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Huang et al (J Agric Biol Environ Stat, 2023, https://doi.org/10.1007/s13253-022-00
518-x) a suite of statistical models for storage-efficient climate model emulation. In
this discussion, I review and explore possibility of using machine learning methods, in
particular, deep neural network (DNN)-based variational autoencoders (VAE) for the
same task of spatio-temporal climate data compression. I discuss the pros and cons of
the statistical and the machine learning paradigms.
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I congratulate the authors of Huang et al. (2023) on a very interesting paper. Stochastic
emulation of climate models has been studied for many decades now. However, the primary
objective has often been to develop fast statistical models that offer approximate output at
a fraction of the computational time needed for actual climate model runs. This manuscript
shifts the focus on another important resource—data storage, that is becoming increasingly
expensive as the size and number of datasets grow rapidly. The authors develop a suite
of spatio-temporal models to emulate climate model outputs at increasing spatio-temporal
resolutions—starting with global annual data, and ending at daily data on a fine spatial grid
over the surface of the earth. Consequently, the statistical models proposed to emulate these
outputs also become progressively more complex.

For each data resolution, the authors propose parsimonious yet sufficiently rich model
classes to adequately represent the data while regulating the parameter dimensionality.
Examples of such well-motivated model choices include adding harmonics for intra-annual
variation in temperature, anisotropic modeling of spatial dependence on the surface of
the earth via first modeling the spatial processes along each latitude (via axial symmetry)
and correlating these latitude-specific random fields via a coherence model. Despite these
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efforts to preserve parsimony, the most complex models considered in the paper have nearly
a million parameters. This is not an issue from a storage perspective as the storage cost of
saving a million numbers is negligible, relative to the cost of saving the entire outputs. This
raises the question whether machine learning models of similar dimensionality can also be
worthy candidates for the same task. In this discussion, I review and explore use of deep
neural network (DNN)-based variational autoencoders (VAE) (Kingma and Welling 2014)
for the task of spatio-temporal climate data compression.

VARIATIONAL AUTOENCODERS (VAE)

I first briefly summarize the core ideas of VAE here that will be needed for the discussion.
Girin et al. (2020) offers a more detailed statistical review of VAE for temporal data. VAE
are unsupervised learners using variational Bayes that model the observed high-dimensional
data x ∈ R

D in terms of a much lower-dimensional latent variable z ∈ R
L , (L � D). The

latent variable z is commonly assigned a standard normal prior, i.e., z ∼ N (0, I L). This
assumption is reasonable as latent Gaussian random effects are abundant in spatio-temporal
mixed models. VAE then specify two distributions—the data distribution or generative dis-
tribution p(x | z; θ x ) and the variational distribution q(z | x; θ z). Variational Bayes thus dif-
fers from standard Bayesian inference in introducing this variational distribution, which can
be thought of as an analytically tractable surrogate for the posterior distribution p(z | x; θ x ).
In fact, if the variational family q(·) is unconstrained, the posterior distribution is indeed
the optimal choice for it. In practice, q(·) is constrained to be from a tractable family of
distributions like Gaussian, i.e.,

q(z | x; θ z) = N
(
z | μz(x; θ z), diag(σ

2
z (x; θ z))

)
.

This is a pragmatic choice to facilitate fast computation. To allow flexibility within the
chosen variational family, the means μz and variances σ 2

z are modeled using a rich family
of functions, deep neural networks (DNN) (LeCun et al. 2015). A K -layer neural net-
work is a function class expressed recursively as fθ (x) = gK (ak + W kgK−1(aK−1 +
WK−1gK−2(. . . g1(a1 + W1x) . . .)) where gk’s are known activation functions (links) and
θ is the set of all parameters comprising of the weightsW k and biases ak , for k = 1, . . . , K .
The variational family q(·) with means μz and variances σ 2

z modeled as DNN is known
as the encoder network. The data distribution p(x | z; θ x ) is also modeled using DNN and
is referred to as the decoder network. For continuous data, a common choice is the Gaus-
sian likelihood p(x | z; θ x ) = N (x | μx (z; θ x ), diag(σ 2

x (z; θ x ))) with means and variances
modeled as DNN.

