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To establish a more sustainable future, Saudi Arabia is striving to reduce its depen-

dency on fossil fuels and promote renewable energies. Solar energy is a major

resource in Saudi Arabia because of the country's geographical location with year-

round clear skies and plentiful sunlight. However, although solar energy is a clean

and safe renewable energy resource, it can be quite unpredictable. Therefore, solar

irradiance needs to be forecasted and simulated as accurately as possible on both

regional and national scales in the Kingdom to assist in planning for reserve usage,

switching sources and short-term power purchases. Based on an hourly solar diffuse

horizontal irradiance (DHI) dataset from 45 different Saudi Arabian solar monitoring

stations, this study proposes a novel spatio-temporal model. We identify the tempo-

ral dependency of DHI as cyclostationary and incorporate this key observation in the

model. This feature helps yield accurate (i.e. significantly close to the ground truth

and with narrow confidence bands) probabilistic forecasts and realistic simulations in

near-future time points and at new locations. Then, the proposed model is compared

with a stationary model that fails to recognize the cyclostationarity structure in the

data. The proposed model produces significantly better predictions and simulations

than the stationary model. Further, we calculate the photovoltaic power outputs

using the simulated samples from both the models and the original observations and

then compare them. The simulated samples from the proposed model afford photo-

voltaic power output estimates that are significantly closer to the original observed

data than those from the stationary model, and therefore, they can better assist pho-

tovoltaic power output operators in assessing solar energy production and opera-

tional pre-planning to mitigate impacts by the uncertain nature of solar irradiance.
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1 | INTRODUCTION

Over the last few years, Saudi Arabia has been working to create a renewable energy sector with sufficient harnessing capabilities in terms of

energy measurement, research and production. Moreover, in line with the Saudi Vision 2030, they have lately set a goal to generate 50% of the

nation's power needs using renewable energy by 2030 during the 11th session of the General Assembly of the International Renewable Energy

Agency (IRENA), in a speech by the president of King Abdullah City for Atomic and Renewable Energy (K.A.CARE). Among the renewable energy

resources, solar energy is naturally a promising supply of sustainable power generation because of the geographically strategic location of
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Saudi Arabia. For instance, a Saudi solar energy firm called “Desert Technologies“ in cooperation with the French company “Green Corp

Konnection” recently set up two solar energy containers named “Sahara,” which can generate a large amount of power (�62 kW) to partially

operate NEOM's assembly area for rally drivers, as published by Arab News on 17 January 2021. NEOM is a planned cross-border city in the

Tabuk Province of northwestern Saudi Arabia that is designed to incorporate “smart city technologies” and is completely powered using renew-

able energy resources. This move has certainly set the stage for intensifying the solar energy provisions across Saudi Arabia, but it also owes cost

effectiveness, performance accuracy and policy incentives.

Therefore, it is desirable to have solar irradiance predictors and simulators that are accurate, easily implementable and cost efficient on

regional and national scales in Saudi Arabia. In addition, it is also important that the underlying idea of constructing the predictor or simulator can

directly be applied to other countries' solar irradiance data with a slight or no modification. Indeed, not only Saudi Arabia but also many other

countries around the globe have been positively affected by the surge of solar energy research and implementation. For instance, the

United States (USA) has witnessed an increase of grid-connected solar photovoltaic (PV) capacity (i.e. the amount of power generated by a grid-

connected solar PV system) by a factor of more than 109 from 2005 to 2015; see Wiser and Bolinger (2011) and Beiter et al. (2017). As another

example, the City of Sydney, which is the central business district of Sydney, Australia, is now entirely powered by renewable energy, a substantial

proportion of which is generated by two solar farms across regional New South Wales. Mostly, the use of PV power generators has increased

manifold because of their easy installation, noiseless operation, zero greenhouse gas emission and fast return on investment; see Taghezouit et al.

(2021). Consequently, numerous developments and research have been conducted on various solar resource measurements of various countries.

Reikard (2009) employed the Box–Jenkins seasonal (or nonseasonal) autoregressive integrated moving average model (Box et al., 2015) to provide

short-term forecasts using the data from various sites across the world. Pedro and Coimbra (2012) showed that the short-term forecasting effi-

cacy of Artificial Neural Networks is comparable with that of the models in Reikard (2009). Ranganai and Sigauke (2020) used long memory

models, and their hybrid versions to forecast irradiance 24 hours ahead at three different sites in South Africa; see also Tsekouras and

Koutsoyiannis (2014), Lauret et al. (2017), Voyant et al. (2017) and Alparslan et al. (2019). Moreover, Lonij et al. (2013), Filik et al. (2017) and Li

and Zhang (2020) forecasted power outputs using PV systems. Yang and van der Meer (2021) extensively reviewed post-processing in solar fore-

casting. Additionally, Myers et al. (1999), Pazheri (2014), Zell et al. (2015), AlYahya and Irfan (2016), and Salam and Khan (2018) studied different

solar resources mainly for Saudi Arabia.

Acknowledging the above studies, herein, we present a novel spatio-temporal model that can produce high-quality (probabilistic) forecasts

and realistic simulated solar irradiance data (specifically, diffuse horizontal irradiance or DHI) in space and time in order to help predict the PV

power output both temporally and spatially. The identification of the periodic correlation structure (or cyclostationarity) of solar irradiance plays a

pivotal role in the model's performance; see Hurd and Miamee (2007) and Napolitano (2019) for an introduction to cyclostationary processes. A

second-order stochastic process fXt,t�ℤg is called cyclostationary (or periodically correlated) with period T if its mean and covariance have peri-

odic structures with a period of T. That is, for every s,t�ℤ,

mðtÞ¼EðXtÞ¼mðtþTÞ and Rðs,tÞ¼E Xs�mðsÞf g Xt�mðtÞf g½ � ¼RðsþT,tþTÞ ð1Þ

holds, where T is the smallest positive integer that satisfies the above two identities.

