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Summary

The assumption of normality has underlain much of the development of statistics, including spa-
tial statistics, and many tests have been proposed. In this work, we focus on the multivariate setting
and first review the recent advances in multivariate normality tests for i.i.d. data, with emphasis on
the skewness and kurtosis approaches. We show through simulation studies that some of these tests
cannot be used directly for testing normality of spatial data. We further review briefly the few
existing univariate tests under dependence (time or space), and then propose a new multivariate
normality test for spatial data by accounting for the spatial dependence. The new test utilises the
union-intersection principle to decompose the null hypothesis into intersections of univariate nor-
mality hypotheses for projection data, and it rejects the multivariate normality if any individual hy-
pothesis is rejected. The individual hypotheses for univariate normality are conducted using a
Jarque–Bera type test statistic that accounts for the spatial dependence in the data. We also show
in simulation studies that the new test has a good control of the type I error and a high empirical
power, especially for large sample sizes. We further illustrate our test on bivariate wind data over
the Arabian Peninsula.

Key words: Gaussian process; Jarque–Bera test; skewness and kurtosis; spatial dependence; spatial
statistics; test for multivariate normality.

1 Introduction

Normality is one of the most commonly made assumptions in the development and use of
statistical procedures, such as t-tests, tests for regression coefficients, the F-test of homogeneity
of variance, discriminant analysis and analysis of variance (ANOVA). The performance of
these procedures can be affected to various extents if the normality assumption is violated
(see, e.g. Pitman, 1938; Geary, 1947; Box, 1953; Tukey, 1960; Subrahmaniam et al., 1975;
D’Agostino & Lee, 1977; and Looney, 1995). Hence, the problem of testing whether a sample
of observations comes from a normal distribution or not has received much attention, and nu-
merous methods for testing for normality have been developed. There is now a very large body
of literature on tests for univariate normality; for a review of classical tests, see, for example,
Mardia (1980), D’Agostino & Stephens (1986) and Thode (2002), and for comparative
studies on the power of selected normality tests, see, e.g. Shapiro et al. (1968), Pearson
et al. (1977), Keskin (2006), Öztuna et al. (2006), Farrell & Rogers-Stewart (2006),
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Thadewald & Büning (2007), Yazici & Yolacan (2007), Romao et al. (2010), Yap &
Sim (2011), Noughabi & Arghami (2011), Ahmad & Khan (2015), Islam (2017) and
Sánchez-Espigares et al. (2019).
Relatively less work has been carried out in the field of testing for multivariate normality

(MVN) compared with that carried out for the univariate case, because there can be many dif-
ficult cases for MVN; for instance, non-normal distributions that have all lower-dimensional
marginals being normal (see, e.g. Dutta & Genton, 2014). In addition, classical univariate nor-
mality tests, such as the chi-squared test, have limited applicability in higher dimensions. Re-
views on the tests for MVN have been given by Thode (2002), Henze (2002) and Ebner &
Henze (2020), with the last one emphasising on several classes of the weighted L2 statistics.
Evaluation on the power of various tests for MVN is quite sparse, and among the more compre-
hensive studies are those of Horswell & Looney (1992), Romeu & Ozturk (1993), Mecklin &
Mundfrom (2005), Farrell et al. (2007), Joenssen & Vogel (2014) and Hanusz et al. (2018).
The Jarque–Bera (JB) type test (Jarque & Bera, 1981), which combines the sample skewness
and kurtosis measures, is among one of the most commonly used tests due to its simplicity
and good power properties.
In spatial statistics applications, the Gaussian assumption is also widely used to improve

finite-sample inference and effectively employ Bayesian methods. Zimmerman & Stein (2010)
and Gelfand & Schliep (2016) provided surveys of Gaussian modelling in spatial statistics. Re-
cent research has focused on applying spatial statistical methods based on the Gaussian assump-
tion to large datasets and advancing computational approaches; see, for example, Nychka
et al. (2015), Paciorek et al. (2015), Katzfuss (2017) and Guhaniyogi & Banerjee (2018). De-
spite the prevalence of the Gaussian assumption made in spatial statistics, there appears to be
very few significance tests that could be used to assess if it is reasonable to assume that a given
spatial dataset can be treated as a realisation of a Gaussian random field. All the aforementioned
tests cannot be directly used for spatial data, because they are designed for examining the nor-
mality in a random sample (i.e. i.i.d. observations), so that the conventional large-sample ap-
proximations to the null distributions of the test statistics are either unknown or inaccurate un-
der spatial dependence. In this work, we show by simulation studies in Section 5 that the sample
skewness and kurtosis deviate from their theoretical values in the i.i.d. case as the degree of spa-
tial dependence increases. Hence, the usual test of normality based on the sample skewness and
kurtosis may be misleading if the observations in the sample are dependent, as also indicated by
the severely inflated type I error from our simulation study in Section 6.
A review on univariate normality tests for data with serial dependence in time series is given

by Psaradakis & Vávra (2020), but these tests need to be justified, extended or modified if they
are to be applied to spatial data, and further generalised to the multivariate setting, which is not
always possible. Pardo-Igúzquiza & Dowd (2004) demonstrated a methodology for the applica-
tion of standard univariate normality tests, such as the Kolmogorov–Smirnov test, the
chi-squared test, and the Shapiro–Wilks test, to spatially correlated data, using block kriging
in de-clustering to obtain unbiased estimates of the probability density function or the cumula-
tive density function. Olea & Pawlowsky-Glahn (2009) and Zheng (2019) investigated the
Kolmogorov–Smirnov test under spatial correlations, using bootstrap methods or Monte Carlo
procedures. However, these tests are either difficult to implement or computationally intensive.
Horváth et al. (2020) developed a JB-type test for spatial data defined on a grid under the as-
sumption of stationarity by accounting for the spatial dependence of the observations. The test
is easy to implement, shown to have good empirical size and power, and can be justified asymp-
totically. To our knowledge, no normality test for multivariate spatial data has been proposed
yet.
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The goal of this study is twofold. First, we aim at providing a comprehensive review on recent
MVN tests for i.i.d. data based on skewness and kurtosis approaches, proposed ever since the re-
viewworks by Thode (2002) andHenze (2002). Second, we propose aMVN test for spatially cor-
related data by extending the test of Horváth et al. (2020) to the multivariate setting. We consider
the practically common case where the data to be tested are the zero-mean residuals of regression
and spatial models. The type I error and empirical power of the new test are assessed by simula-
tion studies. In the title of our paper, the ‘All’ represents ‘multivariate’, and the answer to the ques-
tion of testing multivariate normality ‘depends’ on the underlying dependence (in space or time).

The rest of this paper is organised as follows. Section 2 introduces some useful preliminaries,
terminologies and notations. Section 3 reviews the recent developments of MVN tests based on
the skewness and kurtosis approaches in the i.i.d. setting; Section 4 reviews the chi-squared type
and BHEP-type tests, and the other types of MVN test for i.i.d. data are presented in the
supporting information. Section 5 demonstrates a simulation study to investigate the influence
of spatial dependence on the measures of skewness and kurtosis for multivariate Gaussian ran-
dom fields. Section 6 describes our new test for MVN under spatial dependence and its perfor-
mance based on the type I error and empirical power. Section 7 describes a data application
based on bivariate wind data over the Arabian Peninsula. Section 8 concludes and discusses fu-
ture work directions.

2 Preliminaries, Terminologies and Notations

In this section, we describe the preliminaries, terminologies and notations that will be used
throughout this paper.

The significance testing problem is formulated as follows. Let X i ∈ ℝp; i ¼ 1; …; n, be ob-
servations (a random sample or spatially correlated data) from a p-variate distribution with cu-
mulative distribution function (CDF) FX. LetN pðμ; ΣÞ denote the p-variate normal distribution
with expectation μ and nonsingular covariance matrix Σ, and let N p denote the class of all
non-degenerate p-variate normal distributions. Our interest is to test, based on the observations
X 1; …; Xn, the hypothesis H0 :FX ∈ N p, against general alternatives.

It is usually desired that the tests for MVN possess the properties of affine invariance and uni-
versal consistency. Because the class N p is closed with respect to full rank affine transforma-
tions, in order to ensure the same conclusion regarding rejection or acceptance of H0 given
the original data X1; …; X n and the transformed data AX1 þ b; …; AX n þ b , where
A ∈ ℝp � p is nonsingular and b ∈ ℝp, any test statistic TnðX 1; …; XnÞ should be affine invari-
ant, that is, TnðAX1 þ b; …; AX n þ bÞ ¼ TnðX1; …; XnÞ. The consistency class of a test sta-
tistic Tn for H0 is the set of probability distributions P over ℝp such that, if the underlying dis-
tribution is P, the probability of rejecting H0 tends to one as the sample size n goes to infinity,
when using the test statisticTn. As the alternatives to normality are rarely known in practice, it is
important that the consistency class of a test for MVN is the set of all P ∉ N p, which implies
that the test is able to detect any non-normal alternative distribution, at least for large samples.
Here, we call a test to be universally consistent if it is consistent against any fixed non-normal
alternative distributions.