In variational inference, the generative parameters θ x and the variational parameters θ z

are obtained by maximizing the variational lower bound (VLB) or evidence lower bound
(ELBO) (Neal and Hinton 1998)

L(x; θ x , θ z) = Ez∼q log p(x | z; θ x ) − DKL(q(z; θ z)‖p(z)) (1)
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where DKL denotes the Kullback–Leibler divergence. The optimization is typically con-
ducted using a stochastic gradient descent (SGD) algorithm (Kingma and Ba 2014).

VAE FOR COMPRESSING CLIMATE ENSEMBLES

Autoencoders are ideal for the task of data compression as they are essentially dimension
reduction techniques. The high-dimensional data x are compressed (encoded) to a low-
dimensional representation zwhich can be used to reconstruct (decode) x̂ (an approximation
of x). The latent embeddings z can be viewed as nonlinear analogs of principal components
(PC) often referred to as empirical orthogonal functions (EOFs). VAE often offer a better
representation of the data than EOF in atmospheric applications (Krinitskiy et al. 2019).
Consequently, DNN and VAE are being increasingly adopted in atmospheric and climate
applications. Rasp et al. (2018) used DNN-based emulators of subgrid processes. Behrens
et al. (2022) achieved nearly similar performance for the same task while using a DNN-VAE
with a very low-dimensional latent space. Cartwright et al. (2021) used convolutional neural
network (CNN)-based VAE for emulating gridded data on gas plumes. Saenz et al. (2018)
considered a similar application to Huang et al. (2023) in compressing surface temperature
output from climate models and used CNN-based autoencoders for dimension-reduction of
gridded temperature data.

None of the aforementioned applications consider data from an ensemble of outputs,
and the goal was to primarily to reconstruct one dataset (Saenz et al. 2018) and conduct
additional tasks like spatio-temporal intrapolation (Cartwright et al. 2021) or interpretation
of the latent variable (Behrens et al. 2022) (akin to interpreting principal components).
The goal of Huang et al. (2023) is different—it is to compress the output with the aim of
being able to reconstruct not just one dataset (or each individual dataset from the ensemble
used in the training) but the underlying distribution generating the ensemble of datasets.
VAE are particularly suited for this task of compressing climate ensembles by only storing
distributional parameters (referred to as unconditional compression in the paper). I outline
a simple generic algorithm below.

Consider a climate model output consisting of N ensembles x1, x2, . . . , xN . For now,
I make no assumptions about the nature of the outputs xr . They can be univariate or mul-
tivariate time-series (as in the global and regional outputs considered in the paper) or a
spatio-temporal lattice (for the gridded outputs). These data-types will dictate the specific
architecture of the DNN-VAE, but the generic algorithm remains same for all of them. To
generate an ensemble of outputs from the same population as the observed data, one needs
to learn the underlying distribution Fx generating this data. The VAE models this data
distribution using a Bayesian hierarchical model (BHM),

p(xr ; θ) =
∫

p(xr | zr ; θ x )p(zr )d zr (2)

where zr is the latent variable corresponding to the r th member of the ensemble.As discussed
before, p(zr ) will often be the canonical Gaussian distribution, p(zr ) = N (zr | 0, I L)
while p(xr | zr ; θ x ) will depend on the data type. For continuous data, one will often
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use Gaussian likelihood p(xr | zr ; θ x ) = N (xr | μx (zr ; θ x ), diag(σ 2
x (zr ; θ x ))). Here, μx ()

and σ 2
x () are functions in the DNN class. Thus, to learn the generative distribution Fx ,

one needs to estimate the combined set of parameters θ x for these mean and variance
DNN. However, the marginal likelihood in (2) will be often intractable, and even sam-
pling from the posterior p(zr | xr ) will be challenging due to nonlinearity of DNN. Hence,
VAE deploys the variational family q(zr ) = N (zr | μz,r , diag(σ

2
z,r )) where the variational

means μz,r = μz(xr , θ z) and variances σ 2
z,r = σ 2

z (xr , θ z) are modeled as DNN. The
parameters (θ x , θ z) can be estimated by optimizing the total ELBO (1) over the ensemble,
i.e.,

∑N
r=1 L(xr | θ x , θ z).