In Section 3.1, we investigate and find out the common cyclostationarity structure of solar irradiance using data collected from three different

representative locations: Haql (in Saudi Arabia), Colorado (in the USA) and Sydney (in Australia). In that subsection, we discover that, in general,

solar irradiance exhibits a periodic pattern in not only its mean structure (which is well expected because of the Sun's periodic behaviour) but also

its correlation structure. This can be understood intuitively. In general, the solar irradiance measured in the early hours of any day is statistically

different from that measured during late hours. However, most probably, the solar irradiance measured at the same hour on different days is

almost identical or closely correlated. Such behaviour can be indicative of an underlying cyclostationary process; see Napolitano (2019). Hurd and

Miamee (2007) considered a similar example of hourly solar radiation levels taken at the meteorological station DELTA on Ellsmere Island, N.W.T.,

Canada, and showed that the data are cyclostationary.

Upon investigating the general behaviour of solar irradiance, based on this broader perspective, we propose a model for Saudi Arabia that can

be easily extended to other parts of the world. For this purpose, we consider a DHI dataset measured at 45 different solar monitoring stations of

Saudi Arabia, provided by K.A.CARE. We fit a purely cyclostationary spatio-temporal model (i.e. we do not consider any other covariate to explain

the DHI). While implementing the proposed model for other countries, if a covariate is present for which the data are available and that signifi-

cantly affects the DHI in that region, it can be incorporated in the model to improve it. However, from the above discussion and that in

Section 3.1, one can still expect a cyclostationary process to explain the basic structure of the data quite well. Apart from using a cyclostationary

process to model the temporal dynamics, we consider a Gaussian random field to capture the spatial dependencies. After proposing our model,

we provide an estimation procedure and conduct spatial and spatio-temporal kriging. The estimation technique does not use popular approaches

such as Bayesian or maximum likelihood (mainly to reduce the computational cost); contrastingly, our approach depends on the basic understand-

ing of the data distribution across Saudi Arabia. We show that even this simple estimation technique can fit the model well and yields reliable

kriging results. Thereafter, we compare the proposed model with a stationary one that overlooks the temporal periodic correlation structure in
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the data, as is the case of existing models to date. There, we establish a superior performance of the proposed model than the other. Additionally,

we simulate the irradiance at a new location using both the models and again show the more realistic simulations produced by our model than

those by the stationary model. Finally, using the simulated data, we calculate the power outputs for a standard PV power system, which is the

applied goal of the predicted or simulated solar irradiances.

The detailed analysis of the space-time DHI data is conducted as follows. Section 2 introduces the concerned dataset and presents a

preliminary analysis. In Section 3, the DHI data are identified as cyclostationary, and the model is presented. Section 4 describes a detailed infer-

ence procedure for the proposed spatio-temporal model. In Section 5, we discuss the inferential procedure to fit the model and provide spatial

and spatio-temporal kriging. In Section 6, we assess the calibration of the probabilistic forecasts produced using the fitted model and we compare

the proposed model with a classical stationary model that does not take account of the temporal periodic correlation structure. In Section 7, we

simulate solar irradiance using both the models for further comparison. In Section 8, we calculate PV power generations. Finally, in Section 9, we

summarize the study findings and discuss their significance.

2 | DHI DATA FROM SAUDI ARABIA

The analysed DHI dataset comprises hourly solar DHIs in watts per square metre (W/m2) from 46 different stations dispersed over Saudi Arabia.

To clarify, the data are observed and collected on the hour, not in the interval between 2 hours. The dataset is prepared by K.A.CARE as part of

the Renewable Resource Monitoring and Mapping (RRMM) programme. It can be accessed via the following website (https://rratlas.kacare.gov.

sa/). Additionally, the dataset contains global horizontal irradiance (GHI), direct normal irradiance (DNI), air temperature, humidity, wind speed,

wind direction, zenith angle and azimuth angle data.

The DHI data at different stations were measured during different periods. For example, the data commence from 2013 for 32 stations, 2014

for 10 stations and 2015 for the remaining stations. For almost all of the stations, data recording ended in 2017, except for the Princess Norah

University Station, where the data were last recorded on 1 December 2014. For the analysis, we consider the DHI data measured in a common

interval, that is, from 00:00 AM on 1 September 2015 to 23:00 PM on 10 September 2015, for 45 stations; the data from the Princess Norah Uni-

versity Station were not considered. September was selected as it usually exhibits the highest DHI volatility, which was verified by plotting DHIs

over different periods. Therefore, data from September will help establish the accuracy of the prediction capabilities of our proposed model at a

new location and future time points. Further, as is known, DHI becomes zero (i.e. deterministic) at night. Therefore, for each day, we only consider

the daytime hours (i.e. from 08:00 to 17:00). Although the Sun may set later than 17:00, the DHI observed during those later hours is quite low

and, therefore, does not significantly contribute to the PV power outputs. Further, the censoring of the nighttime data is reasonable since we will

be fitting a cyclostationary model, where the daytime hours are mostly affected by the daytime hours of the previous days.

