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1. INTRODUCTION

The authors are to be congratulated for a thought-provoking paper on the use of statisti-
cal models for a form of data compression for climate model output. This paper continues
the authors’ many contributions to the literature on climate model emulation and compres-
sion and highlights that these two goals, often thought of as separate within the climate
community, may for some purposes be more similar than has been typically appreciated.
The statistical models proposed here are based on one originally proposed in Castruccio
et al. (2014) and further refined and expanded upon in subsequent papers. While much of
the authors’ prior work in this area has been for the purpose of climate model emulation,
following Castruccio and Genton (2016) the idea here is to view the statistical model as
a data compression to address the increasing and unsustainable storage burden for large
climate model experiments. The proposed “unconditional” data compression is not a data
compression in the sense usually meant (termed “conditional” by the authors) because it
does not allow for the recovery of an approximation of the actual values produced by the
climate model; rather, it provides an approximation of the unconditional spatiotemporal
distribution of the temperature values. Since climate is by definition a distribution, such an
unconditional simulation may be sufficient for some purposes related to studying projected
climate change and its impacts.

While there is much to value in the ideas in this paper, I believe that the approach
to compression described here will not be without controversy within the community of
researchers who use climate model output. Since the original data (or a good approximation
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thereof) are not recoverable after unconditional compression, I believe that the primary
concern is whether all distributional features of potential interest to an end user have been
modeled with fidelity. It is hard to know how someone else might want to use a climate
model’s output in a future study, and it is also hard to check that a statistical model is fully
adequate in capturing complex dependencies and other distributional features. It therefore
makes sense to me that the primary approach to data compression for climate models has
instead been the traditional (conditional) approach to data compression (e.g., as investigated
in Baker et al. (2016, 2017), Poppick et al. (2020), and others).

That said, if one is willing to accept an emulation of a climate model in the place of an
actual run that could not be completed due to computational limitations, why not accept the
same such approximation to a run that was completed but could not be saved due to storage
limitations? Given the demonstrated utility (albeit imperfect) of climate model emulators, I
am therefore cautiously sympathetic to the unconditional compression approach advocated
here, especially in circumstances where storage limitations are such that the original data or
a good (conditional) lossy compression of it simply cannot be saved. I do, however, believe
that if this approach were adopted, then we as statisticians would have an important role to
play in articulating which features of the original output have been modeled with fidelity
and which features have not. For example, while the authors have made efforts to partially
capture temperature variability, I am concerned that their model may not yet be adequate
for this purpose. There are also important hurdles to consider when attempting to adapt this
approach to a multivariate setting, which the authors briefly but intriguingly describe in their
paper.

Below I elaborate on some of the issues I have alluded to above. I focus my discussion
on the compression of daily, gridcell-level data, since that is the case explored where there
is the most compelling reason to apply a data compression method.

2. VARIABILITY AND EXTREMES

The topic of daily temperature variability and extremes, and changes thereof, has received
a substantial amount of attention within the climate literature, in part because climate change
impacts can depend disproportionately on changes in extreme events. There is evidence both
from observations and climate model output that temperature variability and extremes have
changed over the historical record and are projected to change in the future, but changes
are both spatially and seasonally heterogeneous (Fischer and Schir 2009; Huang et al.
2016; Poppick et al. 2016; Rhines et al. 2017; Haugen et al. 2018; Bathiany et al. 2018;
Dunn et al. 2019 and many others). None of the models proposed by the authors allow for
changes in variability over time, as they note. While it may be possible to add a model for
variability changes to their existing model, this is not necessarily a straightforward task,
given the heterogeneity in changes, and highlights a general drawback to the unconditional
compression approach: No distributional feature of the original data will be retained unless
it is explicitly modeled.

Likewise, as the authors note, their model would not be expected to be a good description
of the extremal behavior of temperatures produced by the climate model (as illustrated in
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Figure 6 (D) especially), despite their effort to account for some elements of non-Gaussianity
using the Tukey g-and-h transformation. While the authors argue that a separate model that
captures the extremal behavior could be used, this would not be straightforward either:
Evidence suggests that the standard approach of modeling annual extrema in climate model
output using the GEV distribution may not be adequate due to the fact that an annual block
size may not be long enough for the GEV approximation to be reasonable (Huang et al.
2016; McKinnon and Simpson 2022) and modeling spatially dependent extremes (relevant
for understanding, e.g., the behavior of heat events that affect whole regions) is a notoriously
challenging statistical modeling and computational problem that remains an active area of
research. On the one hand, this points to perhaps fertile ground for the statistical modeling
community to explore; on the other hand, I worry that we are not currently at a point where
straightforward extensions of the work described here would give an adequate compression
for users interested in extremes.

Despite the above cautions, there are likely some applications where the representation
of variability provided in the authors’ model would be sufficient for purpose, for example,
in application areas where there is not a large sensitivity to temperature variability. It would
perhaps be worthwhile to investigate the sensitivity of scientific conclusions to the use of
this proposed model in order to better establish good use cases for this model.

3. MULTIVARIABLE RELATIONSHIPS

Similar issues arise when considering multivariate extensions of the method proposed by
the authors. Many climate change impacts depend on both temperature and precipitation,
for example, and, as the authors note, daily precipitation is much more challenging to model
statistically (many zeros, highly skewed distribution on days with positive precipitation,
and complicated spatiotemporal dependencies). The authors propose an interesting potential
solution to this problem: do not trying to unconditionally compress precipitation, but then
develop a statistical model for temperature conditional on precipitation as a compression
of temperature. This idea may become more challenging with the introduction of more
variables, but the idea to try to model conditional distributions rather than directly modeling
joint distributions seems like a potentially more approachable and fruitful way to address
multivariate extensions of this work.

4. CONCLUDING REMARKS

While I have discussed some challenges and concerns about the unconditional com-
pression approach advocated by the authors, I think that the unconditional and conditional
compression approaches can be viewed as complementary. Compared to the conditional
approach, the unconditional approach may entail a lower storage burden and has the addi-
tional advantage that one can sample arbitrarily many times from the modeled distribution;
however, for modest compression rates the conditional approach may have an easier time
reproducing complex climate model distributional features. Assessing when any compres-
sion method (unconditional or conditional) produces data that is adequate for purpose will
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ideally require contributions from statisticians in addition to climate scientists and down-
stream users of climate model output (e.g., climate change impacts researchers), and I wel-
come the authors’ encouragement that the statistics community be involved in this important
work.

[Accepted March 2023. Published Online May 2023.]
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