When autoencoders are used for reconstruction tasks, one needs to store all the lower-
dimensional zr ’s (or their variational means μz,r ’s). For unconditional compression, the
goal is not to reconstruct one dataset but to estimate the generative distribution. Hence, one
only needs to store estimates of the generative model parameters θ x . Storage of the zr or
their variational means and variances are not required. Thus the parameters of the variational
family θ z are simply nuisance parameters for this task. Conditional on the knowledge of
the generative parameters θ x , one can simulate from Fx using the hierarchical formulation
in (2), i.e., simulating znew ∼ N (0, I L) and then simulating xnew from p(xnew | znew, θ x ).
This allows to regenerate a new ensemble xnew,1, xnew,2, . . . from the distribution Fx .

The architecture of the DNN used in the encoder and the decoder will depend on the
nature of the data. For the global and regional models considered in the paper, each xr is
a univariate or multivariate time-series of surface temperatures. One would then consider
using variational recurrent neural networks (RNN) (Chung et al. 2015) or some variants
like long short-term memory (LSTM) networks, echo state networks (ESN) that can model
dependencies over time. For the spatio-temporal gridded data, RNN and CNN can be com-
bined (Wang et al. 2016). CNN are designed for image valued data and are ideal to model
data observed over a spatial lattice. Hence, CNN has already seen considerable use for com-
pressing gridded climate output (Saenz et al. 2018; Cartwright et al. 2021). Kernels with
horizontal or vertical contours can be used as filters in the CNN to capture variation along
the latitudes and longitudes, respectively. The temporal evolution can still be captured by
an RNN variant. Additional covariate information like radioactive forcing or land/ocean
classification data can be incorporated by specifying the variation family as q(zr | x∗

r , θ z)

where x∗
r is the augmented data containing xr and these covariates. Finally, if Gaussianity

is inappropriate, as in the daily gridded data, one can easily switch to a different generative
model p(xr | zr , θ z) like the Tukey family of distributions considered in the paper.

Validation of the trained VAE for this task would also need to be different from the usual
validation of VAE that assesses reconstruction accuracy on the test data. Instead using the
generated ensemble, one would need to assess the distributional properties using metrics
similar to the ones used in Huang et al. (2023).

CONCLUDING REMARKS

DNN and other deep models are increasingly becoming mainstream in spatio-temporal
analysis (seeWikle and Zammit-Mangion 2022, for a comprehensive review). In this discus-
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sion, I proposed considering DNN-based VAE as an alternative to the statistical models of
Huang et al. (2023) for storage-efficient emulation of climate ensembles. I end the discussion
with a comparison of the two paradigms with respect to three considerations.

Storage: Like the statistical models considered, the VAE approach would also need to only
store estimates of the generative model parameters. This parameter set for VAE will be con-
siderably larger than many of the models proposed in the paper. However, as demonstrated
in the paper, storing even a million parameter estimates only uses a negligible fraction of the
memory required for storing the entire ensemble; hence, the complexity of the DNN-VAE
models should not be a concern from a storage perspective.

Interpretation: In the paper, the authors have done a commendable job of keeping the
models parsimonious, and motivating every added complexity to the extent possible. In
deep models, parsimony is still valued and is enforced through past-dependence in RNN or
via convolution and pooling in CNN. Despite this, these models are generally much less and
more black-box (or descriptive). However, deep models have been shown to retain some
interpretability in climate applications. For example, the DNN emulators used in Rasp et al.
(2018) were shown to learn to conserve energy just based on the training. Behrens et al.
(2022) demonstrated how the latent embedding from VAE can be used to identify dominant
drivers of convective processes. Thus, deep models can learn and represent features of the
data without needing explicit coding of these in the model architecture.

Accuracy: The richer representation of underlying processes offered by deep models may
manifest in improved accuracy of reconstruction over parametric statistical models. How-
ever, one downside of the deep models is that they require larger amounts of training data.
Saenz et al. (2018) demonstrated that with small training data, EOF outperform CNN-based
VAE for compressing surface temperature output, but the trend reverses when using a larger
training data. Thus, for smaller datasets using parametric spatio-temporal models or hybrid
(semi-parametric) statistical-machine learning models (Wikle and Zammit-Mangion 2022;
Saha et al. 2021; Sigrist 2020) might be more suitable.

In the future, detailed empirical comparisons need to be undertaken to assess benefits
and pitfalls of statistical, machine learning and hybrid approaches for compressing climate
ensembles.

[Accepted March 2023. Published Online May 2023.]
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