Because there are, in principle, an infinite number of alternatives to normal distributions, no
uniformly most powerful test exists for MVN. Therefore, two types of tests are developed tai-
lored to the problem of interest. One type consists of omnibus tests that are designed to cover
all possible alternatives, usually with only reasonably high and generally suboptimal powers.
Most of the tests in the literature are omnibus tests. The other type refers to directed tests that
are highly powerful for some specific classes of alternatives, at the cost of being blind to other
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types of alternatives. Combinations of directed tests have also been suggested as omnibus tests.
Tests based on measures of multivariate skewness or kurtosis are typically directed tests, and
they have certain diagnostic limitations as clarified by Henze (2002) and also mentioned in
Section 3. Nevertheless, one important role of directed tests is that they can be used to detect
types of departures from normality that are most dangerous in the underlying problem. For ex-
ample, the size of the Hotelling T2 test (Hotelling, 1931) is much influenced by the asymmetry
of the distribution, while symmetric departures from normality are not so crucial (Mardia, 1970).
In addition, for restricted families of alternatives that are closed under the action of some groups
of transformations, it may be possible to construct most powerful invariant (MPI) tests and thus
set benchmarks for assessing the performance of other invariant tests.
In what follows, let 0 denote the null vector of length p; Ip denote the identity matrix of size

p� p; ‖ · ‖ denote the Euclidean norm in ℝp, and a superscript ⊤ denote a transpose. Also,
denote the sample mean vector and sample covariance matrix, for the p-variate observations

X1; …; X n , as X ¼ 1

n

Xn

i¼1
X i and S ¼ 1

n

Xn

i¼1
ðX i � X ÞðX i � X Þ ⊤, respectively, and ~S ¼

n

n � 1
S is the unbiased sample covariance matrix. In addition, assume that n ≥ pþ 1 so that S

is invertible with probability one (Eaton & Perlman, 1973). Denote by S�1=2 the unique sym-
metric square root of S, and define the scaled residuals as Y i ¼ S�1=2ðX i � X Þ; i ¼ 1; …; n,
which are asymptotically N pð0; IpÞ under H0.

3 Recent Advances of Multivariate Normality Tests Based On Skewness and
Kurtosis Approaches for i.i.d. Data

Recent work on MVN tests for i.i.d. data can be classified into five categories: (i) skewness
and kurtosis approaches; (ii) chi-squared type tests; (iii) BHEP-type tests based on the empirical
characteristic function; (iv) other generalisations of univariate normality tests; and (v) multiple
testing procedures that combine multiple tests for MVN. In this section, we review the first cat-
egory, that is, tests based on skewness and kurtosis measures. In the next section, we review the
chi-squared type and BHEP-type tests, and also present the review for the remaining two cate-
gories in the supporting information for readers’ reference.
In univariate statistics, the skewness and kurtosis of a random variable X , with mean μ and

variance σ2, are defined as

β1 ¼ E
X � μ

σ

� �3
( )

¼ μ3

μ3=2
2

; and β2 ¼ E
X � μ

σ

� �4
( )

¼ μ4

μ2
2

;

respectively, where μi is the ith central moment of X . For a normal distribution, β1 ¼ 0 and β2 ¼
3. Hence, β2 � 3 is called excess kurtosis with respect to a normal distribution. The skewness
β1 ¼ 0 for symmetric distributions and β1 > 0ð < 0Þ for right (left)-asymmetric distributions,
while the kurtosis β2 ¼ 3 for the normal distribution, and β2 > 3 ð < 3Þ for distributions that
are heavier-tailed (lighter-tailed) than the normal one.
Tests based on the univariate sample skewness and kurtosis are among the earliest procedures

for assessing univariate normality. Due to their popularity and good power properties, some of
the first tests for MVN are based on extensions of the notion of skewness and kurtosis to the
multivariate setting. The Mardia’s tests (Mardia, 1970, 1974) are perhaps the most often refer-
enced tests for MVN. Mardia (1970) firstly extended the measures of skewness and kurtosis of a
p-dimensional random vectorX ¼ ðX 1; X 2; …; XpÞ ⊤ , with mean vector μ and covariance ma-
trix Σ, as
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β1; p ¼ E ðX � μÞ ⊤ Σ�1ðY � μÞ
n o3
� �

and β2; p ¼ E ðX � μÞ ⊤ Σ�1ðX � μÞ
n o2
� �

;

respectively, whereX and Y are independently and identically distributed random vectors. For a
p-variate normal distribution, β1; p ¼ 0 and β2; p ¼ pðpþ 2Þ. For all distributions, β1; p ≥ 0, and
for p ¼ 1; β1; p reduces to the square of the univariate skewness. The sample measures are also
defined for i.i.d. samples, X i; i ¼ 1; …; n, as

b1; p ¼ 1

n2
∑
n

i¼1
∑
n

j¼1
ðX i � X Þ ⊤ S�1ðX j � X Þ
n o3 ¼ 1

n2
∑
n

i¼1
∑
n

j¼1
ðY ⊤

i Y jÞ3;

b2; p ¼ 1

n
∑
n

i¼1
ðX i � X Þ ⊤ S�1ðX i � X Þ
n o2 ¼ 1

n
∑
n

i¼1
ðY ⊤

i Y iÞ2:
Mardia (1970) then proposed tests based on b1; p and b2; p as

MS ¼ nb1; p=6; MK ¼ fb2; p � pðpþ 2Þg=f8pðpþ 2Þ=ng1=2; (1)

which are asymptotically χ2pðp þ 1Þðp þ 2Þ=6 and Nð0; 1Þ, respectively, under H0. Other classical

measures of multivariate skewness and kurtosis and related tests for MVN have been proposed
by, for example, Malkovich & Afifi (1973), Isogai (1982), Srivastava (1984), Koziol (1987) and
Móri et al. (1994).

Univariate normality tests often use classical measures of asymmetry based on the
standardised distance between two separate location parameters, and measures of kurtosis based
on the ratios of two scale measures, such as the classical standardised fourth moment. Motivated
by these facts, Kankainen et al. (2007) proposed a measure of multivariate skewness based on
the Mahalanobis distance between two multivariate location vector estimates, and a measure of
multivariate kurtosis based on the (matrix) distance between two scatter matrix estimates. A
vector-valued (matrix-valued) statistic is called a location vector (a scatter matrix) if it is affine
equivariant (see Section 2 in Kankainen et al. (2007)). Then, the test statistic for MVN (to detect
skewness) is given by U ¼ ðT1 � T2Þ ⊤ C�1ðT1 � T2Þ, where T1 and T2 are two separate
location vectors and C is a scatter matrix, and the kurtosis test statistic is given by

W ¼ ‖C�1
1 C2 � Ip‖2 ¼ trfðC�1

1 C2Þ2g � 1

p
tr2ðC�1

1 C2Þ
� �

þ 1

p
trðC�1

1 C2Þ � p
� �2

;

where ‖ · ‖2 ¼ trð · ⊤ · Þ, andC1 andC2 are two separate scatter matrices. Using special choices
of location and scatter estimators, it is possible to obtain generalisations of classical Mardia’s
measures of multivariate skewness and kurtosis.

Thulin (2014) proposed a measure of multivariate skewness in a way that resembles the con-
struction in Mardia (1970). For the sample X 1; …; Xn, write X ¼ ðX 1; …; X pÞ ⊤ ; S ¼ fSijg,
and u ¼ ðS11; …; Spp; S12; …; S1p; …; S2p; …; Sp � 1; pÞ ⊤ . It is well known that X and u are

independent underH0. Denote the covariance matrix of X andu byCovðX ; uÞ ¼ Λ11 Λ12

Λ21 Λ22

� �
,

where Λ11 is the covariance matrix of X and so on. The canonical correlations, λ1; …; λp, of X
and u are the square roots of the eigenvalues of Λ�1

11 Λ12Λ�1
22 Λ21, and they are all equal to zero

under H0. The measure of multivariate skewness proposed by Mardia (1970) is based on the
sum of squared canonical correlations:

β1; p ¼ 2 ∑
p

i¼1
λ2i ¼ 2 trðΛ�1

11 Λ12Λ�1
22 Λ21Þ; (2)
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under the assumption that the cumulants of order higher than 3 of X are negligible. The sample
counterpart of β1; p can be used to construct tests for MVN. Thulin (2014) derived explicit

expressions for the elements of CovðX ; uÞ in terms of the moments of ðX 1; …; XpÞ (see his
Theorem 1), and proposed a new test, ZHL

2; p , based on the sample counterpart of CovðX ; uÞ
(see his Equation (12)). The author constructed another test based on the fact that X and v ¼
ðS111; S112; …; Sp; p; ðp � 1Þ; SpppÞ ⊤ are also independent under H0, where

Sijk ¼ n

ðn � 1Þðn � 2Þ ∑
n

r¼1
ðX r; i � X iÞðXr; j � X jÞðX r; k � X kÞ:

Yamada et al. (2015) generalised Mardia’s multivariate kurtosis for testing MVN when the data
consist of a random sample of two-step monotone incomplete observations.
One disadvantage of the aforementioned tests is that they only consider departures from mul-

tivariate normality revealed by skewness and kurtosis, and failure to reject the null hypothesis
leaves open the question of whether there are departures from normality in other ways. Conse-
quently, these tests are not universally consistent. For example, the test based on multivariate
kurtosis in the sense of Malkovich & Afifi (1973) is inconsistent against spherically symmetric
alternative distributions with normal marginal kurtosis, 3. Furthermore, these tests rely only on
asymptotic properties, that is, they require large samples to achieve both reasonably accurate
control of type I error and high power.
The omnibus Jarque–Bera (JB)-type tests address the aforementioned issue by combining

the skewness and kurtosis measures. The univariate JB test (Jarque & Bera, 1981), based

on a univariate random sample X i ∈ ℝ; i ¼ 1; …; n, is given by JB ¼ nb21
6

þ nðb2 � 3Þ2
24

, where

b1 and b2 are the sample skewness and kurtosis, respectively, given by b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � 1Þp
n � 2

m3

m3=2
2

and b2 ¼ m4

m2
2

, where mk ¼ 1
n

P
n
i¼1 X i � 1

n

P
n
j¼1X j

	 
k
. Under univariate normality, JB is

asymptotically χ22. The simplest way to construct multivariate JB-type tests, based on the

sample X 1; …; Xn, is to aggregate individual (univariate) skewness and kurtosis as JBM ¼P p
i¼1

nb21ðiÞ
6

þP p
i¼1

nðb2ðiÞ � 3Þ2
24

, where b1ðiÞ and b2ðiÞ denote the sample skewness and kurtosis,

respectively, of component i . JBM is asymptotically distributed as χ22p under H0 (see, e.g.
Lütkepohl, 2005). However, for both JB and JBM, the sample skewness and kurtosis are not
independent in finite samples, and using the asymptotic distribution leads to under-rejection.
To remedy this problem, Doornik & Hansen (2008) proposed to use transformed skewness
and kurtosis, which creates statistics that are much closer to standard normal, based on the work
of Bowman & Shenton (1975). Specifically, the test statistic is

JBDH ¼ B ⊤
1 B1 þ B ⊤

2 B2; (3)

where B1 ¼ ðb∗1ð1Þ; …; b∗1ðpÞÞ ⊤ and B2 ¼ ðb∗2ð1Þ; …; b∗2ðpÞÞ ⊤ are the transformed vectors of

skewness and kurtosis, respectively. JBDH is asymptotically χ22p underH0. Jönsson (2011) further
noticed that there is a pattern of downward size distortions to the test based on JBM; see his

Figure 1. He suggested using the test statistic that pools the individual p-values: gLM ¼
�2

X p
i¼1lnðπiÞ, where πi is the p-value of the univariate JB test for the ith component. gLM
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has an asymptotic χ22p distribution under H0 , and simulation studies showed that the
previous poor size properties are eliminated (see his Figure 2) without loss of power. The

calculation of gLM is somewhat more convenient than using the transformation approach pro-
posed by Doornik & Hansen (2008). Kim (2016) proposed to aggregate the univariate JB-type
statistics based on transformed data. Suppose the random sampleX1; …; X n is fromN pðμ; ΣÞ.
Then the standardised data, Z i ¼ S∗ ⊤ ðX i � X Þ; i ¼ 1; …; n , follow a N pð0; IpÞ
asymptotically under H0, where S∗ is defined by S∗ ⊤ SS∗ ¼ Ip. The multivariate test statistics
are then formed by adding up the univariate JB-type statistics for each coordinate of the
transformed vectors.

Another way to construct multivariate JB-type tests is to combine multivariate skewness and
kurtosis measures (see, e.g. Bera & John, 1983; Mardia & Foster, 1983; and Mardia &
Kent, 1991). Koizumi et al. (2009) proposed two JB-type tests based on multivariate sample
skewness and kurtosis of Srivastava (1984). For the sampleX 1; …; Xn, letS ¼ HDωH ⊤, where
H ¼ ðh1…hpÞ is an orthogonal matrix and Dω ¼ diagðω1; …; ωpÞ. The sample measures of
multivariate skewness and kurtosis given by Srivastava (1984) are

~b1; p ¼ 1

p
∑
p

i¼1

m3i

m3=2
2i

 !2

; ~b2; p ¼ 1

p
∑
p

i¼1

m4i

m2
2i

; (4)

respectively, where mki ¼ 1
n

Xn

j¼1
ðYij � Y iÞk , with Yij ¼ h ⊤

i X j and Y i ¼ 1
n

Xn

j¼1
Y ij; i ¼ 1;

…; p; j ¼ 1; …; n. The two JB-type statistics based on ~b1; p and ~b2; p are:

M1 ¼ np
~b1; p
6

þ ð~b2; p � 3Þ2
24

( )
and M2 ¼ p~b1; p

Eð~b1; pÞ
þ f~b2; p � Eð~b2; pÞg2

Varð~b2; pÞ
;

both asymptotically χ2p þ 1 under H0 , with Eð~b1; pÞ ¼ 6ðn � 2Þ
ðnþ 1Þðnþ 3Þ; Eð~b2; pÞ ¼

3ðn � 1Þ
nþ 1

, and

Varð~b2; pÞ ¼ 24nðn � 2Þðn � 3Þ
pðnþ 1Þ2ðnþ 3Þðnþ 5Þ under H0 . Enomoto et al. (2012) noticed a difference

between the upper percentiles of the distributions of M 2 and the chi-squared distribution for
small n. To mitigate the difference, they proposed a new test statistic by using the variance
of M2:

M3 ¼ cM2 þ ð1 � cÞðpþ 1Þ;

which is also asymptotically χ2p þ 1 under H0, with c ¼ 2pðp þ 1Þ
VarðM2Þ

n o2
, and VarðM 2Þ is derived as

their Equation (3.1). Koizumi et al. (2014) suggested two other improved tests of M1 and M2.
First, they noticed that inM 1, the skewness term asymptotically dominates the kurtosis term for
largep, so that the omnibus test becomes a directional test for the skewness only. Therefore, they
proposed the following test statistic:

MJB2 ¼ z2WH þ np

24
ð~b2; p � 3Þ2;

where zWH ¼ ðz1=pÞ1=3 � 1þ 2=ð9pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð9pÞp is the Wilson–Hilferty transform (Wilson & Hilferty, 1931)

of z1 ¼ np~b1; p=6. When both p and n go to infinity, MJB2 is asymptotically χ22 under H0, which
does not depend on the dimensionality p , and hence the omnibus property of the test is
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maintained even for large p. However, their simulation study showed that theMJB2 test has poor
performance in terms of type I error. They further improvedMJB2 by a normalising transform of
the sample kurtosis as suggested in Seo & Ariga (2011):

mMJB ¼ z2WH þ z2NT ;

where zNT ¼
ffiffiffiffiffi
np

24

r
�e�ð~b2; p � 3Þ þ 1þ 6

n
þ 12

np

� �
. The statistic mMJB is asymptotically χ22 under H0,

and proved to have a more stable behaviour in small samples. They further studied the F
-approximation for mMJB which is shown to be better than the chi-squared approximation,
and therefore can be recommended for testing MVN in both small and large samples.

4 Review of Other Recent Multivariate Normality Tests for i.i.d. Data

In this section, we review the chi-squared and BHEP-type tests. The remaining types of MVN
tests for i.i.d. data (i.e. other generalisations of univariate normality tests and multiple testing
procedures that combine multiple tests for MVN) are presented in the supporting information.
We summarise some important properties (affine invariance, universal consistency, explicit null
distribution) for all the reviewed tests in Table 1.

