.

• Guyot at Innovative Computing Laboratory (ICL). A

GPU-based AMD compute node. It contains two EPYC

7742 64-Core CPUs at 2.25GHz, 2063 GB of main

memory, and eight NVIDIA A100-SXM4-80GB GPUs.

The deployed CUDA version is 11.4.4.

• Haxane at ICL. A GPU-based Intel compute node. It

contains two 8-core Xeon(R) Silver 4309Y CPUs at 2.80

GHz, 63 GB of main memory, and one NVIDIA H100

PCIe GPU. The deployed CUDA version is 12.1.1.

For the data distribution, we deploy a process grid P × Q
(as square as possible) where P ≤ Q. Precision formats of

storage, calculation, and communication are adaptively deter-

mined using the tile-centric strategy, detailed in Sections V

and VI. The authors in [23] show FP16 32 has a lower error

bound than FP16, so we experimentally determine its machine

epsilon in applications. We recall that FP64 on A100 and H100

achieve the same theoretical peak performance as FP32 due to

tensor cores. The optimized tile size is determined empirically

and set to 2048. We run our experiments multiple times,

and once no noticeable performance variability is measured,

the maximal performance is reported. The execution time

of Algorithm 2 is less than 0.1 seconds in all experiments,

which is relatively negligible compared to the cost of Cholesky

factorization.

B. Accuracy Evaluation in Geospatial Modeling Applications

The goal of GP modeling is to estimate the unknown

parameters, denoted as θ, of a statistical model with a given

covariance function. Once these parameters are estimated, the

model can be utilized for predicting future measurements with

unknown values.

We employ Monte Carlo simulations to assess the parameter

estimation capabilities of the MLE operation. We created 100

synthetic datasets for varying parameter configurations and

subsequently applied the MLE algorithm to the generated

datasets. Our objective was to recover the original parameters

θ that were used to generate the datasets. These synthetic

datasets closely resemble real-world data encountered in cli-

mate and weather applications. In the literature, Monte Carlo

simulation has been employed to evaluate various implemen-

tations of the MLE algorithm, particularly in cases where an

approximation is made for the covariance matrix [40]–[43].

Our aim is to assess the effectiveness of MP linear alge-

bra solvers when employed for the MLE function described

in (1). Referring back to Section III-A, we focus on two

covariance functions: squared exponential and Matérn. In our

experiments, we use 100 replicas of 40,000 synthetic loca-

tions and their corresponding measurement vectors for each

configuration. For optimization, we employ the BOBYQA al-

gorithm from the NLOPT library [44], setting the optimization

tolerance to 10−9. All parameters are constrained within the

range of 0.01 to 2, with the optimization algorithm consistently

initiating from the lower bound values.

The experiments focus on exploring extreme settings regard-

ing the correlation β between locations in both the squared

exponential and Matérn covariance functions, as well as the

data smoothness ν in the Matérn covariance functions. Using

the provided synthetic datasets, the correlation β can range
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Fig. 5: Parameter estimations for 2D synthetic datasets with

two levels of correlation, i.e., weak and strong, and two levels

of smoothness, i.e., rough and smooth, using different levels

of mixed-precision accuracy. The solid green line is the actual

value of that parameter.

from weak (β = 0.03) to strong (β = 0.3), while the

smoothness can vary from rough (ν = 0.5) to smooth (ν = 1).

It is expected that real-world datasets may also exhibit similar

extremes, enabling us to effectively evaluate the estimation

accuracy of the MP-based MLE algorithm.

In Fig. 5, the boxplots display the estimated parameters

of the 2D datasets using two covariance functions: squared

exponential (rows 1 and 2; 2D-sqexp) and Matérn (rows 1,

2, 3, and 4; 2D-Matérn). It is shown for both covariance

functions that an accuracy of 10−9 provides the most accurate

results compared to the exact computation. Achieving an

accuracy of 10−9 yields highly precise estimations, rendering

the need for oversolving via exact computation unnecessary.

Regarding the squared exponential kernels, an accuracy of

10−4 can still be employed, achieving a satisfactory level of

application accuracy. Nevertheless, this study considers the

resulting estimation difference to be acceptable, as it is not

Fig. 6: Parameter estimations for 3D synthetic datasets with

two levels of correlation, i.e., weak and strong, using different

levels of mixed-precision accuracy. The solid green line is the

actual value of that parameter.

(a) 2D-sqexp. (b) 2D-Matérn. (c) 3D-sqexp.