The left panel of Figure 1 displays the locations of the 45 stations. Among the 45 stations, the 35 training stations, which are used for infer-

ence, are denoted by red triangles, and the remaining 10 testing stations, which are used for verification, are denoted by blue circles. We will

F IGURE 1 Left: Locations of the 45 solar monitoring stations in Saudi Arabia. Red triangles denote the 35 training stations, while blue circles
denote the 10 testing stations. Right: Plot of the solar diffuse horizontal irradiance (DHI) at a representative station named Saline water conversion
corporation at Haql observed during daytime hours (i.e. 08:00 to 17:00) from 1 September 2015 to 6 September 2015 (in black) and the predicted
DHI during daytime hours on 6 September 2015 (in red). For the prediction, a PAR(1) model is used and trained using the daytime hours of the
first 5 days.
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discuss this in more detail in Section 5. The DHI data from a representative station, saline water conversion corporation at Haql, for the first 6 days

of September 2015 are plotted in the right panel of Figure 1. The figure shows a recurring DHI behaviour with a period of 10, which is due to the

Sun's periodic nature. Although we only observe the periodic nature of the mean function of the underlying process in the figure, the covariance

function of the series also exhibits a periodic pattern (or cyclostationarity), as shown in Section 3.1.

Das et al. (2021) analysed a univariate solar GHI series, measured at King Abdullah University of Science and Technology (KAUST),

Saudi Arabia, and provided a model for short-term temporal GHI forecasts. Whereas in this article, we extend this analysis to a spatio-temporal

scenario. Although the temporal analysis in Das et al. (2021) is based on a GHI series, it can be easily reiterated for a DHI series with slight modifi-

cations. The modification lies in the consideration of the aerosol optical depth (AOD) as a covariate. For a GHI series, AOD can be incorporated in

the model because of its strong correlation with GHI. In contrast, AOD does not exhibit a significant correlation with DHI and, therefore, may not

be included in the model. For the Saudi Arabian stations other than KAUST, the AOD data are unavailable. Therefore, herein, we fit the DHI data

using a purely cyclostationary model. Nevertheless, reliable forecasts and simulations are obtained using the proposed model.

Although we mainly focus on fabricating a model to yield spatial and spatio-temporal forecasts, for the sake of completeness, we briefly pre-

sent a temporal cyclostationary model for a DHI series. We fit a periodic autoregressive moving average (PARMA) model to the first 5 days

(i.e. 50 hours) of the DHI data measured at the Haql station and predict the data for the 6th day. For this, we denote the DHI time series as

fyt,t¼1,…,60g and consider its first 50 data points to fit a PARMA(1,0) (or PAR(1)) model (the AR and MA orders of a PARMA model can be

decided based on the periodic autocorrelation and partial autocorrelation plots):

yt ¼ϕðtÞyt�1þσðtÞϵt, t¼1,…,50, ð2Þ

where ϕðtÞ¼ϕðtþTÞ and σðtÞ¼ σðtþTÞ, for t¼1,…,50, are model parameters, and T¼10 is the period of the series. To estimate the parameters

of the series, we use the Yule–Walker estimation method; see Pagano (1978). Once fitted, we use the model to predict the next 10 hours (i.e. the

daytime hours of the 6th day). The predicted values are plotted in red in the right panel of Figure 1. The figure clearly shows that a temporal

cyclostationary model can fit the solar DHI data significantly well.

3 | SPATIO-TEMPORAL MODEL FOR DHI

In this section, we develop an appropriate spatio-temporal model for the solar DHI data.

3.1 | Temporal dynamics

As mentioned in Section 2, the DHI series measured at Haql station, Saudi Arabia, exhibits a cyclostationary pattern. Indeed, this behavior is not

specific to Saudi Arabia. Rather, cyclostationarity seems to be a basic underlying structure of the solar DHI itself. To verify this, we consider the

DHI data from three locations belonging to three different continents:

1. Central Sydney, Australia: The live data (i.e. real-time data of 7 days) are downloaded from the “Solcast API Toolkit,” which can be accessed

via https://toolkit.solcast.com.au/world-api. The dataset

comprises 168ð¼24�7Þ hourly solar DHIs collected from 18:00 on 8 March 2021 to 17:00 on 15 March 2021.

2. Denver, Colorado, USA: These data are obtained from the NREL-NSRDB website (https://maps.nrel.gov/nsrdb-viewer/). The considered

dataset comprises a series of 168 hourly solar DHIs measured during the first 7 days of September 2015.

3. Saline water conversion corporation at Haql, Saudi Arabia: This is one of the 45 solar monitoring stations considered in this article. For the

current purpose, we consider the hourly solar DHIs measured during the first seven days (i.e. the data comprise 168 data points) of

September 2015.

Now, to check for cyclostationarity, we plot the sample squared coherence statistic for these three sets of solar DHI data. The sample

squared coherence statistic at frequencies ωp and ωq is defined as (Hurd & Gerr, 1991):

jCðp,q,MÞj2 ¼
PM�1

m¼0
dnðωpþmÞdnðωqþmÞ

����
����
2

PM�1

m¼0
dnðωpþmÞj j2 PM�1

m¼0
dnðωqþmÞj j2

,
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where fdnðωkÞ,k¼0,…,n�1g are the coefficients of the discrete Fourier transform (DFT) of the corresponding time series, M denotes the

smoothing parameter, ωk ¼2πk=n for k¼0,…,n�1 and n denotes the data size (i.e. n¼168 in the current scenario). Hurd and Gerr (1991) men-

tioned that the DFT coefficient dnðωkÞ approximates the increment of Z, an increment process of the concerned time series with its spectral mea-

sure defined as Fðða,b��ðc,d�Þ ¼E½ðZðbÞ�ZðaÞÞðZðdÞ�ZðcÞÞ� in the domain ða,b��ðc,d�, in the kth interval ½ωk ,ωkþ1Þ. Here, the increment

process ZðωÞ and the corresponding time process fYt,t�ℤg are related as follows:

Yt ¼
ð2π
0

eitωdZðωÞ, t�ℤ:

Thus, the sample squared coherence statistic can be viewed as an “estimate” of E dZðωÞdZðλÞ
n o

, ðω,λÞ� ½0,2πÞ2. This shall imply that, in a sample

squared coherence plot, lines parallel to the main diagonal at distances h¼ kn=Tðk¼0,…,T�1Þ are an indication of the series being

cyclostationary, where T denotes the period of the series; see also Martin and Kedem (1993), Dandawate and Giannakis (1994), Bloomfield et al.

