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I congratulate the authors on this insightful article that is very relevant to statisticians and the
broader community of climate scientists. The article addresses stochastic approximations of
climate models from the perspectives of storage and computational burden by analyzing an
ensemble of simulation output using a range of statistical models of increasing complexity
designed to capture spatial–temporal variability at increasingly high spatial and temporal
resolutions. The challenges statisticians encounter in analyzing output from climate models
have been neatly articulated in the manuscript. I enjoyed reading the manuscript and find
myself largely in agreement with the overall approach pursued by the authors here. Nev-
ertheless, I take this opportunity to present some ideas pertaining to Bayesian learning of
mechanistic models that may be relevant to inference for climate models.

First, it is worth pointing out a rather substantial literature in statistical modeling ofmech-
anistic systems including, but not limited to, climatemodels. Different approaches have been
developed and recommended depending upon the analytic tractability of the mechanistic
systems as well as the computational resources available to analysts. If the mechanistic sys-
tem is governed by a system of differential equations (ordinary or partial), as is the custom in
climate modeling, partial analytical tractability of the system may be available by building
a possibly nonlinear dynamic model using finite difference approximations of the system
(see, e.g., Wikle and Hooten 2010, for an excellent exposition and further references). This
approach, when applied to a mechanistic system such as in Figure 2 of the article being dis-
cussed, would take the finite difference approximations of all partial derivatives with respect
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to time and recast the system into a hierarchical dynamical or state-space framework with
the process evolving as Wt = M(Wt−1; θt , xt , ηt ), where M(·) is the evolution operator,
θt is a collection of, possibly time-varying, mechanistic parameters, xt is a collection of
design inputs to the mechanistic system at time t , and ηt is a stochastic process that can
accommodate other disturbances such as white noise at the process stage as well as other
structured dependencies, such as spatial–temporal associations, as appropriate.

The above approach is attractive in that the evolution operator is directly derived from
the mechanistic system and, hence, yields a learning framework that can accommodate the
scientific parameters. Furthermore, if field observations are also available, then the evo-
lution model for the process is conveniently embedded within a hierarchical framework,
where the first stage is a probability model Yt = H(Wt ;βt , εt ), whereH(·) maps the latent
process to the observations Yt and specifies the likelihood function for Yt , βt is, possibly,
time-varying, statistical model parameters and εt captures measurement errors. IfM(·) and
H(·) are linear and the stochastic processes are Gaussian, or can be reasonably approxi-
mated as such, then we arrive at the familiar Kalman-filtering approaches for state-space
models including ensemble methods for large data sets (see, e.g., Katzfuss et al. 2020, and
references therein). Unfortunately, the evolution operator M(·) may not be analytically or
computationally very tractable for very complex scientific models such as the one presented
in the article under discussion. For example, Chapter 3 in Collins et al. (2004) offers the
mathematical model describing the dynamics of the NCARCommunity AtmosphereModel
and Section 3.1.7, in particular, develops the finite-difference calculations. Even a cursory
look at this material reveals the complexity of M(·) which impedes developing a hierar-
chical dynamical framework. This, from my vantage point, is a strong motivation for the
approach proposed in the article under discussion. The underlying justification is to let the
specialized computing environments produce the output from the mechanistic system and
let the statisticians analyze the results to facilitate probabilistic learning and inference for
the underlying scientific processes at play.

Turning to the specific approach in the article, modeling the response (temperature) Y (·)
and the radioactive forcing X (·) as stochastic processes is attractive and offers substantial
richness and flexibility. While modeling the radiative forcing as autoregressive processes is
not unreasonable, and in fact may even offer computational benefits, it raises my curiosity
about enriching the model by jointly modeling temperature and forcing as a continuous
space-time process. Furthermore, from the scientific perspective, it may be worth exploring
the feasibility for allowing radiative forcing to vary spatially as well as temporally. To be
specific, writing � = (s, t) as the space-time coordinate, we can consider

Yr (�) = β0(�) + β1(�)X (�) + ηy,r (�);
X (�) = μ(�) + ηz(�),

(1)

where ηr (�) = (ηy,r (�), ηz(�))
T is a bivariate spatial–temporal process specific to the r -th

realization of the scientific model. If there is no spatial information on radiative forcing,
then we can adapt the above model by setting X (�) = X (t).