Fig. 7: Kernel precision executed on each tile with matrix size

409,600 and tile size 2048. The percentage of the number of

tiles in each precision is marked in the respective color.

significantly large. In the case of the Matérn covariance func-

tion, only the accuracy of 10−9 can meet the required level of

precision. Fig. 6 presents the boxplots illustrating the estimated

parameters for 3D datasets when using the squared exponential

covariance function (3D-sqexp). The results demonstrate that

an accuracy of 10−8 yields estimations that are highly close

to the exact solution.

C. Precision Map of Kernel Execution

Fig. 7 provides a visualization of the precision of numerical

kernels executed on each individual tile, as referred to Fig. 2a,

by presenting a heatmap in the context of the three applications

that are previously discussed. The accuracy portrayed in Fig. 7

is maintained at the required accuracy threshold for each

application, i.e., 10−4 for 2D-sqexp, 10−9 for 2D-Matérn
and 10−8 for 3D-sqexp. From these figures, each application

exhibits its unique characteristics: 2D-sqexp is the most cost-

effective, with 29.5% and 46.7% of tiles executing kernels

in FP16 32 and FP16 respectively, while 3D-sqexp is the

most resource-intensive, with over 60% of tiles executing

kernels in either FP64 or FP32. These create varying levels of

load imbalance in terms of computation, communication, and

memory footprint, highlighting the versatility and adaptability

of our approach.

D. Impact of Automated Precision Conversion Strategy

As mentioned in Section VI, STC sends fewer data than

TTC, thus reducing data movement between CPU and GPU on

the receiver end, but STC cannot always be applied. Therefore,

automated precision conversion entails a dynamic strategy

of whether STC can be utilized during the runtime when

communication is initiated. In a bid to effectively illustrate the

benefits of this approach, Fig. 8 presents a comparative anal-

ysis of the performance of STC and TTC under two extreme

conditions, FP64/FP16 32, and FP64/FP16, on one V100 GPU

of Summit, one A100 GPU of Guyot, and one H100 GPU of

Haxane. This can also provide insights into the performance

that can be achieved with each precision. Regarding the

kernel execution map (refer to Fig. 2a) specific to these two

settings, numerical kernels on diagonal tiles and off-diagonal

tiles operate in FP64 and in FP16 32 (for the FP64/FP16 32

configuration) or FP16 (for the FP64/FP16 configuration),

respectively. In this case, all communications can employ the
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(a) One V100 on Summit (b) One A100 on Guyot (c) One H100 on Haxane

Fig. 8: Performance of precision conversion strategies and efficiency on one GPU. The dashed red/blue lines are the theoretical

peak of that precision. The black dashed line in (c) is the sustained GEMM performance (FP64) achieved by the GEMM

benchmark in Fig. 1d. FP64 operates on tensor cores on A100 and H100, thus achieving the same theoretical peak than FP32.

STC strategy. Communications can be classified as either STC

or TTC. Therefore, if all communications fall under TTC, it

can be viewed as a lower bound in performance, while all

communications in STC as an upper limit for performance

improvement. For a real-world application, performance likely

lies between these two extreme conditions.

This figure presents numerous observations and findings.

• High efficiency with FP64 and FP32 computations. On

the V100 platform, our implementation is able to achieve

84.2% and 79% of the theoretical peak performance using

FP64 and FP32, respectively. Similarly, on A100, the

performance exceeded 85% for both FP64 and FP32 oper-

ations. On H100 with PCIe, we attain around 62% of the

theoretical peak performance. This slightly diminished

performance on the H100 can be attributed to the fact that

the achieved practical GEMM performance is marginally

lower compared to that on V100 and A100, as illustrated

in Fig. 1d. Nevertheless, when the performance on H100

is juxtaposed with the practical GEMM performance, it

surpasses 82%.

• Significant improvements when transitioning from TTC

to STC. As anticipated, decreasing the amount of data to

be transferred (by decreasing the precision of the trans-

ferred data) has an extremely positive impact. Indeed,

the performance of STC surpasses that of TTC in all

instances. This led to a speedup of up to 1.3X on V100,

1.41X on A100, and 1.27X on H100.

Fig. 9: GPU Occupancy of one H100 on Haxane.