(1994), Broszkiewicz-Suwaj et al. (2003), Broszkiewicz-Suwaj et al. (2004), Wang et al. (2005) and Pries et al. (2018).

Figure 2 displays the sample squared coherence plots of the solar DHIs for the three considered locations. The left, middle and right panels of

Figure 2 are representative of the data for Central Sydney, Denver and Haql, respectively. To calculate the sample squared coherence statistic,

we consider the value of the smoothing parameter M¼32 in all the three scenarios. The reciprocal of the smoothing parameter M is the spectral

frequency resolution of the squared coherence estimate. A choice of M such that n=M�1 often provides a reliable estimate. However, there are

also some disadvantages of considering small values of M; see Hurd and Miamee (2007). The above choice of M¼32 is reasonable since the value

of n¼168 is comparable with the data record lengths adopted in Hurd and Gerr (1991).

For the squared coherence plot, since we considered n¼168 data points and the solar period is T¼24, lines parallel to the main diagonal at

every h¼168=24¼7 unit distance shall indicate the cyclostationary structure of the data, and this is true for the three cases presented in

Figure 2. We note that the lines appear clearer for Haql than that of Sydney or Denver. This is justified since Saudi Arabia mostly experiences a

stable and consistent weather pattern (i.e. few clouds and occasional dust storms) year round unlike other countries, and therefore, the periodicity

is less influenced in Saudi Arabia than in Australia or the USA.

The above discussion suggests that a cyclostationary model is appropriate for fitting solar DHI data of not only Saudi Arabia but also any part

of the globe at any time of the year. Thus, a cyclostationary process is fitted to the temporal part of the spatio-temporal model. Specifically, we fit

a PAR(1) model, as defined in (2), to describe the temporal dynamics of the space-time solar DHI dataset of Saudi Arabia. Remarkably, there are

stationary models, such as a seasonal autoregressive model, that can also explain the periodic behaviour in the mean and auto-covariance struc-

ture of the data. However, they fail to explain the periodic covariance structure of the data.

In the next subsection, we propose a spatio-temporal model. For convenience, we standardize the dataset for each of the 45 stations, that is,

we subtract its mean and divide by its standard deviation for the remaining analysis. Hereafter, “DHI“ will denote “standardized DHI” unless oth-
erwise stated. This helps us to consider a simplified model without the intercept. Furthermore, unless standardized, the observed large values of

DHIs might need extra care while analysing. Standardizing them will solve this issue. Nevertheless, note that the conclusions deduced from the

following analysis are valid even if the data are not standardized.
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F IGURE 2 Squared coherence plots of the hourly solar diffuse horizontal irradiances (DHIs) collected over seven days at three different
locations: Central Sydney in Australia (left), Denver in the USA (middle) and Haql in Saudi Arabia (right)
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3.2 | Spatio-temporal model

Besides studying the temporal nature of the DHI, it is also essential to investigate its spatial structure. This is because given the observed irradi-

ances at several stations across the nation, a spatio-temporal model will help predict the DHI at new locations. We propose a spatio-temporal

model as follows.

Let ZtðsÞ denote the (standardized) DHI at location s and time point t, where s� fs1,…,sLg and t� f1,2,…,ng. Here, L¼ number of stations ¼
45 and n¼ number of regularly spaced time points at each station ¼100 (10 daytime hours of 10 consecutive days, i.e., from 08:00 to 17:00 on

1–10 September 2015). Then, we consider the following spatio-temporal (cyclostationary) model:

ZtðsÞ¼YtðsÞþϵtðsÞwith YtðsÞ¼ϕðtÞYt�1ðsÞþσηðtÞηtðsÞ, ð3Þ

where fϵtðsÞg is a white-noise process which is assumed to independently follow a Nð0,σ2ϵ Þ distribution. That is, σ2ϵ is the measurement error or

the nugget effect. In the process model, fηtðsÞg is an orthonormal sequence. The model parameters fϕðtÞg and fσηðtÞg satisfy ϕðtÞ¼ϕðtþTÞ and
σηðtÞ¼ σηðtþTÞ, respectively, for all t¼1,…,n. Here, T¼ the common period of every DHI series at each station ¼10. Further, the parameters

fϕðtÞg are required to satisfy
QT
t¼1

ϕðtÞ
����

����<1, which assures that the cyclostationary process is bounded (Hurd & Miamee, 2007, Theorem 8.1 on

p. 226). It is noteworthy that we have not included a purely spatial term in the model to allow for different overall means at different sites. This is

reasonable in our context because we do not observe much spatial variations across regions in Saudi Arabia. For countries with significant spatial

variations (for example, different altitudes), the model (3) can be modified to include a purely spatial term. For later use, we write the observed

data in a matrix form of dimension L�n as Z¼ðZðs1Þ > ,…,ZðsLÞ > Þ > , where ZðslÞ¼ ðZ1ðslÞ,…,ZnðslÞÞ > .

To describe the spatial dependency, we assume the commonly used Gaussian random field (GRF) (see Cressie & Wikle, 2011) with mean zero,

through the term ηtðsÞ. Moreover, we assume an isotropic exponential correlation function:

covðηtðsÞ,ηt0 ðs0ÞÞ¼
exp �ks� s0k=βð Þ, if t¼ t0 ,

0, if t≠ t0,

�

for s≠ s0, where β >0 is an unknown range parameter. The exponential correlation function is employed over the commonly used Matérn correla-

tion function because of its simplicity (it contains one parameter less than the Matérn function for estimation), fewer considered locations (i.e. the

smoothness parameter of the Matérn function is difficult to estimate with only 45 locations), and rough field of errors (which is verified via a pre-

liminary analysis).