4.1 Chi-squared Type Tests

The chi-squared test, proposed by Karl Pearson in 1900 (Pearson, 1900), is among the most
useful goodness-of-fit tests. For the univariate case, the range of the n observations is divided
into k mutually exclusive classes;Oi ¼ ni is the observed frequency in class i, and pi is the prob-
ability that an observation will fall into class i under the null hypothesis, so that Ei ¼ npi is the
expected frequency in class i. The chi-squared statistic is then given by

χ2 ¼ ∑
k

i¼1

ðni � npiÞ2
npi

¼ ∑
k

i¼1

ðOi � EiÞ2
Ei

; (5)

which is asymptotically χ2k � 1 under any null distribution. One disadvantage of the chi-squared
test is that the testing results can be substantially affected by the number and size of the k classes
chosen (see Section 5.2 in Thode, 2002 for more details). The chi-squared test is, however, not
recommended as a test for univariate normality (Moore, 1986), mostly because of its lack of
power relative to other tests for normality. However, the test is easily adaptable to any null dis-
tribution, including those that are multivariate in nature, so that it can be used for testing MVN
rather than other tests that are much more difficult to implement. As in the univariate case, the
sample space is required to be partitioned into mutually exclusive classes; hence, the same prob-
lem must still be addressed, that is, the class size and number of classes. In addition, the prob-
lem of choosing class intervals becomes much more difficult as the dimension of the sample
space increases, and even in the multivariate normal case, calculating expected frequencies
can be extremely difficult. Early attempts to develop extensions of chi-squared test for MVN
include Kowalski (1970), Moore & Stubblebine (1981) and Mason & Young (1985), and a
few recent studies, presented below, also focused on the chi-squared type tests for MVN.
Cardoso de Oliveira & Ferreira (2010) proposed a multivariate chi-square test for MVN

based on the fact that the statistics

Bi ¼ n

ðn � 1Þ2ðX i � X Þ ⊤ ~S�1ðX i � X Þ; i ¼ 1; …; n; (6)
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where ~S is the unbiased sample covariance matrix, are each distributed exactly as
Betaðp=2; ðn � p � 1Þ=2Þ underH0 (Gnanadesikan & Kettenring, 1972). The authors defined
k equal-sized classes based on the empirical ruleffiffiffi

n
p

; if n ≤ 100;

5log10ðnÞ; if n > 100:

(
The class intervals in the sample space of B1; …; Bn correspond to regions partitioned from the
original p-dimensional sample space ofX 1; …; Xn. Now, let qi be the upper ðk � iÞ=k � 100%
quantile of the Betaðp=2; ðn � p � 1Þ=2Þ distribution, then the i th class is defined by
fqjqi � 1<q ≤ qig for i ¼ 1; …; k, where q0 ¼ 0 and qk ¼ 1. The observed frequency Oi of
the ith class is the number of values for B1; …; Bn that fall within the class limit ðqi � 1; qi�,
and the expected frequency is simplyEi ¼ n=k; i ¼ 1; …; k. The test statistic is then calculated
using Equation (5), which is asymptotically distributed as χ2k � 1 under H0.

Noticing that the aforementioned testing procedure was a k -dimensional multinomial
goodness-of-fit test, and Pearson’s chi-squared statistic was used to measure the discrepancy
between the observed and expected proportions, Batsidis et al. (2013) proposed a broader class
of tests based on the power divergence family of statistics (Cressie & Read, 1984; Read &
Cressie, 2012):

Table 1. Properties of the recent tests and classical tests for MVN for i.i.d. data

Test
Affine
invariance

Universal
consistency

Known null
distribution Reference

1. Skewness and kurtosis approaches
MS, MK ✓ ✕ ✓ Mardia (1974)
U ; W ✓ ✕ ✓ Kankainen et al. (2007)
ZHL
2; p ✓ ✕ ✕ Thulin (2014)

b2; p; q ✓ ✕ ✓ Yamada et al. (2015)
JBBS ✓ ✓ ✓ Bowman & Shenton (1975)
JBDH ✓ ✓ ✓ Doornik & Hansen (2008)
~LM ✓ ✓ ✓ Jönsson (2011)

JBM ; RJBM ; RTM ; JBTM ✓ ✓ ✓ Kim (2016)
M 1; M2 ✓ ✓ ✓ Koizumi et al. (2009)
M 3 ✓ ✓ ✓ Enomoto et al. (2012)
MJB2; mMJB ✓ ✓ ✓ Koizumi et al. (2014)

2. Chi-squared type tests
NRR ✓ ✕ ✓ Moore & Stubblebine (1981)
χ2 ✓ ✕ ✓ Cardoso de Oliveira & Ferreira (2010)
ZðλÞ ✓ ✕ ✓ Batsidis et al. (2013)
SmG ✓ ✕ ✕ Hanusz & Tarasińska (2012)
G ✓ ✓ ✕ Madukaife & Okafor (2019)
Y 2
n; U

2
n; S

2
n ✓ ✓ ✓ Voinov et al. (2016)

3. BHEP-type tests
Tn; β ✓ ✓ ✓ Henze & Zirkler (1990)
Tn; r ✓ ✓ ✓ Pudełko (2005)
D̂n; m ✓ ✓ ✓ Arcones (2007)
~T n; β ✓ ✓ ✓ Henze & Jiménez-Gamero (2018)
Tn; γ; ~T n; γ ✓ ✓ ✓ Henze et al. (2019)

4. Other generalisations of univariate normality test
δn; p ✓ ✓ ✕ Székely & Rizzo (2005)
W ∗ ✓ ✓ ✕ Villasenor et al. (2009)
MPI ✕ ✕ ✕ Majerski & Szkutnik (2010)
Z∗
A; Z

∗∗
A ✓ ✓ ✕ Kim & Park (2018)

5. Multiple test procedures
TnðuÞ ✓ ✓ ✕ Tenreiro (2011), Tenreiro (2017)
Tn; c ✓ ✓ ✕ Zhou & Shao (2014)
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ZðλÞ ¼

2

λðλþ 1Þ
X

k
i¼1Oi

Oi

Ei

� �λ

� 1

( )
; when λ ∈ ℝ; λ ≠ � 1; 0;

2
X

k
i¼1Ei log

Ei

Oi
; when λ ¼ �1;

2
X

k
i¼1Oi log

Oi

Ei
; when λ ¼ 0;

8>>>>>>>>><>>>>>>>>>:
which includes as a specific case the Pearson’s chi-squared statistic, Equation (5), when λ ¼ 1.
HereZðλÞ is also aymptotically χ2k � 1 underH0, whereOi andEi are calculated in the same way as
in Cardoso de Oliveira & Ferreira (2010).
Apart from formal testing procedures for MVN with explicitly defined test statistics, subjec-

tive graphical methods based on quantiles have also been proposed, such as Small (1978), who
assessed MVN based on the plot of the points ðBðiÞ; DiÞ; i ¼ 1; …; nwith the line y ¼ x, where
BðiÞ ’s are the ordered statistics of Bi ’s defined in Equation (6), and Di ’s are Beta order

statistics using Blom’s general plotting position (Blom, 1958): i � α
n � α � β þ 1

; i ¼ 1; …; n; with

α ¼ ðp � 2Þ=ð2pÞ and β ¼ 0:5 � ðn � p � 1Þ�1. Another graphical method was proposed
by Srivastava (1984). Hanusz & Tarasińska (2012) formalised both graphical methods using ex-
plicit test statistics. For example, they formalised the testing procedure of Small (1978) by con-
structing a geometric test statistic, SmG, that measures the departure of empirical points from
the line y ¼ x, that is, the sum of the areas between the points ðBðiÞ; DiÞ; i ¼ 1; …; n and the
line y ¼ x, as shown in their Figure 1. Large values of the statistic lead to rejection of MVN
of the data. Madukaife & Okafor (2019) pointed out that some areas in the aforementioned test
statistic may be irregular in shape, and thus may not be easily computed without the use of
special computer programs. They therefore proposed a more tractable statistic based on the
distances between an ordered set of the transformed observations

Zi ¼ ðX i � X Þ ⊤ ~S�1ðX i � X Þ; i ¼ 1; …; n;

which are asymptotically distributed as χ2p under H0, and the set of the population quantiles of

the χ2p distribution. Specifically, the test statistic is

G ¼ ∑
n

i¼1
ðZðiÞ � CiÞ2;

where ZðiÞ’s are the ordered statistics of Zi ’s, and Ci’s are the corresponding approximate ex-
pected order statistics, that is, the quantiles of the χ2p distribution. Again, large values of G will
lead to rejection of MVN of the data.
Voinov et al. (2016) found that the chi-squared test statistic for MVN, that is, the

Nikulin–Rao–Robson (NRR) statistic, proposed in Moore & Stubblebine (1981), is asymptoti-
cally chi-squared distributed underH0 if and only if the covariance matrixΣ is a diagonal matrix.
They derived the forms of the NRR statistic,Y 2

n, as well as its decomposition,Y 2
n ¼ U2

n þ S2n, for
any diagonal covariance matrix of any dimensionality p (see their equations (6), (9) and (10))
and suggested a procedure for testing MVN: (i) produce the Karhunen–Loève transformation
of the sample data, which will diagonalise the sample covariance matrix and (ii) compute the
statistics Y 2

n; U
2
n and S2n according to their equations (6), (9) and (10), respectively, based on
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the transformed data. Because U2
n and S

2
n are asymptotically independent under H0, they can be

used as test statistics independently from each other.

4.2 Baringhaus–Henze–Epps–Pulley Type Tests

The BHEP (Baringhaus–Henze–Epps–Pulley) tests, coined by Csörgő (1989), is a class of
affine invariant and universally consistent tests for MVN based on the empirical characteristic
function (CF). Epps & Pulley (1983) provided a test for univariate normality based on the em-
pirical CF, and Baringhaus & Henze (1988) generalised their idea to the multivariate case.
Henze & Zirkler (1990) studied the test in a more general setting to gain more flexibility with
respect to the power of the test against specific alternatives. The BHEP statistic is given by

Tn; β ¼ n∫ℝp ΨnðtÞ � ΨðtÞj j2ψβðtÞdt; (7)

where β > 0 is the smoothing parameter, ΨnðtÞ ¼ 1
n

Pn
j¼1expðit ⊤ Y jÞ is the empirical CF of

the scaled residuals Y j; j ¼ 1; …; n; ΨðtÞ ¼ exp �‖t‖2=2
 �

is the CF of N pð0; IpÞ, and the

weighting function ψβðtÞ ¼ ð2πβ2Þ�p=2exp �‖t‖2

2β2

� �
is the density of N pð0; β2IpÞ. Theoretical

properties of the statistic Tn; β and alternative test statistics based on the empirical CF using
other functional distances have been studied by Baringhaus & Henze (1988), Csörgő (1989),
Henze (1990), Henze (1997), Henze & Wagner (1997) and Epps (1999) (see Section 6 in
Henze, 2002, and the references therein). Continuous interest has been shown in developing
BHEP-type tests ever since the review paper of Henze (2002), as discussed below.