• Substantial gains when shifting from FP64 to lower preci-

sion computations. In particular, the F64/FP16 configura-

tion can achieve the best performance in our framework,

which leads to a speedup of more than 11X to FP64

on both the V100 and A100 platforms. Especially on

A100, this speedup is quite notable when compared to

the theoretical performance speedup of the FP16 tensor

core to the FP64 tensor core (16X, referring to Table I).

On H100, this speedup was slightly lower, coming in

at 4.7X. This lesser speedup can be attributed to the

limited main memory size on Haxane, which is 63 GB

(see Section VII-A), thereby imposing a restriction on the

matrix size that can be experimented with.

In order to gain a better understanding of the execution on

H100, Fig. 9 provides a depiction of the GPU occupancy for

STC on the largest matrix size as shown in Fig. 8c. Each data

point plotted within these figures represents the actual time

occupancy. This was measured at regular interval, employing

the tools provided by Nvidia. A careful examination of these

figures reveals that 100% GPU utilization can be routinely

attained when dealing with FP64 and FP32, which means

no data transfers are holding up computations, so all data

transfers are completely overlapped with computations. When

considering FP64/FP16 32 and FP64/16, it is observed that

the GPU occupancy regularly exceeds 80%. This indicates

that even in these scenarios, a significant portion of GPU’s

computational resources is being effectively used, further

demonstrating the efficiency of the execution on H100.

Similarly to Fig. 8, Fig. 11 presents the performance results

gathered from a single node that utilizes multiple GPUs on

Summit and Guyot. Upon comparing Fig. 11 with Fig. 8, our

implementation is highly proficient at virtually reaching linear

scalability when transitioning from the use of one GPU to the

employment of multiple GPUs within a single physical node.

In addition, we manage to (1) maintain a significant efficiency

rate of over 80% for both FP64 and FP32 computations, as

compared to their respective theoretical peaks; (2) facilitate a
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V100:
Matrix Size

61,440

A100:
Matrix Size

122,880

H100:
Matrix Size

122,880

Fig. 10: Power consumption of Cholesky in FP64, the proposed MP approach for 2D-sqexp, 2D-Matérn, and 3D-sqexp. The

first/second/third rows are on one V100/A100/H100 GPU, respectively. The solid red line is the max TDP on that GPU.

(a) Six V100 GPUs. (b) Eight A100 GPUs.

Fig. 11: Performance of precision conversion strategies and

efficiency on one Summit/Guyot-node. The dashed red/blue

lines are the theoretical peak of that precision.

considerable speedup ratio of up to 1.66X when transitioning

from TTC to STC operations; (3) exhibit a remarkable speedup

of 9.75X on the Summit and an even higher speedup of

10.9X on Guyot when switching from FP64 to FP64/FP16

calculations.

E. Power Consumption

Power consumption has increasingly become a critical factor

in high-performance computing, particularly as systems grow

in scale. The pursuit of computational speed and performance

must now be balanced with the need for energy efficiency,

as the environmental and economic costs of power-hungry

operations have become untenable. Fig. 10 presents a compar-

ative analysis of energy consumption on one V100 Summit,

one A100 Guyot, and one H100 Haxane. This comparison is

made between our proposed mixed-precision approach for 2D-
sqexp, 2D-Matérn, and 3D-sqexp, and their respective FP64

counterpart. The data points, representing energy measure-

ments taken at regular intervals using provided Nvidia tools,

sometimes exceed the max Thermal Design Power (TDP).

This could potentially be attributable to measurement errors,

ambient noise, or short-term power spikes. The matrix size

utilized on V100 is the largest one that fits in GPU memory

using F64 (i.e., 61, 440), while the matrix size of 122, 880
on both A100 and H100 is determined by the main memory

size on Haxane. Therefore, given the cubic time complexity of

Cholesky factorization, theoretically, the energy consumption

on V100 would be tripled if the matrix size on V100 is the

same as on A100/H100.

Fig. 10 also encapsulates total energy consumption in joules

and performance achieved per watt in Gflops/Watt on single

NVIDIA GPU hardware generation. It is evident from the

figure that the proposed mixed-precision approach with the

automated conversion STC, which allows calculations to be

executed in lower precision where high precision is not

necessary, can considerably reduce the required computational

resources and, consequently, the energy consumed. This leads

not only to decreased power consumption but also to an

augmented computational capacity of the system, as more

operations can be performed within the same power budget.