4 | INFERENCE

In this section, we discuss the fitting of the spatio-temporal model in detail. First, we note that although the spatio-temporal model is quite simple,

it has too many parameters. In fact, the parameter set of interest contains 22 parameters:

fσ2ϵ ,ϕð1Þ,…,ϕðTÞ,σ2η ð1Þ,…,σ2η ðTÞ,βg:

This definitely creates an impediment (e.g. in terms of computational time) while using the standard estimation technologies, such as maximum

likelihood estimation (MLE) or Bayesian methodologies. Therefore, we adopt a simple two-stage method as follows:

Stage 1: Since the weather is quite stable across Saudi Arabia, the estimates of the cyclostationary parameters, fϕð1Þ,…,ϕðTÞ,σ2η ð1Þ,…,σ2η ðTÞg,
that are found individually for each station will not significantly vary. Therefore, we propose simply estimating them for each of the

45 stations (using Yule-Walker estimation method; see Pagano [1978]) and plugging-in the averages of the corresponding parameter

estimates in the model; see Basawa and Lund (2001) for properties of PARMA parameter estimates.

Although this proposal may not be in line with the conventional method of estimating the model parameters, since the empirical esti-

mate of the nugget effect can be verified to be quite small, especially for the concerned dataset, this method works and consequently

saves considerable computational time.

For a country, where the uniform nature of the parameters over space cannot be guaranteed (e.g., a country with a considerable number

of mountains, hills, plateaus, and plains and, therefore, an unequal distribution of solar irradiance), the standard MLE or Bayesian method

can be used. Alternatively, each of the cyclostationary parameters can be assumed to be spatially varying. Then, for each of the

20 parameters, spatial kriging can be performed to determine parameter estimates at a new location (instead of just averaging them over

the stations).

6 of 16 DAS ET AL.
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Stage 2: Once we plug-in the cyclostationary parameters in the spatio-temporal model, we estimate the remaining two parameters, σ2ϵ and β,

using MLE (see Cressie & Wikle, 2011).

For this, we need to derive the covariance matrix, ΣY , of

Y¼ðYðs1Þ > ,…,YðsLÞ > Þ > ,

where YðslÞ¼ ðY1ðslÞ,…,YnðslÞÞ > . Here, we consider a separable covariance model, ΣY ¼ΣL
N

Σn, where ΣL and Σn are L�L and n�n

dimensional matrices, respectively, and
N

denotes the Kronecker product (Van Loan, 2000). The assumption of separability reduces a

substantial amount of computational time. Simultaneously, in many cases, this assumption does not yield significant differences in pre-

diction errors; see Genton (2007). Therefore, with a slight compromise of accuracy, the separability of the covariance matrix seems rea-

sonable to assume. However, in some scenarios, the separability assumption may not afford satisfactory results. Then, an alternative

approach could be to either approximate the likelihood function or use ExaGeoStat, which is a high performance software for large-scale

geostatistics in climate and environment modeling (Abdulah et al., 2018), to determine the exact MLE.

The construction of ΣL is straightforward. That is, the ði, jÞth element of the matrix is

Σij
L ¼ exp �ksi� sjk=β

� �
,

for all i, j� f1,…,Lg. To find the matrix Σn, we need the expressions of Σtt
0

n ¼EðYtðsÞYt
0 ðsÞÞ for all t,t0 � f1,…,ng and any representative

s� fs1,…,sLg (note that the process was standardized to a zero mean). The derivation of this covariance function is similar to Hurd and

Miamee (2007). For the sake of completeness, we mention the derived final expressions. Let

B0ðtÞ¼1 and BkðtÞ¼
Yk�1

j¼0

ϕðt� jÞ, k¼1,…,T

(Hurd & Miamee, 2007, p. 26). Then, for t0 > t,

EðYtðsÞYt0 ðsÞÞ ¼ σ2YðtÞ
Qt0

j¼tþ1
ϕðjÞwith

σ2YðtÞ¼EðYtðsÞ2Þ ¼ 1

1�B2
TðtÞ

XT�1

j¼0

B2
j ðtÞσ2η ðt� jÞ:

To visualize the temporal covariance matrix Σn, we plot its heatmap in Figure 3. The heatmap is constructed using the parameter esti-

mates based on the 35 training stations. We observe diagonally arranged blocks in the figure since the covariance function is periodic.

After we calculate the covariance matrix ΣY ¼ΣL
N

Σn, we optimize the Gaussian likelihood with respect to the remaining two parameters, σ2ϵ
and β:

Lðσ2ϵ ,βjZÞ/ jΣZ j�1=2 exp �1
2
Z > Σ�1

Z Z
� �

, ð4Þ

where ΣZ ¼ΣY þσ2ϵ I and I denotes the identity matrix of a suitable dimension.

5 | IMPLEMENTATION AND PREDICTION

5.1 | Spatial prediction

To implement the inference scheme described in the previous section, the dataset is randomly split into two sets: a training set containing

100 hours (i.e. from 08:00 to 17:00 on September 1-10, 2015) of solar DHIs from 35 stations (say, s1,…,s35) and a testing set containing the same

100 hours for the remaining 10 stations (say, s36,…,s45). The training (red triangle) and testing (blue circle) stations are presented in the left panel

of Figure 1.