Pudełko (2005) proposed a test statistic based on the weighted supremum distance:

Tn; r ¼
ffiffiffi
n

p
sup jWnðtÞj
‖t‖< r

where r > 0 and

WnðtÞ ¼
ΨnðtÞ � ΨðtÞ

‖t‖ ; t ≠ 0;

0; t ¼ 0;

8><>:
with ΨnðtÞ and ΨðtÞ defined as earlier. The asymptotic null distribution is derived as the distri-
bution of the supremum norm of a non-stationary complex-valued d-dimensional Gaussian ran-
dom process.

Arcones (2007) proposed two BHEP-type tests based on the Lévy characterisation of the nor-
mal distribution (Loève, 1977) and its variant. The test statistics, however, are rather compli-
cated to compute. For example, the first test statistic is given by

bDn; m ¼ ∫ℝp bψn; mðtÞ � ΨðtÞ�� ��2ψβðtÞdt;
where

bψn; mðtÞ: ¼
ðn � mÞ!

n!
∑

ðj1; …; jmÞ ∈ Inm

exp im�1=2t ⊤ ∑
m

k¼1

bΣ�1=2
n ðX jk � bμnÞ

� �� �
;
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bμn and bΣn are estimators of μFX
and ΣFX ; respectively, and Inm ¼

fðj1; …; jmÞ ∈ m :1 ≤ jk ≤ n; jk ≠ jl if k ≠ lg. Ifm ¼ 1; bμn ¼ X and bΣn ¼ S, then bDn; m agrees
with Tn; β in Equation (7).
Henze & Jiménez-Gamero (2018) constructed a ‘moment generating function (MGF) ana-

logue’ to the BHEP statistic Tn; β. The test statistic is given by

~T n; β ¼ n∫ℝpfMnðtÞ � mðtÞg2ωβðtÞdt;

where MnðtÞ ¼ 1
n

Pn
j¼1expðt ⊤ Y jÞ is the empirical MGF of the scaled residuals Y j; j ¼

1; …; n; mðtÞ ¼ expð‖t‖2=2Þ is the MGF of N pð0; IpÞ, and ωβðtÞ ¼ expð�β‖t‖2Þ with β >

1 is the weighting function, which leads to a representation of ~T n; β (see their Equation (1.4))
that is amenable to computational purposes. The authors showed that after a suitable scaling,
~T n; β approaches a linear combination of sample measures of multivariate skewness in the sense
of Mardia (1970) and Móri et al. (1994), as β→∞ (see their Theorem 2.1). They also showed
that ~T n; β has a non-degenerate asymptotic null distribution only when β > 2.
Henze et al. (2019) constructed a class of tests based on both the CF and the MGF. The

authors generalised a characterisation of univariate normal distributions in Volkmer (2014) to
the multivariate case (see their Proposition 2.1), and showed that X ∈ ℝp is zero-mean normal
distributed if and only if RX ðtÞMX ðtÞ � 1 ¼ 0, where RX ðtÞ ¼ RefϕX ðtÞg is the real part of the
CF, ϕX ðtÞ, andMX ðtÞ is the MGF of X. Let RnðtÞ ¼ 1

n

Pn
j¼1cosðt ⊤ Y jÞ be the empirical cosine

transform, MnðtÞ ¼ 1
n

Pn
j¼1expðt ⊤ Y jÞ be the empirical MGF of the scaled residuals Y j; j ¼

1; …; n, and UnðtÞ ¼ ffiffiffi
n

p fRnðtÞMnðtÞ � 1g. The test statistic is given by

Tn; γ ¼ ∫ℝpU2
nðtÞωγðtÞdt ¼ n∫ℝpfRnðtÞMnðtÞ � 1g2ωγðtÞdt;

where ωγðtÞ ¼ expð�γ‖t‖2Þ with γ > 0 is the weighting function, which leads to a computa-
tionally feasible form of Tn; γ (see their Equation (3.7)). They found a simpler form if the test

statistic is defined by ~T n; γ ¼ ∫ℝpUnðtÞωγðtÞdt:

~T n; γ ¼ π
γ

� �p=2 ffiffiffi
n

p 1

n2
∑
n

j; k¼1
exp

‖Y j‖2 � ‖Y k‖2

4γ

� �
cos

Y ⊤
j Y k

2γ

 !
� 1

( )
:

The asymptotic null distribution of ~T n; γ is Nð0; σ2Þ , where σ2 ¼ 2πpðγ2 � 0:25Þ�p=2 þ
2πpðγ2 þ 0:25Þ�p=2 � 4πpγ�p.

5 Simulation Study

In this section, we investigate the influence of spatial dependence on the measures of skew-
ness and kurtosis for multivariate Gaussian random fields through Monte Carlo simulation stud-
ies. The results reveal that the sample skewness and kurtosis deviate from their theoretical
values in the i.i.d. case as the degree of spatial dependence increases. Due to these deviations,
the usual test statistics based on sample skewness and kurtosis can have a quite different asymp-
totic behaviour under spatial dependence, so that the usual test of normality, which depends on
the asymptotic property derived under the i.i.d. assumption, may be misleading for spatially
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correlated data. Therefore, there is a need to construct a new MVN test under spatial depen-
dence, which is the focus of the next section.

For a multivariate random field, the cross-covariances measure the spatial dependences
within individual variables as well as between distinct variables. For a p-variate random field
ZðsÞ ¼ ðZ1ðsÞ; Z2ðsÞ; …; ZpðsÞÞ ⊤ ; s ∈ ℝd , the matrix-valued cross-covariance function of
ZðsÞ at two locations, s1 ∈ ℝd and s2 ∈ ℝd, is defined as Cðs1; s2Þ ¼ fCijðs1; s2Þgpi; j¼1, where

Cijðs1; s2Þ ¼ covfZiðs1Þ; Zjðs2Þg; i; j ¼ 1; …; p. The covariance matrix Σ ¼ fCðsi; sjÞgni; j¼1

should satisfy the nonnegative definite condition: a ⊤ Σa ≥ 0 for any vector a ∈ ℝnp, any spatial
locations s1; …; sn, and any integer n. Various valid cross-covariance models have been built
(see Genton & Kleiber, 2015, for a review), and the multivariate Matérn model (Gneiting
et al., 2010) has received a great deal of attention.

In particular, the parsimonious Matérn model for a stationary bivariate random field, where
the cross-covariances depend on the spatial lags only, is given by

C11ðhÞ ¼ σ21Mðhjν1; βÞ; C22ðhÞ ¼ σ22Mðhjν2; βÞ; (8)

C12ðhÞ ¼ C21ðhÞ ¼ ρ12σ1σ2M hj1
2
ðν1 þ ν2Þ; β

� �
; (9)

where σ21 and σ22 are the marginal variances, Mðhjν; βÞ ¼ 21 � ν

ΓðνÞ ‖h‖=βð ÞνKν ‖h‖=βð Þ; ν > 0 is

the smoothness parameter, β > 0 is the spatial range parameter, and Kν is a modified Bessel
function of the second kind of order ν. The colocated correlation coefficient ρ12 should satisfy
the following condition for the model to be valid:

jρ12j ≤
Γ ν1 þ d

2

 �1=2
Γðν1Þ1=2

Γ ν2 þ d
2

 �1=2
Γðν2Þ1=2

Γ 1
2
ðν1 þ ν2Þ

� �
Γ 1

2
ðν1 þ ν2Þþd

2

� �: (10)

In this section, we simulate bivariate random fields defined on ½0; 1� � ½0; 1� ⊂ ℝ2 with cer-
tain cross-covariance structures, and examine the behaviours of sample skewness and kurtosis
as a function of the degree of spatial dependence specified in the cross-covariance function.
Specifically, we use the bivariate Matérn model (8) and (9) with smoothness parameters ν1 ¼
ν2 ¼ 0:5 (Exponential) or ν1 ¼ ν2 ¼ 1 (Whittle), and the colocated correlation coefficient ρ12
can be either positive (e.g. 0.5) or negative (e.g. �0.5) as long as it satisfies the inequality (10).
Both marginal variances are set to 1 for simplicity. Further, the spatial dependence can be
characterised by the effective range h∗, which is defined as the distance beyond which the cor-
relation between observations is less than or equal to 0.05 (Irvine et al., 2007). We simulate the
random fields at a 15� 15 regular grid of locations over the unit square, set the effective range
h∗ ∈ f0:1; 0:12; 0:14; …; 0:88; 0:9g, implying an increasing degree of spatial dependence, and
solve the following equations:

Rðh∗Þ ¼ exp �h∗

β

� �
¼ 0:05 ðExponentialÞ or Rðh∗Þ ¼ h∗

β
K1

h∗

β

� �
¼ 0:05 ðWhittleÞ

to obtain the values of the spatial range parameter β. We simulate 200 replicates for each com-
bination of parameters. In order to see the pure effect of spatial dependence determined by h∗ or
the induced parameter β, in each simulation we simulate a standard multi-normal random vector
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e and fix it, and then impose the covariance matrix on it. Specifically, to simulate a bivariate ran-
dom field ZðsÞ ¼ ðZ1ðsÞ; Z2ðsÞÞ ⊤ at a regular grid of n locations, we first stack the variables in
a long vector Z ¼ ðZ ⊤

1 ; Z ⊤
2 Þ ⊤ ¼ ðZ1ðs1Þ; …; Z1ðsnÞ; Z2ðs1Þ; …; Z2ðsnÞÞ ⊤ , then simulate

and fix a standard multi-normal random vector e ∈ ℝ2n, and obtain the values of Z by Z ¼
Σ1=2ðθðh∗ÞÞe ∈ ℝ2n, for each combination of parameters θ that depends on the effective range

h∗, where Σ1=2 is the square root of Σ ¼ Σ11 Σ12

Σ21 Σ22

� �
, the covariance matrix of Z, with Σ11 and

Figure 1. Functional boxplot of the Mardia’s sample skewness and kurtosis of the bivariate Gaussian random field in
½0; 1� � ½0; 1� as a function of the effective range h∗ for (a)–(d) the Exponential and (e)-(h) the Whittle covariance functions.
The green curve is the point-wise mean curve, the black curve is the median curve, the purple shaded region is the envelope of
the 50% central region, the outer blue curves represent the maximum non-outlying envelope, and the red dashed curves are
detected outliers. The theoretical values of Mardia’s measures of skewness (i.e. β1;2 ¼ 0) and kurtosis (i.e. β2;2 ¼ 8) for a bi-
variate normal distribution are indicated by grey dashed lines
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Σ22 being the auto-covariance matrices for Z1 and Z2, respectively, and Σ12 ¼ Σ ⊤
21 being the

cross-covariance matrix between Z1 and Z2. By doing this, we can eliminate the effect of ran-
domness coming from e and isolate the effect of changing the parameters, particularly the degree
of spatial dependence, in the covariance function.

Following these procedures, we thus have 200 sample skewness and kurtosis for each
level of spatial dependence (i.e. the effective range h∗ or the correlation parameter ρ12) that
is specified in the covariance structure. We then summarise the 200 curves of sample
skewness and kurtosis as a function of h∗ or ρ12 by functional boxplot (Sun & Genton, 2011),
which is an extension of the classical boxplot for visualising functional data. A functional
boxplot displays three descriptive statistics: the median curve, the envelope of the 50%
central region, and the maximum non-outlying envelope (Sun & Genton, 2011).
Outliers are detected as exceeding 1.5 times the 50% central region, similarly to classical
boxplots.

Figure 1 shows the functional boxplots of the Mardia’s sample skewness and kurtosis of
the bivariate Gaussian random field on ℝ2 as a function of the effective range h∗. Recall that
Mardia’s measure of multivariate skewness is always positive. We find that the sample
skewness and kurtosis increase as the effective range increases, and the smoother the field,
the larger the influence from spatial dependence. The difference between the cases where
ρ12 > 0 and where ρ12 < 0 is small if we compare, for example, (a) with (c) or (b)
with (d).

6 The New Test for Multivariate Normality Under Spatial Dependence

6.1 Construction of the New Test

The results from the simulation study in the previous section suggest that the dependence in
spatial data should be appropriately accounted for in the tests for MVN based on sample skew-
ness and kurtosis measures. Otherwise, the un-adjusted tests may lead to conservative decisions
on assessing the Gaussianity in the data; that is, data from a Gaussian random field with spatial
dependence tend to be detected as being non-Gaussian. Horváth et al. (2020) proposed a
JB-type test to address this problem for the univariate case. Assume that the spatial dataset
fX ðs1Þ; X ðs2Þ; …; X ðsnÞg , where fs1; s2; …; sng ∈ ℤd are locations in the d -dimensional
space with integer coordinates, is from a strictly stationary Gaussian spatial moving average
process under the H0:

X ðsÞ ¼ μþ ∑
t ∈ ℤd

aðtÞεðs � tÞ; s ∈ ℤd; (11)

where the innovations εðsÞ; s ∈ ℤd are i.i.d. from Nð0; 1Þ , and the constants aðsÞ; s ∈ ℤd ,
satisfy ∑ s ∈ ℤd jaðsÞj2 < ∞. The JB-type test statistic is

JB∗ ¼ S2n
ϕ̂2

S

þ K2
n

ϕ̂2
K

; (12)

where Sn and Kn are sample skewness and kurtosis of the standardised observations, respec-
tively, and ϕ̂2

S and ϕ̂
2
K are consistent estimators of the asymptotic variances of Sn andKn, respec-

tively. Horváth et al. (2020) defined the kernel estimators, ϕ̂2
S and ϕ̂2

K, as
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ϕ̂2
S ¼ 6∑

h

ωbðhÞbC3ðhÞ: ¼ 6∑
d

l¼1
∑

jhl j ≤ bl

∏
d

l¼1
k

hl
bl

� �� �bC3ðhÞ; (13)

ϕ̂2
K ¼ 24∑

h

ωbðhÞbC4ðhÞ: ¼ 24∑
d

l¼1
∑

jhl j ≤ bl

∏
d

l¼1
k

hl
bl

� �� �bC4ðhÞ; (14)

where bCðhÞ is the sample auto-covariance function for the standardised observations with spa-
tial lag h ¼ ðh1; …; hdÞ ⊤ ; kð · Þ is a univariate kernel and fb1; …; bdg are smoothing band-
widths, satisfying some regularity conditions. The spatial dependence in the data is accounted

for in bCðhÞ, and the kernel smoothing method is used to establish consistency of the asymptotic
variance estimators. Under H0, the statistic JB∗ is asymptotically χ22.
To develop a test for the multivariate case, we adopt the union-intersection testing approach

originally proposed by Roy (1957). The union-intersection principle can be formulated as fol-
lows. Suppose we have a p -variate spatial dataset X ¼ fXðs1Þ; Xðs2Þ; …; XðsnÞg , where
fs1; s2; …; sng are n spatial locations, XðsiÞ ¼ ðX 1ðsiÞ; X 2ðsiÞ; …; XpðsiÞÞ ⊤ is the vector
of p variables at location si; i ¼ 1; …; n. Note that the hypothesis H0 :FX ∈ N p holds true ex-
actly if and only if the projection a ⊤ X has a univariate normal distribution for all vectors
a ∈ ℝp . For each a ∈ ℝp , we construct a test Ha :a⊤ X is normal against the alternative
Hc

a :a
⊤ X is not normal, with acceptance region Aa and rejection region Ra . Then the

union-intersection test identifies the acceptance region for H0 :FX ∈ N p as A¼ ⋂a ∈ ℝpAa ,
and the rejection region as R ¼ Ac¼ ⋃a ∈ ℝpRa ; that is, the union-intersection test accepts
H0 exactly ifHa is accepted for all a ∈ ℝp, and rejectsH0 ifHa is rejected for at least one vector
a ∈ ℝp.
For a fixed a ∈ ℝp, the projected sample X1 ¼ fa ⊤ Xðs1Þ; a ⊤ Xðs2Þ; …; a ⊤ XðsnÞg is a

univariate spatial dataset, and thus we can apply the method in Horváth et al. (2020) to test
‘Ha :a⊤ X is normal’ based on the new sample, under the following assumption.

Assumption 1. Assume that under H0, the observations X ¼ fXðs1Þ; Xðs2Þ; …; XðsnÞg follow a
multivariate Gaussian spatial moving average (or kernel convolution) process:

X lðsÞ ¼ μl þ σl ∑
t ∈ ℤd

klðs � tÞωðtÞ; s ∈ ℤd; l ¼ 1; …; p; (15)

whereμl is the unknown mean, σl is the unknown standard deviation, klð · Þ; l ¼ 1; …; p, is a set of p

square integrable kernel functions on ℤd with klð0Þ ¼ 1, and ωð · Þ is a zero-mean, unit-variance

Gaussian random field on ℤd with a certain correlation function ρ.