Instead of assuming an autoregressive structure for radiative forcing, we can model
ηr (�) as bivariate Gaussian processes for each realization of the climate model or, if deemed
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appropriate, even accommodate dependence among the realizations. In any case, the process
ηr (�) can be specified using space-time cross-covariance functions see, e.g., Genton and
Kleiber (2015), for a comprehensive review. Here, I understand that the authors’ prefer an
unstructured covariance matrix for capturing spatial associations, which corresponds to a
coregionalized model with ηr (t) = Aωr (t), where ηr (t) is the S × 1 process obtained by
collecting ηr (�) over S spatial regions, ωr (t) = (ωr,1(t), . . . , ωr,S(t))T is an S × 1 vector
whose elements, ωr, j (t) for j = 1, 2, . . . , S, are independent latent temporal processes
with unit variance corresponding to each region, and A is the Cholesky factor of any spatial
covariancematrix. If themodel needs to operate at large scales over either space or time, then
familiar ideas such as dynamic nearest-neighbor Gaussian processes (Datta et al. 2016b) can
be used (although scalability does not seem to be an issuewith S = 58 regions). Furthermore,
ifwe have a balanced design for the realizations of the climatemodel,wherewe can treatY (t)
as an S× R matrix whose (s, r)-th elements are Yr (s, t) for s = 1, . . . , S and r = 1, . . . , R,
then computationally efficient rich Bayesian modeling frameworks based on matrix-variate
multivariate regressionmodels for temporally evolvingY (t) can be constructed by extending
(Zhang and Banerjee 2022) to temporal processes.

A pertinent issue is whether the above joint modeling approach will deliver substantial
benefits to compensate for perhaps some additional levels of complexity. I will admit that
at this point, it is difficult to see such a benefit unless the learning exercise also involves
predictive interpolation of radiative forcing at arbitrary regions. In that case, it is worth
remarking that joint modeling can offer benefits over conditional modeling. For example,
consider any fixed realization of the scientific model and let Yr be the ST ×1 vector of Yr (�)
over the S regions and T time points where the climate model output has been recorded
for the r -th realization. Let X be the corresponding vector collecting X (�) over the ST
space-time coordinates and let �0 be a new space-time coordinate where we wish to predict
X (�0) and Y (�0). In the conditional model, as pursued by the authors’, the joint distribution
is obtained after extending a probability law to the radiative forcing as

[X (�0),Y (�0), X,Yr | �] = [X | �] × [X (�0) | X,�]
×[Yr | X,�] × [Y (�0) | X (�0),�],

where� is a generic notation for all parameters in themodel. Then, the predictive distribution
of X (�0) and Y (�0) given the data {X,Yr } is

[X (�0),Y (�0) | X,Yr ,�] ∝ [X (�0) | X,�] × [Y (�0) | X (�0),�]

which implies that, conditional on the information on �, [X (�0) | X,Yr ,�] ∝ [X (�0) |
X,�] so the process X (·) at a new location �0 will not learn from the associated process
realizations Yr , although Y (·) will learn from X (·). This apparent asymmetry in predictive
learning may be deemed unintuitive in scientific applications.

The above are some points that should be worth attending to in these exercises. I will
conclude by making a few remarks regarding statistical learning of mechanistic systems in
the broader sense. It seems important from the statistical perspective that scientific infer-
ence on the climate should assimilate information from observed data in conjunction with
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mechanistic systems manifested through climate models. Such inference should, ideally,
assist in learning about the mechanistic system parameters from the data. This is possible
with more tractable mechanistic systems using the approach described inWikle and Hooten
(2010) and also in the area of calibratingmore complexmechanistic system parameters from
field data using Gaussian process emulators (Kennedy and O’Hagan 2001; Higdon et al.
2008). In fact, in settings where the differential equations are analytically and computation-
ally tractable, such as in industrial hygiene applications, learning or calibrating parameters
using the state-space approaches of Wikle and Hooten (2010) and Gaussian processes have
been shown to offer substantial inferential benefits (Monteiro et al. 2014; Abdalla et al.
2020).

However, the situation with climate models is more challenging for calibration. The
climate model must be run over a well-designed range of input parameters. While computa-
tionally efficient Gaussian process emulators for computer models have been proposed (see,
e.g., Gramacy et al. 2014; Gramacy 2016; Gramacy and Haaland 2016; Frankenburg and
Banerjee 2022), the complexity of climate models still precludes calibration. In this regard, I
feel one needs greater involvement of statisticians in constructing the climate models them-
selves. Rather than providing statisticians with a highly intricate climate model as an end
product to analyze, smaller constituents of the climate model should be calibrated and vali-
dated with field observations and this calibrated learning, including quantified uncertainty,
should be exploited in building other constituents. Such developments will require syner-
gistic collaborations between climate scientists, applied and computational mathematicians
with expertise in PDE’s, and statisticians with expertise in mechanistic system calibration
and emulation.

[Accepted March 2023. Published Online May 2023.]
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