DAS ET AL. 7 of 16
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To estimate the cyclostationary model parameters for each of the 35 stations, we use the Yule–Walker estimation method; see Pagano

(1978). The estimates of the model parameters of (3) (averaged Yule-Walker estimates of 35 stations),

fϕð1Þ,…,ϕðTÞ,σ2η ð1Þ,…,σ2η ðTÞg,

are tabulated in Table 1. We observe that the parameter estimates fσ̂2η ðtÞ,t¼1,…,Tg have less variance. However, this dispersion seems signifi-

cant considering that we have standardized the data prior to analysis. Therefore, it may not suggest fσ2η ðtÞg constant over time. Finally, we plug-in

these estimates to the model and optimize (4) to determine the nugget and the range parameter estimates as σ̂2ϵ ¼0:022 and β̂¼325:135, respec-

tively, the latter indicating a strong spatial dependence structure.

After the model parameter estimation, we provide point predictions of the solar DHIs at the 10 test stations, which were not used during the

model training. For the prediction, we employ the standard kriging technology mentioned in Cressie (1993). In other words, the predicted values

at the test stations are simply the conditional mean (under Gaussian assumption) of the DHIs at the test stations, given the observed data at the

training stations, Ẑtest ¼EðYtestjZtrainÞ, where Ytest ¼ðYðs36Þ > ,…,Yðs45Þ > Þ > and Ztrain ¼ðZðs1Þ > ,…,Zðs35Þ > Þ > . The expression of this conditional

expectation is derived in Cressie (1993) (p. 828). However, for convenience, we state its final expression as follows. Let Ytrain ¼
ðYðs1Þ > ,…,Yðs35Þ > Þ > and

Σ11 Σ >
21

Σ21 Σ22

 !

be the covariance matrix of ðY >
test,Y

>
trainÞ

>
, that is, covðYtestÞ¼Σ11, covðYtrain,YtestÞ¼Σ21 and covðYtrainÞ¼Σ22. Then,

EðYtestjZtrainÞ¼Σ>
21 ðσ̂2ϵ IþΣ22Þ�1

Ztrain: ð5Þ

Furthermore, we state the expression for the conditional covariance that is required to determine the prediction uncertainty (or predictive

interval):

F IGURE 3 Heatmap of the covariance matrix Σn for the Saudi diffuse horizontal irradiance (DHI) data.

TABLE 1 Parameter estimates of the cyclostationary model parameters using the two-step estimation technique discussed in Section 4. The
estimates were determined using the DHI data of the 35 training stations.

t¼1 t¼2 t¼3 t¼4 t¼5 t¼6 t¼7 t¼8 t¼9 t¼10

ϕ̂ðtÞ 0.280 1.538 1.300 1.093 1.049 0.914 0.869 0.785 0.679 0.501

σ̂2η ðtÞ 0.262 0.205 0.266 0.257 0.224 0.221 0.237 0.209 0.206 0.183

8 of 16 DAS ET AL.
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covðYtestjZtrainÞ¼Σ11�Σ >
21 ðσ̂2ϵ IþΣ22Þ�1

Σ21: ð6Þ

The top panel of Figure 4 presents the predicted values (in red) of the 10 days at the 10 test stations and the originally observed values

(in black). For better visualization, all 10 stations are serially appended in the same figure with vertical blue lines separating them. The figure shows

that the predicted curve well approximates the observed curve. For example, we notice that although extreme solar DHI values are experienced

on the fourth day at Station 9, the red curve still well approximates them. This suggests that the inference scheme presented in the preceding sec-

tion, although seemingly quite simple, performs satisfactorily. Moreover, we calculate the 95% confidence band of these predicted values using (5)

and (6). We do not overlap the confidence band with the plot in the top panel of Figure 4 to keep it intelligible. Rather, in the bottom panel of

Figure 4, a separate plot is presented for one representative station, Station 9, wherein the confidence band is in blue. We observe that the

originally observed values (in black) always stay within the confidence band.

5.2 | Spatio-temporal prediction

Since the proposed model can produce reasonable predictions at new spatial locations, we further investigate the forecasts at new stations and

future time points. Therefore, we consider the first 90 hours of the concerned time range from each of the 35 training stations to fit the

model and predict the last 10 hours of the 10 test stations. This implementation scheme is similar to that in the previous subsection. Figure 5 plots

the predicted values (in red) of the last 10 hours for four representative stations. The original values are plotted in black, and the corresponding

95% confidence bands are in blue. Similar to the spatial case, we note the good prediction quality of the proposed model in this spatio-temporal

scenario.

6 | VERIFICATION, EVALUATION AND COMPARISON

6.1 | Verification

To verify probabilistic forecasts, one of the most popular tools is implementing a calibration-based framework of these forecasts. To put in simple

terms, if a well-calibrated model suggests that the probability of occurrence of an event is α%, then the observed frequency of that event

F IGURE 4 Top: Predicted 10 days of the 10 test stations (red) superimposed on the originally observed data at those stations (black). The
10 stations are serially appended and vertical blue lines separate them. Bottom: Predicted 10 days at Station 9 (red) and the corresponding 95%
confidence band (blue) superimposed on the originally observed data at that station (black)

DAS ET AL. 9 of 16
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occurring should also be, on average, α%. In other words, we need to compare the empirical coverage rates (or observed frequencies) with the

nominal coverage rates to verify the calibration of the forecasts. A popular approach is to plot the reliability diagram (i.e. empirical coverage rate

versus nominal coverage rate); see Pinson and Kariniotakis (2010). In the reliability diagram plot, the closer the empirical coverage rates are to the

nominal coverage rates (i.e. the diagonal line), the better the calibration is. Below, we calculate the empirical coverage rates for our current

scenario.

Let qαt ðslÞ denote the quantile forecast at time point t and location sl. Then, we define an indicator variable Iαt ðslÞ as follows:

Iαt ðslÞ¼
1, ifZtðslÞ≤ qαt ðslÞ,
0, otherwise:

�

That is, the indicator variable assigns either 1 (hit) or 0 (miss) to each of the observed values. We further define the sum of hits as follows:

hα ¼
X
t � D1

X
l � D2

Iαt ðslÞ,

where D1 and D2 denote the sets of considered time points and locations, respectively. Then, the empirical coverage rate is calculated as

cα ¼ hα

jD1jjD2j ,

where j � j denotes the cardinality of a set.