Assumption 1 implies that underH0, the linear combination a⊤ X, for each a ∈ ℝp, is from a
strictly stationary Gaussian spatial moving average process as defined in Equation (11), so that
the test of Horváth et al. (2020) can be applied. Under Assumption 1, X is from a stationary
multivariate Gaussian random field with the associated p� p matrix-valued cross-covariance
function Cðs; s0Þ having ðl; l0Þ entry

ðCðs; s0ÞÞll0 ¼ σlσl0 ∑
t ∈ ℤ d

∑
t0 ∈ ℤ d

klðs � tÞkl0 ðs0 � t0Þρðt � t0Þ:
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The kernel convolution technique (Gelfand & Banerjee, 2010) in Assumption 1 is a well-known
approach for creating rich classes of stationary processes (Bernardo et al., 2003). Therefore, our
new test for MVN can be applied to spatial datasets with this big class of dependence structures.

Now, denote the JB-type test statistic for eachHa as JBa, computed from Equation (12) based
on the univariate sample X1 ¼ fa ⊤ Xðs1Þ; a ⊤ Xðs2Þ; …; a ⊤ XðsnÞg. Suppose that the corre-
sponding acceptance region is Aa ¼ fX1 : JBa ≤ cg and the rejection region is Ra ¼
fX1 : JBa > cg, where c is a properly chosen constant (critical value) that does not depend
on a. Then the union-intersection test accepts H0 exactly if maxa ∈ ℝp; a ≠ 0JBa ≤ c. The critical
value c for the test must be determined by the distribution of the statistic maxa ∈ ℝp; a ≠ 0JBa ,
which is difficult to obtain in the current setting. In fact, this union-intersection test consists
of infinitely many univariate tests. In practice, we can randomly select a large number of
vectors, a1; …; aK ∈ ℝp , and do multiple testing; if at least one test Ha is rejected, then H0

is also rejected; otherwise, if all tests Ha1 ; …; HaK are not rejected, then this provides an evi-
dence of not rejecting H0. The number of tests, K, can be chosen as large as feasible for com-
putation. In order to have a certain significance level α for the original test, the individual uni-
variate tests cannot have the same level (Flury, 2013). Suppose that each test has a level α, then
the chance of a false rejection of the null for each test is α, but the chance of at least one false
rejection is much higher. In order to control the false discovery rate (FDR), which is the ex-
pected proportion of false rejections, the multiple testing procedure can be conducted based
on the Benjamini–Hochberg (BH) method (Benjamini & Hochberg, 1995). Specifically, denote

the orderedp-values for theK univariate tests asPð1Þ; …; PðKÞ, andR ¼ max i:PðiÞ <
iα
K

n o
. The

BH rejection threshold is defined as T ¼ PðRÞ, and the hypothesisHai is rejected ifPi ≤ T. If this
procedure is applied, then it can be shown that FDR ≤ α. Because the new test is a JB-type test,
it is affine invariant and universally consistent.

6.2 Type I Error and Empirical Power of the New Test

In this section, we assess the type I error and empirical power of the new test via Monte-Carlo
simulations with various configurations of the degree of spatial dependence.

To assess the type I error (or empirical size) of the new test, we first simulate a zero-mean p
-variate Gaussian random field on ℤ2 (i.e. d ¼ 2, most commonly encountered in spatial appli-
cations) from the spatial moving average (kernel convolution) process of Equation (15). Specif-
ically, each variable is generated from the spatial moving average model defined in
Haining (1978), located on the points of a rectangular square lattice ℤ2:

X lði; jÞ ¼ θlfeði � 1; jÞþeðiþ 1; jÞþeði; j � 1Þþeði; j þ 1Þgþeði; jÞ;
l ¼ 1; …; p;

(16)

where i and j are integers satisfying 1 ≤ i ≤ M and 1 ≤ j ≤ N ; eð · ; · Þ is a zero-mean,
unit-variance Gaussian process on ℤ2 with some correlation function ρ, and eði; 0Þ ¼ eð0; jÞ ¼
eð0; 0Þ ¼ 0 for all 1 ≤ i ≤ M and 1 ≤ j ≤ N. When jθlj ≤ 1=4, this model is invertible to the fol-
lowing first-order quadrilateral autoregressive random field:

X lði; jÞ ¼ θlfX ði � 1; jÞþX ðiþ 1; jÞþX ði; j � 1ÞþX ði; j þ 1Þgþeði; jÞ; l ¼ 1; …; p;

which has been a preoccupation for the study of finite random fields within geography as a
model for spatial dependence (Haining, 1978). Equation (16) is a special case of the spatial ker-
nel convolution process of Equation (15), where the kernels are functions taking the form of a
constant height over a bounded rectangle and zero outside. To investigate the performance of
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the new test for different degrees of spatial dependence, we set the correlation function ρ of the
process eð · ; · Þ as the exponential correlation that has been used in Section 5, with varying
effective ranges.
Based on the aforementioned settings, we consider the bivariate case (i.e. p ¼ 2), set θ1 ¼

1=5; θ2 ¼ �1=5, simulate the random field at an N � N regular grid of locations over the unit
square ½0; 1�2, and vary the effective ranges, h∗, of the process eð · ; · Þ in ½0:1; 0:9� by steps of
0.02. For each level of the spatial dependence indicated by h∗, we use 1,000 replications for the
data generating and testing procedure, and the type I error is approximated by the relative fre-
quency of null hypothesis rejection. Without loss of generality, suppose that the K vectors
a1; …; aK ∈ ℝp all have norm 1, and they are chosen as ai ¼ ðcosðθiÞ; sinðθiÞÞ ⊤ , where θi
is the coordinate direction angle in the polar coordinate system, randomly drawn from a uniform
distribution in ½0; 2π�. The null hypothesis, H0, is rejected when at least one of the K univariate
hypotheses based on the projection data is rejected using the BH method. The kernel function
in the univariate test statistics for projection data is chosen as the Bartlett kernel defined as

kðtÞ ¼ ð1 � jtjÞIfjtj ≤ 1g with the bandwidth b ¼ b4ðN=100Þ2=9c ; this selection of kernel
and smoothing bandwidth is also used in Horváth et al. (2020), and it works well for our
purpose. For comparison, we also apply several tests for MVN that do not account for the
spatial dependence in the data, that is, Mardia’s tests, MS and MK, defined in Equation (1),
and the test of Doornik & Hansen (2008), JBDH, defined in Equation (3).
To assess the empirical power of the new test, we simulate data from the non-Gaussian

sinh-arcsinh (SAS) transformed multivariate Matérn random field defined in Yan
et al. (2020). Specifically, we obtain the non-Gaussian data using the element-wise and inverse
SAS transformation (Jones & Pewsey, 2009) on the data from Gaussian random fields, that is,
the data used earlier for assessing the type I error. The corresponding transformation parameter

Figure 2. (a) Type I error, as a function of the spatial dependence indicated by the effective range, of the new test (UIT, the
union-intersection test) for MVN under spatial dependence (black curves) and three MVN tests for i.i.d. data (coloured
curves) for N ¼ 15 (solid curves) and N ¼ 30 (dotted curves), based on 1,000 simulations for the nominal significance level
of α ¼ 5% (the orange horizontal line). JBDH (in red) represents the test of Doornik & Hansen (2008), andMS (in green) and
MK (in blue) represent the tests of Mardia (1970). The black solid curve represents the type I error of UIT forN ¼ 15andK ¼
100, the black dashed curve represents that for N ¼ 15 and K ¼ 500, and the black dotted curve represents that for N ¼ 30
and K ¼ 100. (b) Empirical power of the new test, UIT, as a function of the spatial dependence indicated by the effective
range, for the nominal significance level of α ¼ 5% for different values of N ; K and the number of simulations denoted by
‘nsim’
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setting is ð0:5; 0:5Þ for the first variable and ð0:3; 0:5Þ for the second variable, both have positive
skewness and heavier tails than the normal distribution. Again, we use the same kernel function
as above, and the empirical power is approximated by the proportion of null hypothesis
rejection.

Figure 2(a) shows the results of type I errors of our new test (UIT, union-intersection test),
compared with three MVN tests for i.i.d. data for different values of N and K based on 1,000
simulations. The probability of the type I error should, by any statistical test, be bounded up-
wards by the nominal level of significance; otherwise, the test cannot be used for the given pur-
pose. On the other hand, a type I error far smaller than a chosen α is indicative of a test with low
power, but does not disqualify the procedure for testing. From Figure 2(a), we can see that when
N ¼ 15, the type I error of our new test (the black solid curve) is bounded below and not too far
from the nominal significance level of α ¼ 5% for all levels of spatial dependence, while the
type I errors of the three MVN tests for i.i.d. data (the solid coloured curves) are all severely
inflated and increase as the spatial dependence gets stronger. Note that the black solid curve
(with N ¼ 15 and K ¼ 100) is very close to the black dashed curve (with N ¼ 15 and K ¼
500), indicating that K ¼ 100 is a large enough number of projections for the UIT test. When
N ¼ 30, the type I error of our new test (the black dotted curve) increases as the effective range
h∗ increases, and is slightly inflated when h∗ > 0:5, that is, under strong spatial dependence; in
contrast, all the three MVN tests for i.i.d. data exhibit inflated type I errors, even more severely
than the case when N ¼ 15 and much higher than the type I error of the UIT test. The slightly
inflated type I error of the UIT test for N ¼ 30 and h∗ > 0:5 is probably caused by the strong
spatial dependence in the unit square, which cannot be accurately accounted for in the asymp-
totic variance estimators expressed by Equations (13) and (14). The results from Figure 2(a) in-
dicate that the MVN tests for i.i.d. data cannot be used for spatially correlated data, because they
have severely inflated type I errors especially for data with strong dependence, whereas our new
test can be used for spatially correlated data, and it only becomes problematic when the spatial
dependence is very strong.