To be more specific, on A100 and H100 architectures, ten-

sor cores are employed for FP64 computations, while FP32

operations utilize regular cores because of accuracy. As a

result, the performance and energy consumption trends for

A100 and H100 for FP64 and FP32 are similar. This leads to

the proposed mixed-precision approach yielding lesser energy

savings on A100/H100 compared to V100, especially for 3D-
sqexp where a large proportion of tiles operate in FP32

(see Fig. 7). Furthermore, the majority of higher precision

tiles tend to cluster near the diagonal, resulting in an even

smaller proportion of kernels in lower precision, e.g., FP16.

In addition, these figures also exemplify the progression in

technology scaling from V100 to A100 to H100 in terms

of performance and energy efficiency. It is noteworthy that
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(a) Weak scalability. (b) Strong scalability. (c) MP effect on 64 nodes (384 GPUs).

Fig. 12: Performance evaluation on Summit. The dashed lines in (c) show the theoretical peak performance of that precision.

the real-time power consumption on H100 does not reach the

max TDP, despite the occupancy consistently hitting 100%,

as shown in Fig. 9. Assessment of energy efficiency of our

mixed-precision approach on multiple GPU-based nodes is an

interesting avenue for future work but will require advanced

monitoring tools and a dedicated access on resources that are

usually shared across users, e.g., the network interconnect.

F. Performance Scalability

We thoroughly test our mixed-precision approach associated

with our automated precision conversion on Summit on three

key aspects: weak scalability, strong scalability, and the effect

of mixed-precision on FP64, as shown in Fig. 12. With re-

spect to weak scalability, the problem size was systematically

expanded with the number of GPUs. Results show near-linear

scalability, suggesting that our methodology could efficiently

adapt to incremental increases in computational resources.

Next, we examine the strong scalability, where we maintain a

constant matrix size (798, 720) while increasing the number of

GPUs. The results demonstrate notable strong scalability, sug-

gesting that our approach can effectively distribute a fixed-size

problem across additional resources to expedite the computa-

tion process. Performance on 384 GPUs falls slightly short of

linear scale, possibly due to running out of work, exacerbating

higher communication and runtime overheads [45]. Lastly, we

analyze the mixed-precision effect on 64 Summit nodes (i.e.,

384 GPUs) by showing the actual performance and its speedup

compared to FP64. The baseline performance of FP64 achieves

68.0% of the theoretical peak, which is a commendable result

compared to the 74.0% LINPACK efficiency on Summit listed

on Top500 [46]. As for the effect of mixed precisions with

automated conversion, 2D-sqexp, 2D-Matérn, and 3D-sqexp
perform better than FP32 when matrix size increases, with up

to 3.2X speedup compared to FP64.

An interesting observation across the three applications

reveals that 3D-sqexp achieves the least performance, while

2D-sqexp demonstrates the highest performance thanks to its

low-precision resilience. This aligns with our earlier discus-

sions in Section VII-C. It is crucial to remember that the

required accuracy significantly impacts the precision of the

kernel operations carried out on each tile (refer to Section V),

thereby influencing the resulting performance. As previously

mentioned, we employ an accuracy level that is universally

applicable across all scenarios in each application. In prac-

tice, technologies like sampling [47]–[49] can preprocess the

dataset to catch such characteristics beforehand. This allows

for the possibility of a higher precision threshold for these

applications, which in turn, results in selecting more tiles near

the critical path (diagonal and sub-diagonal tiles [16]) in lower

precision and hence, achieving superior performance.

All in all, these findings demonstrate the versatility, effi-

ciency, and scalability of the proposed approach on hetero-

geneous architectures in carrying out mixed-precision matrix

operations using automated conversion, while still maintaining

satisfactory accuracy for geostatistical modeling.

VIII. CONCLUSION AND FUTURE WORK

This paper underscores the significance of employing

mixed-precision arithmetic as a means to expedite large-

scale geospatial modeling. In this context, we harness the

capabilities of PaRSEC, a nimble task-based runtime sys-

tem, which aids in establishing an adaptive mixed-precision

framework with an automated precision conversion strategy

on heterogeneous systems. Our proposed implementation not

only improves performance but also reduces the associated

storage cost and energy consumption, while still guaranteeing

the required accuracy in environmental applications.

Looking ahead, we intend to further our research by devel-

oping an efficient GPU library and combining the strengths of

mixed precisions with tile low-rank (TLR) computations [16],

[17] to address the curse of dimensionality. We ultimately

aim to improve the efficiency and performance of large-

scale geospatial modeling tasks, with a particular focus on

applications related to climate and weather prediction.
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