To calculate cα numerically, we consider the setting described in Section 5.2. Figure 6 presents the diagram corresponding to the spatio-

temporal forecasts obtained using the proposed model. In the figure, the empirical coverage rates (in red) almost overlap with the diagonal

(i.e. the nominal coverage rate), suggesting a significantly good forecast calibration.

F IGURE 5 Predicted last 10 hours at Stations 5, 7, 9 and 10 (red) and the corresponding 95% confidence band (blue) superimposed on the
originally observed data at those stations (black)

10 of 16 DAS ET AL.
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6.2 | Evaluation and comparison

In this section, to evaluate our cyclostationary (i.e. PAR) spatio-temporal model, we compare it with another model that does not recognize the

cyclostationary structure in the covariance function of the DHI series. To be specific, we compare our model with a stationary isotropic model

where the PAR process model is replaced with an autoregressive (AR) process model of order one, that is, the model parameters fϕðtÞg and

fσηðtÞg are assumed to be constant for all t¼1,…,T. In other words, we compare the difference in prediction performance between constant and

periodic covariance structures. To estimate the model parameters of the stationary model, we employ a similar but accordingly modified inference

scheme as that described in Section 4.

To evaluate and compare the probabilistic forecasts produced by our model and the stationary model, we implement the widely used diagnos-

tic tool, probability integral transform (PIT) plots; see Dawid (1984). For a time point t and location sl , it is defined as

PITtðslÞ¼
ðZtðslÞ

0

fðuÞdu,

where f is the probability density of the underlying solar DHI distribution; the function f is assumed to be continuous in our scenario. Dawid

(1984) proved that the PIT values are uniformly distributed on ½0,1� whenever the forecasts are ideal. In a practical scenario, the closer the PIT his-

togram is to a U½0,1�, the better the probabilistic forecasts are. To quantify this goodness of fit, we calculate the Euclidean distance between the

histogram and the horizontal line at one unit distance from the x-axis (in the first quadrant), which we call a square root sum of the squared dis-

tances (SRSSD).

To implement this method, we need the kriging outputs for each of the 45 stations using both models. Therefore, we conduct a spatial kriging

for all 45 stations for both models using the “leave-one-station-out” technique. That is, for each of the 45 stations, we consider the other 44 sta-

tions to predict 10 days for that station.

Before calculating the PIT values and plotting them using these forecasts, we plot the predicted values produced by both the models and the

observed data for one representative station (Haql) to visualize the prediction differences of the two models; see Figure 7. There, we plot the

observed DHI data in Haql in black. The predicted values using the proposed and stationary models are superimposed in red and blue, respec-

tively. The figure clearly shows that when the volatility is higher, the proposed model better captures the structure of the observed data than the

stationary model.

Next, we calculate the PIT values and plot their histograms for the cyclostationary (left) and stationary (right) models in Figure 8. The figure

shows that the PIT histogram of the proposed model is closer to a U½0,1� distribution (whose probability density function or pdf is marked in dot-

ted red along y¼1) than that of the stationary model. Additionally, we calculate the respective SRSSD values. The SRSSD values for the

cyclostationary and stationary models are 0.912 and 1.106, respectively. This further establishes the superiority of the proposed model.

F IGURE 6 Reliability diagram of the spatio-temporal forecasts obtained in Section 5.2 using the newly proposed model.
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To further compare these two models, we calculate the mean squared prediction errors (MSPE; see page 270 of Wikle et al. (2019)) of the

corresponding predicted values for each station over the last two days (i.e. for 20 hours), average them over stations and plot them against time;

see Figure 9. We observe that the cyclostationary model always has better MSPE than the stationary model.

Additionally, the cross-validation score (CVS) and the multivariate continuous ranked probability score (CRPS) or energy score (ES) can be

employed to compare the models. CVS can be defined as

F IGURE 7 Predicted 10 days of solar diffuse horizontal irradiances (DHIs) at the solar monitoring station Haql using the proposed model
(in red) and the stationary model (in blue). The observed values of the DHIs at the same station are plotted in black.

F IGURE 8 Probability integral transform (PIT) histogram plots of the forecasts using the proposed spatio-temporal cyclostationary model
(left) and the stationary model, which does not consider the periodic correlation structure in the data (right). The dotted red lines at y¼1 in the
histograms indicate the pdf of U½0,1�. The corresponding square root sum of the squared distance (SRSSD) values are mentioned on top of each
histogram.

F IGURE 9 Plot of mean squared prediction error (MSPE), averaged over stations, of the diffuse horizontal irradiance (DHI) predictions using
our model (red) and the stationary model (blue) for the last 2 days. In the legend, AR denotes the stationary model with an AR process model,
while PAR denotes the proposed spatio-temporal model with a PAR process model.
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CVSmodel ¼ 1
45n

X45
l¼1

Xn
t¼1

ZtðslÞ� Ẑ
ð�lÞ
t ðslÞ

n o2
,

where Ẑ
ð�lÞ
t ðslÞ indicates the predicted value of ZtðslÞ using the data from all the stations except the station sl. The theoretical definition of ES and

its detailed implementation process are presented in pages 277 and 300, respectively, of Wikle et al. (2019). Evidently, for both CVS and ES, the

smaller the measure, the better the prediction. For example, for the PAR and AR process models, the CVS was 0.218 and 0.241, respectively, indi-

cating that the proposed model performed 10% better than the stationary model.