Figure 2(b) shows the empirical powers of our new test, UIT, for different values ofN ; K and
number of simulations. WhenN ¼ 15, the empirical power is not much affected byK (the num-
ber of projections) and ‘nsim’ (the number of simulations), because the three non-solid curves
are close to each other. WhenN ¼ 30, the empirical power (shown in black solid curve) is much
higher than those in the case of smaller sample size, N ¼ 15. In addition, all power curves go
down as the effective range h∗ increases; moreover, when N ¼ 30, the power is close to one
when h∗ is small. The results from Figure 2 suggest that our new test would perform best in
terms of type I error and empirical power when the sample size is large and the spatial depen-
dence is not very strong. To give a more comprehensive picture for the power performance of
our new testing procedure, more investigations are needed by considering a variety of alterna-
tive non-Gaussian distributions.

7 Wind Data Application

In this section, we present a data application using our new multivariate normality test for spa-
tial data. The raw gridded data are daily U (zonal velocity) and V (meridional velocity) wind
speed components during 1976–2005 over the Arabian Peninsula from the publicly available
MENA CORDEX dataset (Zittis & Hadjinicolaou, 2017). We use the fourth simulated historical
run with a spatial resolution of 0:22°� 0:22° (latitude × longitude), which has been identified in
Chen et al. (2018) as having the highest skill in capturing the spatio-temporal variability of reanal-
ysis data. Following the common practice in the literature (e.g. Chen et al., 2021), we apply the
square root transform to the wind components, which stabilises the variance over space and
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makes the marginal distributions approximately normal. Furthermore, in order to avoid model-
ling the complex seasonality in the data, we investigate the monthly average data over trans-
formed U and V wind components in July during 30 years from 1976 to 2005. Finally, to make
the spatial data approximately stationary, we deduct the long term averages from the monthly
mean winds following Horváth et al. (2020), yielding monthly anomalies (residuals) of U and
V components. Based on the pre-processed bivariate spatial data, we then test the bivariate nor-
mality over six small regions where local stationarity can be assumed, instead of thewhole region
where different topographies lead to spatial patterns and nonstationarity. The six regions (referred
to as R1–R6 in Figure 3) are selected similarly to those in Chen et al. (2018). In each region, we
have 12� 12 ¼ 144 spatial locations in each of the 30 years of bivariate wind data.
We apply our new MVN test (UIT) designed for gridded stationary spatial data as well as

three MVN tests designed for i.i.d. data (i.e. JBDH; MS and MK) at the nominal significance
level of α ¼ 5%. Table 2 shows the proportion of rejections on bivariate normality among the
30 years of July anomalies of wind U and V components over the six selected regions. We
can see that in most cases, our UIT test has smaller proportions of rejections; that is, it suggests
bivariate normality more often than the other three tests. In Regions 4 and 6 in particular, the
UIT test does not reject normality for all 30 years, while the JBDH andMS tests reject normality
for almost all 30 years. Also in Regions 1 and 2, our UIT test rejects normality in only a small
number of years, while the JBDH and MS tests reject normality for all 30 years. These results
imply that the MVN tests designed for i.i.d. data are usually too conservative when applied to
spatially correlated data; that is, data from a Gaussian random field with spatial dependence
tend to be detected as being non-Gaussian. The MK test rejects normality less often than the
UIT test in a few cases (i.e. in Regions 1, 2 and 5); this can happen because the MK test is a
directed test which only considers departure from multivariate normality revealed by kurtosis,
and failure to reject the null hypothesis does not necessarily imply normality, as there might
be departures from normality in other ways.

Figure 3. Six selected regions (denoted as R1–R6) over Saudi Arabia for testing bivariate normality of spatial data. The col-
our shading indicates terrain elevation (in meters)
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8 Discussion

In this work, we reviewed the recent development of tests for multivariate normality for i.i.d.
data, with emphasis on the skewness and kurtosis approaches. Based on simulation studies, we
showed that when there exists spatial dependence in the data, the multivariate sample skewness
and kurtosis measures proposed by Mardia (1970) deviate from their theoretical values under
Gaussianity due to dependence, and some of the tests designed for i.i.d. data exhibit inflated
type I error; the deviation and type I error increases as the spatial dependence increases. Extend-
ing the work of Horváth et al. (2020) to the multivariate case, we then proposed a new JB-type
test for multivariate normality for spatially correlated data, based on the union-intersection test
approach. The new test has a good control of the type I error, and it is inappropriate only when
the spatial dependence in the data is very strong. In addition, the new test has a fairly high em-
pirical power at all levels of spatial dependence, especially for large sample sizes.

Our new test is constructed under the stationarity assumption, which should be validated be-
fore applying our test. The test for spatial stationarity proposed by, for example, Fuentes (2005)
and Jun & Genton (2012), can be used to check if some marginal spatial processes are nonsta-
tionary, and graphical tools such as contour plots can be used to identify possible nonstationary
patterns in the cross-covariance functions. If the original data are detected as nonstationary, it is
a common practice to transform them into stationarity, using the deformation approach pro-
posed by, for example, Schmidt & O’Hagan (2003) and Fouedjio et al. (2015). One can also
fit a nonstationary regression model (see, e.g. Schabenberger & Gotway, 2005) which captures
most of the nonstationary features in the data, so that the residuals to be tested remain stationary.

The new test serves as a simple and useful diagnostic tool: if the null is not rejected, it lends
confidence in the applications of various methodologies based on the multivariate normality as-
sumption; if the null is rejected, it provides a caution on the validity of conclusions, and neces-
sary pre-processing procedures may be needed before applying the methodologies, or alterna-
tive non-Gaussian methods should be considered, as illustrated in the next paragraph.

The rejection of the null hypothesis only means that the current multivariate data cannot be
treated as realisations from a multivariate stationary Gaussian random field. To reveal a clearer
picture of the multivariate data, the univariate normality test proposed by Horváth et al. (2020)
can be applied to each component of the variables, and the new multivariate test for spatial data
we proposed can be applied to subsets of the variables, to check if some marginal processes are
not normal. If that is the case, then we may need data transformations (such as the log, power or
square root transformation) in order to approximately have a Gaussian process. Of course, all
marginals being normal does not mean being jointly normal, so these marginal transformations
may only partly help; in this case, we should be aware of the effect of conducting the current
statistical procedures under the violated Gaussian assumption, and consider to switch to
non-Gaussian methods (e.g. Xu & Genton, 2017 and Yan et al., 2020).

Also note that when the sample size is large, the estimation of the auto-covariance function,

that is, bCðhÞ, in Equations (13) and (14) can be computationally prohibitive. One solution is that

Table 2. Proportion of rejections of the bivariate normality hypothesis among 30 years during 1976–2005 for July anomalies
of wind U and V components over the six selected regions in Saudi Arabia

Test Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

UIT 0.3 0.4 0.23 0 0.53 0
JBDH 1 1 0.83 1 1 0.97
MS 1 1 0.87 1 0.83 1
MK 0.2 0.27 0.67 0.37 0.4 0.7
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we can fit a parametric covariance model (such as the Matérn model) for CðhÞ, and obtain bCðhÞ
by using the software ExaGeoStat (Abdulah et al., 2018), which allows for exact maximum
likelihood estimation with dense full covariance matrices, using high performance computa-
tions. In addition, various approximation methods for large spatial datasets have also been pro-
posed to reduce the computational burden; recent reviews include Sun et al. (2012), Heaton
et al. (2019) and Huang et al. (2021).
One limitation of the new test, similarly to the univariate Horváth et al. (2020) test, is that it

can only be used for spatial data on a regular grid. Tests for data at irregular spatial locations
need to be developed, but this can be challenging because the tests would be difficult to be jus-
tified asymptotically. Nevertheless, our proposed test can be used in various applications based
on the abundant gridded data simulated from reanalysis products, general circulation model
(GCM) experiments, regional climate model (RCM) experiments or numerical weather predic-
tion (NWP) models.
As we have mentioned in Section 3, a way to construct multivariate JB-type tests is to com-

bine multivariate skewness and kurtosis measures. Therefore, it would be an interesting topic to
propose a JB-type test for MVN under spatial dependence that combines Mardia’s multivariate
skewness and kurtosis measures. Simulations in this study show that the un-adjusted tests based
on Mardia’s measures are misleading if applied to a spatial dataset. To account for the spatial
dependence, we need to derive the asymptotic variances of the multivariate skewness and kur-
tosis of the scaled residuals under some kind of dependence structure, which is a non-trivial
task. In addition, we need to construct consistent estimators of the asymptotic variances, and es-
tablish the asymptotic properties (limiting null distribution, etc.) of the new test. These are left
for future work.
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