For a comprehensive comparison between these two models, we calculate both scores (CVS and ES) for an increasing number of stations

(i.e. 10, 15, 20, 25, 30, 35, 40 and 45) and plot them; see the supporting information. The plots show that, as the number of stations increases,

both scores decrease. Moreover, similar to the previous diagnostics, the cyclostationary model always outperforms the stationary model.

7 | SIMULATION OF SOLAR DHI

Besides forecasting ahead in time or at a new spatial location, we can use the proposed model to simulate solar DHIs at a new location. Since DHI

is a key factor in power calculation, simulating an entire series of solar DHIs at a new location is practically important.

Therefore, in this section, we simulate 10 DHI time series. Each series is simulated for 10 daytime hours of 10 consecutive days, that is, from

08:00 to 17:00 on 1–10 September 2015, at the Haql station. The model parameters are estimated using the data of the remaining 44 stations in

the same time range and by considering both the cyclostationary model with PAR process parameters and the stationary model with AR process

parameters.

Once the parameters are estimated, we calculate the conditional mean and covariance of the solar DHI at Haql given the observed data at

the remaining stations; that is, EðYHaqljZð�HaqlÞÞ and covðYHaqljZð�HaqlÞÞ, under Gaussian assumption, where Zð�HaqlÞ denotes the entire observation

vector with the data for the station Haql removed. The derivation of these two terms can be found in page 828 of Cressie (1993), and their final

expressions are provided in Section 5. Then, we simulate 10 samples from a multivariate Gaussian distribution with mean EðYHaqljZð�HaqlÞÞ and
covariance covðYHaqljZð�HaqlÞÞ.

Figure 10 presents the functional boxplots (Sun & Genton, 2011) of the 10 DHI series simulated using the cyclostationary (in the left panel)

and stationary (in the right panel) models. The originally observed values during the 10 days of the time period are superimposed on both boxplots

in green. From the plots, we can conclude that our proposed model produces more realistic simulations than the stationary model.

8 | ENERGY PRODUCTION

Finally, one of the main objectives of forecasting and simulating solar DHI is to directly use the forecasts and simulated samples in power calcula-

tion because this will assist PV power output operators in operational pre-planning, purchasing short-term power resources and taking early mea-

sures to mitigate impacts by the uncertain nature of solar irradiance, such as introducing new market products and increasing the procurement of

F IGURE 10 Functional boxplots of the 10 simulated series of 10 days at the solar monitoring station Haql using (a) the proposed model with
PAR process parameters and (b) the stationary model with AR process parameters. The originally observed data during that time period are
plotted in green.
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operating reserves. In this section, we establish that the estimated power output using the simulated DHI samples from our model is more reliable

than that produced by the stationary model. First, we simulate solar DHI data at the Haql station for a period of 10 days using both

cyclostationary and stationary models and consider the 10 days of originally observed data in the same time range as that in the previous section.

Then, to estimate the average power generation on a typical day, we calculate the direct current (DC) power outputs by a PV power system for all

the 100 daytime hours of the 10 days and average them on an hourly basis (i.e. we average the calculated power outputs at 08:00 each day,

09:00 each day, and so on) for each of these three solar DHI series. Standard PV module specifications are used (see Taghezouit et al., 2021) and

therefore, this setting can be installed in Saudi Arabia to utilize the following results.

We note that, to calculate the DC power outputs, we also require GHI, DNI, air temperature, zenith angle and azimuth angle data from the

Haql station, which are available in the K.A.CARE dataset, as mentioned in Section 2. To compute the DC power output, the PVWatts module

model by the National Renewable Energy Laboratory (NREL) is used (see Dobos, 2014).

Finally, to compare the average power generations using the three DHI series, we present their boxplots in Figure 11.

The figure shows that the interquartile range of the calculated power using our proposed model is a superset of that using the observed data;

however, this is not the case for the stationary model. Thus, our model can capture the uncertainties in power generations better than the station-

ary model. Furthermore, the median (mean) of the calculated power outputs obtained using our model is significantly closer to the true median

(mean) than that obtained using the other model, implying that our model produces a more reliable power estimate.

Since the solar irradiance forecasts and simulated samples are directly employed by the power system operators, a highly reliable predictor

and simulator will be beneficial; see Navid and Rosenwald (2013) and Li and Zhang (2020).

9 | DISCUSSION

In this study, we first introduced the solar DHI dataset of Saudi Arabia and established a broader perspective regarding the general nature of solar

irradiances. Then, we showed that a time series of DHIs mostly possesses an underlying cyclostationary structure irrespective of the considered

time range and location.

Next, we proposed a space-time model with temporal cyclostationarity and provided elaborate reasons for its construction. Thereafter, we

discussed a simple but efficient two-step inference scheme and implemented it. Finally, we compared the proposed model with a stationary model

in terms of predicting, simulating, and calculating power generations at new stations. In all these scenarios, the proposed model outperformed the

stationary model.

Saudi Arabia is a country of desert and plenty of sunlight, which makes it highly suitable for producing considerable solar energy. Therefore,

we believe that a reliable predictor and simulator of solar DHIs at new stations in Saudi Arabia will benefit the relevant authorities. Moreover, as

mentioned in the introduction, the proposed model can be used to model solar DHIs measured in any other part of the world with slight or no

modification. This provision makes the proposed model more practical and viable. Especially, in parts of the world where the cyclostationary struc-

ture in the DHI data is stronger than that of Saudi Arabia, like Sydney and Denver (see Subsection 3.1), the proposed model is likely to yield even

better results.

CONFLICT OF INTEREST STATEMENT

The authors declare no potential conflict of interests.

F IGURE 11 Boxplots of the average power calculated using 10 days of the observed data at the Haql station (top), 10 days of simulated
series at the same station using our proposed model with PAR process parameters (middle), and the stationary model with AR process parameters
(bottom). The red and black lines in each boxplot indicate the mean and median, respectively, of the corresponding series.
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